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Abstract. Coinfections are difficult to manage and control due to the different complexities of the diseases. In this

study, we analyse the fractional order version of the Anthrax-Listeriosis coinfection model formulated by Osman

and Makinde in [1]. We investigate the positivity, existence and uniqueness of the model solutions and use the

Liouville-Caputo operator to perform stability analysis of the model. The Adams-type predictor corrector method

is also employed to analyse the trajectories of the model. We numerically simulate the theoretical results by varying

fractional orders to see how changes in the fractional order derivative affects the coinfection dynamics. Our results

indicate that the model notably depends on the fractional order derivative and model parameters. It also suggests

that the fractional order is the main driver of the coinfection. The results we obtained are hand in glove with the

results obtained in the corresponding integer model by Osman and Makinde, however, our results reveal that the

use of the Liouville Caputo operator and fractional operators in general enhance a better description of biological

processes than integer order operators.
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1. INTRODUCTION

Listeriosis is a serious food-borne bacteria infection in humans, plants and animals, caused

by the bacterium Listeria monocytogene (L. monocytogene) [2]. There are five strains of the

bacterium, namely: Listeria innocua, Listeria seeligeri, Listeria welshimeri, Listeria ivanovii

and Listeria monocytogenes which is the only strain that is pathogenic to both humans and an-

imals. The food-borne pathogen L. Monocytogene survives and grows in environments with

temperatures ranging from 30◦C to 37◦C and even in refrigerated environments with tempera-

tures of as low as 4◦C [3]. Its primary habitats are soil and water, and it is transmitted to humans

and animals by consumption of contaminated ready-to-eat (RTE) food products such as polony,

cheese, ham, meat, raw milk, processed meats, fresh and frozen poultry, fresh produce includ-

ing fruits and vegetables. After consumption, the bacteria enter the gastrointestinal tract and

counteract changes in acidity, osmolarity, oxygen tension, or the challenging effects of antimi-

crobial peptides and bile [4]. It then crosses the epithelium barrier of the infected individual

through the transcytosis and invades the mesenteric lymph nodes into the blood [5]. In pregnant

women, the bacteria are transmitted to the foetus either during delivery or through the placenta,

which can lead to premature labour, death of new born babies, serious illness, meningitis, mis-

carriages, and stillbirth [6]. Listeriosis is a relatively rare but preventable disease. Data from

European countries in 2016 suggests that there were about 2,555 reported cases with high rates

of 1.3 per 100,000 population found in children below 1 year and a rate of 1.6 per 100,000

population among ages over 64 years [7]. These cases pose serious public health concerns in

Europe and in the USA, it is estimated to be the cause of over 80% percent of deaths related to

food consumption. [8, 9].

Anthrax is a zoonotic disease that can be found in all continents except Antarctica [10, 11].

Anthrax is caused by the obligate in vivo pathogen Bacillus anthracis. Infected animal host

leaves their bacilli in the soil, the spores which can survive in the soil for decades are picked

up by another host through germination. Humans contract the disease via their exposure to

the bones, hides and carcasses of dead animals. Bacillus anthracis is a potential biological

weapon, when exposed to it, the lessions are found on the exposed regions of the body. It has

an incubation period ranging from few hours to 3 weeks, often 2 to 6 days. In 2001 the disease
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became more pronounced when 5 people died after receiving letters contaminated with anthrax

spores in the USA [12, 13]. A study carried out in Georgia to see how the disease has evolved

from the year 2000− 2013 saw an increase in human anthrax from 0.7 cases per 100,000 in

2000 to 3.7 cases per 100,000 by 2013, by the end of the compulsory annual livestock anthrax

vaccination, [14].

The use of mathematical models to study the dynamics and transmission of infectious dis-

eases has become prevalent as seen in the existing mathematical epidemiological models. These

models use medical data, and continuous surveillance information and other mathematical epi-

demiological tools to prove and predict the disease transmission dynamics [15, 16, 17]. The

Authors of [18] considered a model to investigate an outbreak in Listeriosis in a community.

