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Abstract. Zoonotic diseases are mostly the leading causes of illness and deaths in Sub-Saharan Africa but efforts

to combat the spread of these diseases has always been a challenge. Incidence of zoonotic diseases has reduced

substantially in most parts of Africa as a result of rigorous vaccination campaigns. However, zoonotic diseases

still remain a threat to developing nations. Zoonotic diseases can be contracted either by direct contact, food and

water. In this paper, we developed and analysed a general model that explains the dynamics of zoonotic diseases

and analysed it using nonstantard finite difference approach. This scheme was used for the model analysis. The

disease free equilibrium of the scheme in its explicit form was determined and it was both locally and globally

asymptotically stable. Bifurcation and multiple equilibria as well as the threshold value for disease transmission

was determined. An analysis of the effects of contact between susceptible and infected animals as well susceptible

and infected humans was conducted. It showed an increase in infected animals and humans whenever the contact

rate increases and decreases otherwise. The epidemiological implication is that zoonotic disease can be controlled
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by ensuring that interactions between susceptible humans, infected animals and infected humans is reduced to the

bearest minimum.

Keywords: zoonotic disease; reproductive rate; nonstandard finite difference; stability; bifurcation.
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1. INTRODUCTION

Zoonosis are among the leading causes of illness and deaths in Sub-Saharan Africa but ef-

forts to combat the spread of these diseases has always been a challenge. Incidence of these

diseases has reduced significantly in many developed nations as a result of proper vaccination

campaigns. Unfortunately, zoonosis still a threat to many developing nations especially Africa.

Zoonotic diseases can be contracted either by direct contact, food and water [1, 2]. Campy-

lobacter genus is the bacteria responsible for zoonotic Campylobacteriosis infections.

Campylobacteriosis can be spread or contracted through the fecal-oral path. It is a zoonotic

disease can be contracted via direct contact, food and water. The disease is zoonotic in nature

and hence can be spread from animals to humans and also from humans to humans [2].

Campylobacteriosis infected person is usually asymptomatic at the incubation period, that is

between one to three days of infection. Diarrhea, fever and abdominal cramps are usually the

commonest symptoms of the disease. Symptoms of campylobacteriosis can last for at least

five to eight days of infections. Children in developing countries mostly show symptoms of

campylobacteriosis infections while adults rarely show any symptoms of infections. But on

the contrary, the infection is less common in the developed world [3]. Symptomatic persons

can infect others directly, contaminate water and food during the infectious period of Campy-

lobacteriosis. The disease is mostly food and waterborne illness but can also be spread through

direct contact with infected humans or animals via fecal-oral path of transmission. But human

to human spread is usually uncommon [4].

Deterministic models enhance the general understanding of disease spread by the provision of

a theoretical frame which underlines factors that accounts for spread and control of diseases

[5, 6, 7, 8, 9, 10]. The concept of deterministic modelling involves the process of constructing,

testing and validating models. These models are real representations of natural phenomena of

systems or hypothesis in a mathematical perspective [11].
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Authors in [12, 13, 14] employed the concept of Non standard finte difference method in mod-

elling waterborne disease and pharmacokinetic model respectively. This same approach has

been employed in this paper to model zoonotic diseases and to explain the dynamics of disease

spread among opulation.

Generally, the intended use of a deterministic model is paramount in guiding the development of

the model since the model structure has to adequately address its objective. Hence, understand-

ing mechanism and causes of patterns present in an observed data is usually an objective that

initiates a deterministic modelling process [15]. Moreover, epidemiological models explain

dynamics of infections, determine best optimal control strategies and the most cost effective

amongst these strategies [16, 17, 18, 19, 20]. However, authors in [21, 22, 23, 24, 25, 26]

proposed and formulated models that attempts to explain this hidden and existing phenomena.

2. MODEL DESCRIPTION AND FORMULATION

We divide the zoonotic model into two parts, human and animal populations. Populations at

any time, t are divided into six sub-groups with respect to their disease status in the system. The

total human population also represented by Nh(t), is divided into sub-populations of Suscepti-

ble humans Sh(t), Infected humans Iv(t), and Recovered humans Rv(t). Susceptible humans are

recruited into the population at a rate Λh. They are infected with campylobacteriosis through

ingestion of contaminated water, foods and direct contact with infected animals and humans at

a rate (Iv + Ih)β . Infected humans recover from campylobacteriosis at a rate γ . Campylobacte-

riosis related death rate δh and may looses immunity at a rate σh. Campylobacteriosis natural

death rate for all human compartments is µh. Susceptible animalsSv, are recruited at a rate Λv.