They considered neonatal infections and a compartment to represent the reservoir for bacteria

infection. They used existing data to predict the possible future outbreaks as well as the disease

eradication using the reproductive number. A Listeriosis transmission model which considers

transmissions through ready-to eat foods in a food processing plant was also studied in [19].

Anthrax transmission models were considered by the authors of [20, 21] but their emphasis

was on disease transmissions in the animal population only. A mathematical model developed

to consider both Anthrax and Listeriosis transmission in both human and vector populations

was considered by authors of [1]. They considered the transmission dynamics in the human

population using stability theory and differential equations. They also looked at the sensitivity

analysis of the coinfection model, and the effects of the contact rate on the disease transmis-

sion. Our model is an improved fractional order version of theirs, which considers the effect of

vaccination on the coinfection transmission dynamics.

Fractional calculus deals with classical concepts of differential and integral operators. It has a

non local property that considers that the future state depends on the current and the past states

[22]. The authors of [23] derived the composition of the fractional derivatives with Shukla

function and also examined the difference between the Riemann-Louville and Caputo deriva-

tives of the generalized Mittag-Leffler function to determine the reason for their differences.

Also, authors of [23] considered the Mittag-Leffler fractional HIV-TB coinfection model. They

derived a new model with nonsingular Mittag-Leffler kernel which considers anomalous spread
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like that of coinfection biological models. In [24], the authors integrated some properties of the

Caputo derivatives and generalized the factional derivative defined in the real line to the partial

fractional derivatives in higher space dimensions.

The use of mathematical power law in recent years by researchers to analyse real life problems

has become more pronounced [25, 26, 27, 28, 29]. It has been widely used in the fields of

life sciences, mathematics, physics Economics and Engineering . Researchers who in the past

studied mathematical biology problems in the framework of integer order are in recent times

looking at problems more from the fractional order view point. [30, 31].

We propose an Anthrax-Listeriosis coinfection model which is an improvement of the model

by Osman and Makinde [1]. Our model considers the effects of vaccination on the coinfection

dynamics. We analyse the model from a fractional order view point using the Liouville-Caputo

operator and simulate our results by investigating the effects of the fractional order derivative

on the disease transmission dynamics.

2. MATHEMATICAL PRELIMINARIES

This section presents a few imperative mathematical concepts that are needed to carry out the

model analysis.

Definition 2.1. The Riemann-Louisville (RL) integral of arbitrary real order ω > 0 of a function

f (t) is defined by the following integral:

Pω
0,t f (t) =

1
Λ(ω)

∫ t

0
(t−κ)ω−1 f (t)dκ, t,ω > 0.

Definition 2.2. For a given well-defined absolutely continuous function f (t) ∈ En [0,T ] with

ω > 0, the Caputo fractional derivative of f (t) is defined by the following integral:

(1) CDω
0 f (t) =

1
Λ(m−ω)

∫ t

0
(t−κ)m−ω−1 f (m)dκ,

Where m−1 < ω ≤ m,m ∈ N. Note that if ω → 1, then CDω
0,t f (t) approaches f ′ (t) .

Theorem 1. (Generalized mean value theorem) Let h(x) ∈C [0,T ] and CDω
0,th(t) ∈ (0,T ]

(2) g(t) = g(0)+
1

Λ(ω)

[
CDω

0,tg
]
(κ) tω ,
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With 0≤ κ ≤ t, ∀t ∈ (0,T ].

Corollary 2.1. Considering that g(x) ∈C [0,T ] , CDω
0,tg(t) ∈ (0,T ), where ω ∈ (0,1]. Then if

(1) CDω
0,tg(x)≥ 0, ∀x ∈ (0,T ], then g(x) is non-decreasing.

(2) CDω
0,tg(x)≤ 0, ∀x ∈ (0,T ), then g(x) is non-decreasing.