Animals can be infected with campylobacteriosis through ingestion of contaminated food, water

and contact with infected animals at a rate (Iv + Ih)λ . Susceptible and infected animals natural

death rate is µv. Infected animals death rate as a result of campylobacteriosis is δv and animals

may recover at a rate α . Animals may looses immunity at a rate σv.

Hence, total human population:

(1) Nh(t) = Sh(t)+ Ih(t)+Rh(t).
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Total animal population, Nv(t), is divided into sub-populations of Susceptible animals Sv(t),

Infectious animals Iv(t), and Recovered animals Rv(t).

Hence, total animal population:

(2) Nv (t) = Sv(t)+ Iv(t)+Rv(t).

FIGURE 1. Model flow diagram.

System of equations obtained from the model in Figure 1:

(3)

dSh

dt
= Λh +σhRh−β ∗mβSh−µhSh

dIh

dt
= β ∗mβSh− γIh− (µh +δh) Ih

dRh

dt
= γIh− (σh +µh)Rh

dSv

dt
= Λv−β ∗mλSv−µvSv +σvRv

dIv

dt
= β ∗mλSv−αIv− (µv +δv) Iv

dRv

dt
= αIv− (σv +µv)Rv


Where, β ∗m = Ih + Iv.
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3. MODEL ANALYSIS

Positivity and boundedness of solutions: The solution of the system in (3) is a function of

the form;

(4) X : t∈ J⊂ R−→X(t) =



Sh(t)

Ih(t)

Rh(t)

Sv(t)

Iv(t)

Rv(t)


⊂ R6

Considering;

(5) F : X ∈ R6 −→ F(X) ∈ R6

Where,

(6) F(X) =



dSh

dt
= Λh +σhRh−β ∗mβSh−µhSh

dIh

dt
= β ∗mβSh− γIh− (µh +δh) Ih

dRh

dt
= γIh− (σh +µh)Rh

dSv

dt
= Λv−β ∗mλSv−µvSv +σvRv

dIv

dt
= β ∗mλSv−αIv− (µv +δv) Iv

dRv

dt
= αIv− (σv +µv)Rv


Hence;
dX
dt

= F(X)

X(0) = X0 =
(
Sh(0); Ih(0);Rh(0);Sv(0); Iv(0);Rv(0)

)T

Based on the existence and uniqueness theorem, F is C1. Hence, ∃ a unique global solution

of the initial value problem of (3) and this solution is usually non negative whenever its initial

conditions are non negative.
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4. NONSTANDARD FINITE DIFFERENCE SCHEME

This is basically a numerical scheme with step size4t that is usually used in the approxima-

tion of solution X(tk) of autonomous system of differential equations of the form;

(7)
dX
dt

= F(X)

X(0) = X0

Where, F is C1 usually of the form;

(8) D4t(Xk) = F4t(Xk)

Where;

(9)

D4t(Xk)≈
dX(tk)

dt

Xk ≈ X(tk)

 ,

F4t(Xk)≈ F(Xk)

tk ≈ t0 + k4t


The scheme;

(10) D4t(Xk) = F4t(Xk)

Theorem 4.1. The scheme (10) can be referred to as nonstandard finite difference scheme when

it at least satisfy the following conditions;

• D4t(Xk) =
Xk+1−ψXk

ϕ(4t)
where ψand ϕ are positive functions which depend on param-

eters of the differential equations, step size, (4t) and satisfy;

(11)

ψ(4t) = 1+O(4t)

ϕ(4t) =4t +O(4t2)


• F4t(Xk) = g(Xk,Xk+1,4t) where g denotes an approximation of the non local right

hand side of the system.
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Theorem 4.2. The nonstandard finite difference scheme is called elementary stable, if, for any

value of the step size, its only fixed points are those of the original differential system, the linear

stability properties of each fixed points being the same for both the differential system and the

discrete scheme.

Based on the definition of the nonstandard finite difference (NSFD) scheme, and the rules

governing its construction in [22, 23, 13], the NSFD scheme for the system of (3)

is given by:

(12)

Sn+1
h −Sn

h
ϕ1(4t)

= Λh−β (In
h + In

v )S
n+1
h −µhSn+1

h +σhRn+1
h

In+1
h − In

h
ϕ2(4t)

= β (In
h + In

v )S
n+1
h − γIn+1

h − (µh +δh)In+1
h

Rn+1
h −Rn

h
ϕ3(4t)

= γIn+1
h − (σh +µh)Rn+1

h

Sn+1
v −Sn

v
ϕ4(4t)

= Λv−λ (In
h + In

v )S
n+1
v −µvSn+1

v +σvRn+1
v

In+1
v − In

v
ϕ5(4t)

= λ (In
h + In

v )S
n+1
v −αIn+1

v − (µv +δv)In+1
v

Rn+1
v −Rn

v
ϕ6(4t)

= αIn+1
v − (σv +µv)Rn+1

v


where,

(13) ϕ j(4t,k∗j) =
1− e−k∗j ∆t

k∗j
,

k∗j = max{|γi|}

j = 1,2,3, . . .6

i = 1,2,3, . . .6

 with; γi =
∂ f
∂xi

∣∣∣∣
x=x̄

and f (x̄) = 0.
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Where;

(14)

ϕ1(4t) =
(

1−e−µh∆t

µh
, −βΛh

µh
,σh,0,

−βΛh
µh

,0
)

ϕ2(4t) =

(
1−e

−| βΛh
µh
−γ−µh−δh|∆t

| βΛh
µh
−γ−µh−δh|

, −βΛh
µh

,0,0, −βΛh
µh

,0

)

ϕ3(4t) =
(

1−e−(σh+µh)∆t

(σh+µh)
,γ,−σh−µh,0,0,0

)

ϕ4(4t) =
(

1−e−µv∆t

µv
,0,−λΛv

µv
,−µv,−λΛv

µv
,σv

)

ϕ5(4t) =
(

1−e−|
λΛv
µv −α−µv−δv|∆t

| λΛv
µv −α−µv−δv|

,0, λΛv
µv

,0,0, λΛv
µv
−α−µv−δv

)

ϕ6(4t) =
(

1−e−(σv+µv)∆t

(σv+µv)
,0,0,0,α,σv−µv

)


Where;

(15)

ϕ1(4t) = 1−e−µh∆t

µh

ϕ2(4t) = 1−e
−| βΛh

µh
−γ−µh−δh|∆t

| βΛh
µh
−γ−µh−δh|

ϕ3(4t) = 1−e−(σh+µh)∆t

(σh+µh)


,

ϕ4(4t) = 1−e−µv∆t

µv

ϕ5(4t) = 1−e−|
λΛv
µv −α−µv−δv|∆t

| λΛv
µv −α−µv−δv|

ϕ6(4t) = 1−e−(σv+µv)∆t

(σv+µv)


The scheme in its explicit form is given by:

(16)

Sn+1
h =

(Λh+σhRn+1
h )ϕ1(4t)+Sn

h
1+(β In

h+β In
v +µh)ϕ1(4t)

In+1
h =

(β In
h Sn+1

h +β In
v Sn+1

h )ϕ2(4t)+In
h

1+(γ+µh+δh)ϕ2(4t)

Rn+1
h =

γIn+1
h ϕ3(4t)+Rn

h
1+(σh+µh)ϕ3(4t)


,

Sn+1
v =

(Λv+σvRn+1
v )ϕ4(4t)+Sn

v
1+(λ In

h+λ In
v +µv)ϕ4(4t)

In+1
v =

(λ In
h Sn+1

v +λ In
v Sn+1

v )ϕ5(4t)+In
v

1+(α+µv+δv)ϕ5(4t)

Rn+1
v =

αIn+1
v ϕ6(4t)+Rn

v
1+(σv+µv)ϕ6(4t)
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5. DISEASE FREE EQUILIBRIUM

Given initial conditions;

Sh(0) = 0, Ih(0) = 0,Rh(0) = 0,S(0) = 0, Iv(0) = 0,Rv(0) = 0.