3. MATHEMATICAL MODEL FORMULATION AND ANALYSIS

The total human population (Nh) is subdivided into susceptible humans (Sh), individuals that

are infected with Anthrax (Ia), individuals that are infected with Listeriosis (Il), individuals

that are infected with both Anthrax and Listeriosis (Ial), individuals vaccinated (Vh) and those

recoverd from Anthrax, Listeriosis, and both Anthrax and Listeriosis

respectively, (Ra), (Rl) and (Ral). The total vector population is represented by (Nv) and

subdivided into susceptible animals (Sv) and animals infected with Anthrax (Iv), where (Cp) is

the compartment for the pathogen infested animal carcasses in the soil. Carcasses of animals

which may have not been properly disposed have the tendency of generating pathogens. The

total human and vector populations respectively are:

Nh = Sh + Ia + Il + Ial +Vh +Ra +Rl +Ral, Nv = Sv + Iv,

where π =
Cpν

κ+Cp
and κ and V denote the concentration of pathogen infested carcasses and

ingestion rate respectively. Listeriosis related death rates are m and η respectively, and Anthrax

related death rates are φ and n respectively. Waning immunity rates are given by ω , k, and

ψ . α , δ and σ are the recovery rates, respectively, and τ (1−σ) is the rate of recovery of the

coinfected persons from Anthrax only. The natural death rates of human and vector populations

are µh and µV respectively, and the modification parameter is given by θ . The rate of recovery

of coinfected persons from Listeriosis is denoted by (1− τ)(1−σ). This implies that σ +

τ (1−σ)+ (1− τ)(1−σ) = 1. The following differential equations were obtained from the

flowchart diagram of the coinfection model in Figure 1. The model under investigation in

equation (3) has been extensively investigated in integer order by Osman and Makinde [1]. The

system of non-linear ordinary equations is given equation (3).
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FIGURE 1. Flowchart for the coinfection model

(3)

dSh
dt = (1−b)Ωh + kRa (t)+wRl (t)+ψRal (t)−βhIv (t)Sh (t)

−πSh (t)+dVh (t)−µhSh (t) ,

dIa
dt = βhIv (t)Sh (t)−πIa (t)+βhgIv (t)Vh (t)− (α +µh +φ) Ia (t) ,

dIl
dt = πSh (t)−βlIv (t) Il (t)+πqVh (t)− (σ +µh +m+ρ) Il (t) ,

dIal
dt = βhIv (t) Il (t)+πIa (t)− (σ +µh +η +θ) Ial (t) ,

dVh
dt = Ωhb− (d +µh)Vh (t)−βhgIv (t)Vh (t)−πqVh (t) ,

dRa
dt = αIa (t)− (k+µh)Ra (t)+(1− τ)γσ Ial (t) ,
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dRl
dt = σ Il (t)− (w+µh)Rl (t)+(1− τ)(1− γ)σ Ial (t) ,

dRal
dt = τσ Ial (t)− (ψ +µh)Ral (t) ,

dCp
dt = ρIl (t)+θ Ial (t)−µbCp (t) ,

dSv
dt = Ωv−βv (Ia (t)+ Ial (t))Sv (t)−µvSv (t) ,

dIv
dt = βv (Ia (t)+ Ial (t))Sv (t)−µvIv (t) .

3.1. Coinfection Model with Liouville-Caputo (LC) Fractional Order (FO) Derivative.

In this subsection we give the model in the context of Caputo derivative as follows:

(4)

C
0 Dϖ

t Sh (t) = (1−b)Ωh + kRa (t)+wRl (t)+ψRal (t)−βhIv (t)Sh (t)

−πSh (t)+dVh (t)−µhSh (t) ,

C
0 Dϖ

t Ia (t) = βhIv (t)Sh (t)−πIa (t)+βhgIv (t)Vh (t)− (α +µh +φ) Ia (t) ,

C
0 Dϖ

t Il (t) = πSh (t)−βlIv (t) Il (t)+πqVh (t)− (σ +µh +m+ρ) Il (t) ,

C
0 Dϖ

t Ial (t) = βhIv (t) Il (t)+πIa (t)− (σ +µh +η +θ) Ial (t) ,

C
0 Dϖ

t Vh (t) = Ωhb− (d +µh)Vh (t)−βhgIv (t)Vh (t)−πqVh (t) ,

C
0 Dϖ

t Ra (t) = αIa (t)− (k+µh)Ra (t)+(1− τ)γσ Ial (t) ,

C
0 Dϖ

t Rl (t) = σ Il (t)− (w+µh)Rl (t)+(1− τ)(1− γ)σ Ial (t) ,

C
0 Dϖ

t Ral (t) = τσ Ial (t)− (ψ +µh)Ral (t) ,
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C
0 Dϖ

t Cp (t) = ρIl (t)+θ Ial (t)−µbCp (t) ,

C
0 Dϖ

t Sv (t) = Ωv−βv (Ia (t)+ Ial (t))Sv (t)−µvSv (t) ,

C
0 Dϖ

t Iv (t) = βv (Ia (t)+ Ial (t))Sv (t)−µvIv (t) ,

where C
0 Dϖ

t is the FO in LC sense, 0 < ϖ ≤ 1 is the fractional order and the associated initial

conditions are given by:

(5)

Sh(0) = Sh (0) , Ia(0) = Ia (0) , Il(0) = Il (0) , Ial(0) = Ial (0) , Vh(0) =Vh (0) ,

Ra(0) = Ra (0) , Rl(0) = Rl (0) , Ral(0) = Ral (0) , Cp(0) =Cp (0) , Sv(0) = Sv (0) ,

Iv(0) = Iv (0) .

3.2. Positivity of the Coinfection Model Solutions. In order to establish the positivity of

solutions and invariant region of the system (4) in the hyperoctant R11
+ We consider that

R11
+ = {u ∈ R11|u≥ 0}.

Additionally,

u = (Sh (t) , Ia (t) , Il (t) , Ial (t) ,Vh (t) ,Ra (t) ,Rl (t) ,Ral (t) ,Cp (t) ,Sv (t) , Iv (t)) .

It is prudent to show that on every hyperplane bounding , the non-negative hyperoctant of the

vector field points into R11
+ . From the Caputo fractional model, we have,

(6)

CF
0 Dϖ

t Sh (t) = (1−b)Ωh + kRa (t)+wRl (t)+ψRal (t)≥ 0,

CF
0 Dϖ

t Ia (t) = βhIv (t)Sh (t)≥ 0,

CF
0 Dϖ

t Il (t) = πSh (t)≥ 0,

CF
0 Dϖ

t Ial (t) = βhIv (t) Il (t)+πIa (t)≥ 0,
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CF
0 Dϖ

t Vh (t) = Ωhb≥ 0,

CF
0 Dϖ

t Ra (t) = αIa (t)+(1− τ)γσ Ial (t)≥ 0,

CF
0 Dϖ

t Rl (t) = σ Il (t)+(1− τ)(1− γ)σ Ial (t)≥ 0,

CF
0 Dϖ

t Ral (t) = τσ Ial ≥ 0,

CF
0 Dϖ

t Cp (t) = ρIl (t)+θ Ial (t)≥ 0,

CF
0 Dϖ

t Sv (t) = Ωv ≥ 0,

CF
0 Dϖ

t I (t)v = βv (Ia (t)+ Ial (t))Sv (t)≥ 0.

Using Corollary 2.1 it can be established that the solution will stay in R11
+ . This ends the proof

of the positivity of the model solutions.