The disease free equilibrium of the scheme in its explicit form can established by linearising

the system in its explicit form. The jacobian matrix of the scheme is given by;

(17)



1
1+µhϕ1(∆t) P1

σhϕ1(∆t)
1+µhϕ1(∆t) 0 P6 0

0 P2 0 0 P7 0

0 P3
1

1+(σh+µh)ϕ3(∆t) 0 0 0

0 P4 0 1
1+µvϕ4(∆t) P8

σvϕ(∆t)
1+µvϕ4(∆t)

0 P5 0 0 P9 0

0 0 0 0 P10
1

1+(σv+µv)ϕ6(∆t)


Where;

(18)

P1 =
− βΛh

µh
ϕ1(∆t)

1+µhϕ1(∆t) , P6 =
− βΛh

µh
ϕ1(∆t)

1+µhϕ1(∆t)

P2 =
1+ βΛh

µh
ϕ2(∆t)

1+(γ+µh+δh)ϕ2(∆t) , P7 =
βΛh
µh

ϕ2(∆t)

1+(γ+µh+δh)ϕ2(∆t)

P3 =
γϕ3(∆t)

1+(σh+µh)ϕ3(∆t) , P8 =
− λΛv

µv ϕ4(∆t)
1+µvϕ4(∆t)

P4 =
− λΛv

µv ϕ4(∆t)
1+µvϕ4(∆t) , P9 =

λΛv
µv ϕ5(∆t)

1+(α+µv+δv)ϕ5(∆t)

P5 =
λΛv
µv ϕ5(∆t)

1+(α+µv+δv)ϕ5(∆t) , P10 =
αϕ6(∆t)

1+(σv+µv)ϕ6(∆t)
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The corresponding eigenvalues of the Jacobian matrix is obtained as;

(19)

λ1 =
1

1+µhϕ1(∆t) ,λ2 =
1+ βΛh

µh
ϕ2(∆t)

1+(γ+µh+δh)ϕ2(∆t)

λ3 =
1

1+(σh+µh)ϕ3(∆t) ,λ4 =
1

1+µvϕ4(∆t)

λ5 =
1+ λΛv

µv ϕ5(∆t)
1+(α+µv+δv)ϕ5(∆t) ,λ6 =

1
1+(σv+µv)ϕ6(∆t)


Local stability of the disease free equilibrium:

Theorem 5.1. The DFE is locally asymptotically stable for every value of (4t) if the following

conditions are satisfied;

(i) βΛh
µh(γ+µh+δh)

< 1

(ii) λΛv
µv(α+µv+δv)

< 1

Theorem 5.2. The DFE is locally asymptotically stable for every value of (4t) if the conditions

stated in Theorem 3 are satisfied.

Proof. The sequence;

(20) (Sn
h, I

n
h ,R

n
h,S

n
v , I

n
v ,R

n
v)n

should converge to the disease free equilibrium

(21) DFE = (
Λh

µh
,0,0,

Λv

µv
,0,0)

for any positive initial conditions when conditions (i) and (ii) are satisfied for every value of

(4t).

Linearising the system (3) at the DFE, the eigenvalues of the corresponding Jacobian matrix

is given by: �
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(22)

λ1 =
1

1+µhϕ1(∆t) ,λ2 =
1+ βΛh

µh
ϕ2(∆t)

1+(γ+µh+δh)ϕ2(∆t)

λ3 =
1

1+(σh+µh)ϕ3(∆t) ,λ4 =
1

1+µvϕ4(∆t)

λ5 =
1+ λΛv

µv ϕ5(∆t)
1+(α+µv+δv)ϕ5(∆t) ,λ6 =

1
1+(σv+µv)ϕ6(∆t)


It shows that the DFE is locally asymptotically stable for every value of (4t) if the conditions

(i) and (ii) are satisfied.

For λ1

(23) |λ1|=
∣∣∣∣ 1
1+µhϕ1(∆t)

∣∣∣∣
|λ1|< 1 since 1+µhϕ1(∆t)> 1

For λ2

(24) λ2 =

∣∣∣∣∣∣ 1+ βΛh
µh

ϕ2(∆t)

1+(γ +µh +δh)ϕ2(∆t)

∣∣∣∣∣∣
|λ2|< 1 if and only if 1+ βΛh

µh
ϕ2(∆t)< 1+(γ +µh +δh)ϕ2(∆t)

For λ3

(25) |λ3|=
∣∣∣∣ 1
1+(σh +µh)ϕ3(∆t)