Making use of the concept of Laplace transforms and the inverse characteristics of Laplace

transforms on both side of the system (4), the connected equation is transformed into the fol-

lowing solutions:

(7)

Sh (t) = Sh (0)+L−1


1

sϖ L


(1−b)Ωh + kRa (t)+wRl (t)+ψRal (t)

−βhIv (t)Sh (t)−πSh (t)+dVh (t)−µhSh (t)

(s)

(t) ,

Ia (t) = Ia (0)+L−1
{ 1

sϖ L [βhIv (t)Sh (t)−πIa (t)+βhgIv (t)Vh (t)− (α +µh +φ) Ia (t)] (s)
}
(t) ,

Il (t) = Il (t)+L−1
{ 1

sϖ L [πSh (t)−βlIv (t) Il (t)+πqVh (t)− (σ +µh +m+ρ) Il (t)] (s)
}
(t) ,

Ial (t) = Ial (0)+L−1
{ 1

sϖ L [βhIv (t) Il (t)+πIa (t)− (σ +µh +η +θ) Ial (t)] (s)
}
(t) ,
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Vh (t) = Vh (0)+L−1{ 1
sϖ L [Ωhb− (d +µh)Vh (t)−βhgIv (t)Vh (t)−πqVh (t)] (s)

}
(t) ,

Ra (t) = Ra (0)+L−1{ 1
sϖ L [αIa (t)− (k+µh)Ra (t)+(1− τ)γσ Ial (t)] (s)

}
(t) ,

Rl (t) = Rl (0)+L−1{ 1
sϖ L [σ Il (t)− (w+µh)Rl (t)+(1− τ)(1− γ)σ Ial (t)] (s)

}
(t) ,

Ral (t) = Ral (0)+L−1{ 1
sϖ L [τσ Ial (t)− (ψ +µh)Ral (t)] (s)

}
(t) ,

Cp (t) = Cp (0)+L−1{ 1
sϖ L [ρIl (t)+θ Ial (t)−µbCp (t)] (s)

}
(t) ,

Sv (t) = Sv (0)+L−1{ 1
sϖ L [Ωv−βv (Ia (t)+ Ial (t))Sv (t)−µvSv (t)] (s)

}
(t) ,

Iv (t) = Iv (0)+L−1{ 1
sϖ L [βv (Ia (t)+ Ial (t))Sv (t)−µvIv (t)] (s)

}
(t) .

Considering the connected iterated scheme in equation (7), we obtain the following:

(8)

Sh(u) (t) = Sh (0)+L−1
{

1
sϖ L
[
(1−b)Ωh + kRa(u−1) (t)+ωRl(u−1) (t)

+ψRal(u−1) (t)−βhIv(u−1) (t)Sh(u−1) (t)−πSh(u−1) (t)

+dVh(u−1) (t)−µhSh(u−1) (t)(s)
]}

(t) ,

Ia(u) (t) = Ia (0)+L−1
{

1
sϖ L
[
βhIv(u−1) (t)Sh(u−1) (t)−πIa(u−1) (t)

+βhgIv(u−1) (t)Vh(u−1) (t)− (α +µh +φ) Ia(u−1) (t)(s)
]}

(t) ,

Il(u) (t) = Il (0)+L−1
{

1
sϖ L
[
πSh(u−1) (t)−βlIv(u−1) (t) Il(u−1) (t)
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+πqVh(u−1) (t)− (σ +µh +m+ρ) Il(u−1) (t)(s)
]}

(t) ,

Ial(u) (t) = Ial (0)+L−1
{

1
sϖ L
[
βhIv(u−1) (t) Il(u−1) (t)+πIa(u−1) (t)

−(σ +µh +η +θ) Ial(u−1) (t)(s)
]}

(t) ,

Vh(u) (t) = Vh (0)+L−1
{

1
sϖ L
[
Ωhb− (d +µh)Vh(u−1) (t)

−βhgIv(u−1) (t)Vh(u−1) (t)−πqVh(u−1) (t)(s)
]}

(t) ,

Ra(u) (t) = Ra (0)+L−1
{

1
sϖ L
[
αIa(u−1) (t)− (k+µh)Ra(u−1) (t)

+(1− τ)γσ Ial(u−1) (t)(s)
]}

(t) ,

Rl(u) (t) = Rl (0)+L−1
{

1
sϖ L
[
σ Il(u−1) (t)− (w+µh)Rl(u−1) (t)

+(1− τ)(1− γ)σ Ial(u−1) (t)(s)
]}

(t) ,

Ral(u) (t) = Ral (0)+L−1
{

1
sϖ L
[
τσ Ial(u−1) (t)− (ψ +µh)Ral(u−1) (t)(s)

]}
(t) ,

Cp(u) (t) = Cp (0)+L−1
{

1
sϖ L
[
ρIl(u−1) (t)+θ Ial(u−1) (t)−µbCp(u−1) (t)(s)

]}
(t) ,

Sv(u) (t) = Sv (0)+L−1
{

1
sϖ L
[
Ωv−βv

(
Ia(u−1) (t)+ Ial(u−1) (t)

)
Sv(u−1) (t)

−µvSv(u−1) (t)(s)
]}

(t) ,

Iv(u) (t) = Iv (0)+L−1
{

1
sϖ L
[
βv
(
Ia(u−1) (t)+ Ial(u−1) (t)

)
Sv(u−1) (t)

−µvIv(u−1) (t)(s)
]}

(t) ,
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where

(9)

Sh(0) = Sh (0) , Ia(0) = Ia (0) , Il(0) = Il (0) , Vh(0) =Vh (0) , Ra(0) = Ra (0) ,

Rl(0) = Rl (0) , Ral(0) = Ral (0) , Cp(0) =Cp (0) , Sv(0) = Sv (0) , Iv(0) = Iv (0) .

In this regard, the approximate solution is attained as the limits at u approach infinity so that,

(10)

Sh (t) = lim
x→∞

Sh(u) (t) , Ia (t) = lim
x→∞

Ia(u) (t) , Il (t) = lim
x→∞

Il(u) (t) ,

Vh (t) = lim
x→∞

Vh(u) (t) , Ra (t) = lim
x→∞

Ra(u) (t) , Rl (t) = lim
x→∞

Rl(u) (t) ,

Ral (t) = lim
x→∞

Ral(u) (t) , Cp (t) = lim
x→∞

Cp(u) (t) , Sv (t) = lim
x→∞

Sv(u) (t) ,

Iv (t) = lim
x→∞

Iv(u) (t) .

Stability Analysis of Coinfection Model with LC Operator. In order for one to investigate the

stability of the system (8), eleven positive constraints a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11

are assumed such that for all 0≤ t ≤ T ≤ ∞,

(11)

‖Sh (t)‖< a1, ‖Ia (t)‖< a2, ‖Il (t)‖< a3, ‖Ial (t)‖< a4, ‖Vh (t)‖< a5,

‖Ra (t)‖< a6, ‖Rl (t)‖< a7, ‖Ral (t)‖< a8,
∥∥Cp (t)

∥∥< a9, ‖Sv (t)‖< a10,

‖Iv (t)‖< a11

We consider a subset of the form Q2 ((c,d)(0,T )) expressed as

(12) P =

{
Φ : (c,d)(0,T ) 7→ R,

1
T (0)

∫
(t−Φ)ϖ−1 v(Φ)S (Φ)dΦ < ∞

}
,

where Φ is given by:
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(13) Φ(X) =



((1−b)Ωh + kRa (t)+wRl (t)+ψRal (t)−βhIv (t)

Sh (t)−πSh (t)+dVh (t)− µhSh (t)) ,

βhIv (t)Sh (t)−πIa (t)+βhgIv (t)Vh (t)

−(α +µh +φ) Ia (t) ,

πSh (t)−βlIv (t) Il (t)+πqVh (t)− (σ +µh +m+ρ) Il (t) ,

βhIv (t) Il (t)+πIa (t)− (σ +µh +η +θ) Ial (t) ,

Ωhb− (d +µh)Vh (t)−βhgIv (t)Vh (t)−πqVh (t) ,

αIa (t)− (k+µh)Ra (t)+(1− τ)γσ Ial (t) ,

σ Il (t)− (w+µh)Rl (t)+(1− τ)(1− γ)σ Ial (t) ,

τσ Ial (t)− (ψ +µh)Ral (t) ,

ρIl (t)+θ Ial (t)−µbCp (t) ,

Ωv−βv (Ia (t)+ Ial (t))Sv (t)−µvSv (t) ,

βv (Ia (t)+ Ial (t))Sv (t)−µvIv (t) ,

where X = (Sh, Ia, Il, Ial,Vh,Ra,Rl,Ral,Cp,Sv, Iv). Then,
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(14)