∣∣∣∣
|λ3|< 1 since 1+(σh +µh)ϕ3(∆t)> 1

For λ4

(26) |λ4|=
∣∣∣∣ 1
1+µvϕ4(∆t)

∣∣∣∣
|λ4|< 1 since 1+µvϕ4(∆t)> 1

For λ5
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(27) |λ5|=

∣∣∣∣∣ 1+ λΛv
µv

ϕ5(∆t)

1+(α +µv +δv)ϕ5(∆t)

∣∣∣∣∣
|λ5| ≤ 1 if and only if 1+ λΛv

µv
ϕ5(∆t)< 1+(α +µv +δv)ϕ5(∆t)

For λ6

(28) |λ6|=
∣∣∣∣ 1
1+(σv +µv)ϕ6(∆t)

∣∣∣∣
|λ6|< 1 since 1+(σv +µv)ϕ6(∆t)> 1

Global stability of the disease free equilibrium:

Theorem 5.3. The disease free equilibrium is Globally asymptotically stable if the conditions

stated in theorem 3 are satisfied.

Proof. The sequence;

(29) (Sn
h, I

n
h ,R

n
h,S

n
v , I

n
v ,R

n
v)n

should converge to the disease free equilibrium;

(30)
(

Λh

µh
,0,0,

Λv

µv
,0,0

)
for any positive initial condition whenever conditions (i) and (ii) are satisfied for every value

of4t. �

From the proof of theorem 1, the DFE is LAS for every value of4t whenever conditions (i)

and (ii) hold.

Suppose that for n > 0;

(Sn
h, I

n
h ,R

n
h,S

n
v , I

n
v ,R

n
v) converge to

(
Λh
µh
,0,0, Λv

µv
,0,0

)
.

Then it can be shown that;

(31) (Sn+1
h , In+1

h ,Rn+1
h ,Sn+1

v , In+1
v ,Rn+1

v )
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converges to

(32)
(

Λh

µh
,0,0,

Λv

µv
,0,0

)
.

For In+1
h :

(33) In+1
h =

(β In
h Sn+1

h +β In
v Sn+1

h )ϕ2(4t)+ In
h

1+(γ +µh +δh)ϕ2(4t)

then,lim
∞

In+1
h = 0 as n→ ∞

For Rn+1
h :

(34) Rn+1
h =

γIn+1
h ϕ3(4t)+Rn

h
1+(σh +µh)ϕ3(4t)

then,lim
∞

Rn+1
h = 0 as n→ ∞

For Sn+1
h :

(35) Sn+1
h =

(Λh +σhRn+1
h )ϕ1(4t)+Sn

h
1+(β In

h +β In
v +µh)ϕ1(4t)

then,lim
∞

Sn+1
h = Λh

µh
as n→ ∞

For In+1
v :

(36) In+1
v =

(λ In
h Sn+1

v +λ In
v Sn+1

v )ϕ5(4t)+ In
v

1+(α +µv +δv)ϕ5(4t)

then,lim
∞

In+1
v = 0 as n→ ∞

For Rn+1
v :

(37) Rn+1
v =

αIn+1
v ϕ6(4t)+Rn

v
1+(σv +µv)ϕ6(4t)

then,lim
∞

Rn+1
v = 0 as n→ ∞

For Sn+1
v :
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(38) Sn+1
v =

(Λv +σvRn+1
v )ϕ4(4t)+Sn

v
1+(λ In

h +λ In
v +µv)ϕ4(4t)

then,lim
∞

Sn+1
v = Λv

µv
as n→ ∞

Hence, the DFE is GAS since the condition (i) and (ii) are satisfied for every value of (4t).

6. BASIC REPRODUCTIVE NUMBER

Zoonotic reproductive number is the number of secondary cases produced on average by one

infected human or animal in a completely susceptible population. It combines the biology of

infections with social and behavioural factors influencing contact rate [27, 28]. It is a threshold

parameter that determines spread of infections.

The zoonotic reproductive number is given by the relation;

(39) Rhv =

(
βΛh

µh (γ)+(µh +δh)

)
+

(
λΛv

µv [(α)+(µv +δv)]

)
.

where;

(40) Rhq =

(
βΛh

µh (γ)+(µh +δh)

)
is for human population and

(41) Rvq =
λΛv

µv [α +(µv +δv)]

for animal population.