〈
Φ

(
Sh, Ia, Il , Ial ,Vh,Ra,Rl ,Ral ,Cp,Sv, Iv

)
−Φ

(
M1,M2,M3,M4,M5,M6,

M7,M8,M9,M10,M11

)
, (Sh−M1) ., Ia−M2, Il−M3, Ial−M4,Vh−M5,Ra

−M6,Rl −M7,Ral −M8,Cp−M9,Sv−M10, I v−M11)

〉
,〈

(1−b)Ωh + k (Ra (t)−M6)+w(Rl (t)−M7)+ψ (Ral (t)−M8)−

βh (Iv (t)−M11)(Sh (t)−M1)−π (Sh (t)−M1)+d (Vh (t)−M5)

−µh (Sh (t)−M1)

〉
〈

βh (Iv (t)−M11)(Sh (t)−M1)−π (Ia (t)−M2)+βhg(Iv−M11)(Vh−M5)

−(α +µh +φ)(Ia (t)−M1)

〉
〈

π (Sh (t)−M1)−βl (Iv (t)−M11)(Il (t)−M3)+πq(Vh (t)−M5)

−(σ +µh +m+ρ)(Il (t)−M3)

〉
〈

βh (Iv (t)−M11)(Il (t)−M3)+π (Ia (t)−M2)

(σ +µh +η +θ)(Ial (t)−M4)

〉
〈

Ωhb− (d +µh)(Vh (t)−M5)−βhg(Iv (t)−M11)

(Vh (t)−M5)−πq(Vh (t)−M5)

〉
〈

α (Ia (t)−M2)− (k+µh)(Ra (t)−M6)+(1− τ)γσ (Ial (t)−M4)

〉
〈

σ (Il (t)−M3)− (w+µh)(Rl (t)−M7)+(1− τ)(1− γ)σ (Ial (t)−M4)

〉
〈

τσ (Ial (t)−M4)− (ψ +µh)(Ral (t)−M8)

〉
〈

ρ (Il (t)−M2)+θ (Ial (t)−M4)−µv
(
Cp (t)−M9

)〉
〈

Ωv−βv ((Ia (t)−M2)+(Ial (t)−M4))(Sv (t)−M1)−µv (Sv (t)−M10)

〉
〈

βv ((Ia (t)−M2)+(Ial (t)−M4))(Sv (t)−M10)−µv (Iv (t)−M11)

〉
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Taking the absolute values and the norm on both sides, we have:

(15) <



{
(1−b)Ωn +

k‖Ra(t)−M6(t)‖
‖Sh(t)−M1(t)‖2

+ w‖Rl(t)−M7(t)‖
‖Sh(t)−M1(t)‖2

+ ψ‖Ral(t)−M8(t)‖
‖Sh(t)−M1(t)‖2

−βh((‖Iv(t)−M11(t)‖)(‖Sh(t)−M1(t)‖))
‖Sh(t)−M1(t)‖2

−π

(
1

‖Sh(t)−M1(t)‖

)
−d
(

‖Vh−M5‖
‖Sh(t)−M1(t)‖2

)
−µh

(
1

‖Sh(t)−M1(t)‖

)}
‖Sh (t)−M1 (t)‖2 ,

{
βh(‖Iv(t)−M11(t)‖)(‖Sh(t)−M1(t)‖)