7. NUMERICAL ANALYSIS

In this section, we performed the quantitative analysis of the zoonotic model by solving

the system of equation in Figure 1 numerically. This was done by performing the analysis of

contact rates and recovery rates on humans and animals as shown in Figure 2 and Figure 3

respectively. We assume the following parameter values; β = 0.03, λ = 0.004, Λv = 0.005,

Λh = 0.002, α = 0.05, µv = 0.0002, µh = 0.0001, δv = 0.003, δh = 0.001, σh = 0.004 and

σv = 0.007 in our simulations.
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Analysis of contact rates; (β ) and (λ ) on infected humans and animals:

Figure 2(a) shows analysis of contact rate, (β ) on infected humans. As the contact rate, (β )

increases, there seem to be an increase in the number of infections. As the contact rate, (β )

decreases, there is a corresponding decrease in the number of infected humans. This confirms

the effects of contact rate, (β ) on infected humans. Hence, infections can be curbed by ensuring

that the value of contact rate, (β ) reduces to the bearest minimum.

Figure 2(b) shows analysis of contact rate, (λ ) on infected animals. As the contact rate in-

creases, there seem to be an increase in the number of infections. As the contact rate decreases,

there is a corresponding decrease in the number of infected animals. This confirms the effects

of contact rate, (λ ) on infected animals. Hence, infections can be curbed by ensuring that the

value of contact rate, (λ ) reduces to the bearest minimum. Infected human population decreases

monotonically as compared to infected animal population is a clear indication of variations in

contact rate between human and animal populations as shown in Figure 2(a) and Figure 2(b).

(a) (b)

FIGURE 2. Effects of contact rates: (β ) and (λ ) on infected humans and animals.,

Analysis of recovery rates; (γ) and (α) on recovered humans and animals:
Figure 3(c) shows analysis of recovery rate, (γ) on recovered humans. As the recovery

rate, (γ) increases, there is a corresponding increase in the number of recovered humans. As

the recovery rate, (γ) decreases, there is a corresponding decrease in the number of recovered
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humans. Hence, recovery can be achieved by ensuring that the value of recovery rate, (γ)

apreciates.

Figure 3(d) shows analysis of recovery rate, (α) on recovered animals. As the recovery

rate increases, we observe an increase in the number of recovered animals. As the value of

recovery rate decreases, there is a corresponding decrease in the number of recovered animals.

Hence, recovery can be achieved by ensuring that the value of recovery rate, (α) appreciates.

Recovery in human increases monotonically as compared to recovery in animal population

clearly indicates variations in rate of recovery in human and animal populations as shown in

Figure 3(c) and Figure 3(d).

(c) (d)

FIGURE 3. Effects of recovery rates: (γ) and (α) on recovered humans and animals.,

7.1. Bifurcation and Multiple Equilibria Analysis. The phenomenon of backward ifurca-

tion is been considered. The idea of bifurcating endemic equilibrium exists only when the basic

reproduction number is less than unity. Our zoonotic model has exhibited this property and

backward bifurcation exists.

When backward bifurcation occurs, the range of the reproduction number is between R∗hv <

Rhv < 1. There exits at least one endemic equilibrium. Where least one is stable and the disease

free equilibrium is not globally stable when the basic reproduction number is less than unity

[29, 30, 31, 32, 33].
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In this happenings, infection would exist even when Rhv < 1. Figure 4 is the backward bifurca-

tion diagram of the force of infection against the basic reproduction number that our zoonotic

model has exhibited.

FIGURE 4. Backward bifurcation of the endemic equilibrium when Rhv > 1

8. CONCLUSION

A deterministic model that explains the spread dynamics of zoonotic diseases was formulated

and analysed for qualitatively and quantitatively. The qualitative analysis of the zoonotic model

was carried out using Nonstandard Finite Difference Scheme for boundedness of solution, dis-

ease free equilibrium and its local and global stability. Zoonosis free equilibrium of the scheme

in its explicit form was established. Analysis of the scheme established that the zoonosis free

equilibrium was both locally and globally asymptotically stable.

An analysis of the effects of contact rate between susceptible and infected animals as well

susceptible and infected humans was conducted. This showed an increase in infected animals

and humans whenever the contact rate increases and decreases otherwise. Biologically, campy-

lobacteriosis infections can be controlled by ensuring that interactions between susceptible hu-

mans, infected animals and infected humans is reduced to the bearest minimum.
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