‖Ia(t)−M2(t)‖2
− π(‖Ia(t)−M2(t)‖)
‖Ia(t)−M1(t)‖2

+ βhg((‖Iv(t)−M11‖)(‖Vh(t)−M5‖))
‖Ia(t)−M1(t)‖2

− (α+µh+φ)
‖Ia(t)−M2(t)‖

}
‖Ia (t)−M2 (t)‖2 ,{

π(‖Sh(t)−M1(t)‖)
‖Il(t)−M3(t)‖2

− βl(‖(Iv(t)−M11(t))‖‖(Il(t)−M3(t))‖)
‖Il(t)−M3(t)‖2

+ πq(‖Vh(t)−M5‖)
‖Il(t)−M3(t)‖2

− (σ+µh+m+ρ)
‖Il(t)−M3(t)‖

}
‖Il (t)−M3 (t)‖2 ,{

βh((‖Iv(t)−M11(t)‖)(‖Il(t)−M3(t)‖))
‖Ial(t)−M4(t)‖2

+ π(‖Ia(t)−M2(t)‖)
‖Ial(t)−M4(t)‖2

,

− (σ+µh+η+θ)(‖Ial(t)−M4(t)‖)
‖Ial(t)−M4(t)‖

‖Ial (t)−M4 (t)‖2 ,{
Ωhb+ (d+µh)(Vh(t)−M5(t))

‖Vh(t)−M5(t)‖2
+ βhg(‖Iv(t)−M11(t)‖)(‖Vh(t)−M5(t)‖)

‖Vh(t)−M5(t)‖2

−πq(‖Vh(t)−M5(t)‖)
‖Vh(t)−M5(t)‖2

‖Vh (t)−M5 (t)‖2 ,

{
α(‖Ia(t)−M2(t)‖)
‖Ra(t)−M6(t)‖2

− (k+µh)(‖Ra(t)−M6(t)‖)
‖Ra(t)−M6(t)‖

+ (1−τ)γσ(‖Ial(t)−M4(t)‖)
‖Ra(t)−M6(t)‖2

}
‖Ra (t)−M6 (t)‖2 ,

{
σ(‖Il(t)−M3(t)‖)
‖Rl(t)−M7(t)‖2

− (w+µh)(‖Rl(t)−M7(t)‖)
‖Rl(t)−M7(t)‖2

+ (1−τ)(1−γ)σ(‖Ial(t)−M4(t)‖)
‖Rl(t)−M7(t)‖2

}
‖Rl (t)−M7 (t)‖2 ,

{
τσ(‖Ial(t)−M4(t)‖)
‖Ral(t)−M8(t)‖2

− (ψ+µh)(‖Ral(t)−M8(t)‖)
‖Ral(t)−M8(t)‖2

}
‖Ral (t)−M8 (t)‖2 ,

{
ρ(‖Il(t)−M3(t)‖)
‖Cp(t)−M9(t)‖2 +

θ(‖Ial(t)−M4(t)‖)
‖Cp(t)−M9(t)‖2 −

µb(‖Cp(t)−M9(t)‖)
‖Cp(t)−M9(t)‖2

}∥∥Cp (t)−M9 (t)
∥∥2

,

{
Ωv− βv(‖(Ia(t)−M2(t))‖+(‖Ial(t)−M4(t)‖))(‖Sv(t)−M10(t)‖)

‖Sv(t)−M10(t)‖2
− µv(‖Sv(t)−M10(t)‖)

‖Sv(t)−M10(t)‖2

}
‖Sv (t)−M10 (t)‖2 ,

{
βv((‖Ia(t)−M2(t)‖)+(‖Ial(t)−M4(t)‖))(‖Sv(t)−M10(t)‖)

‖Iv(t)−M11(t)‖2
− µv(Iv(t)−M11(t))
‖Iv(t)−M11(t)‖2

}
‖Iv (t)−M11 (t)‖2 .
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Where

(16)

〈
Φ

(
Sh, Ia, Il, Ial,Vh,Ra,Rl,Ral,Cp,Sv, Iv

)
−Φ

(
M1,M2,M3,M4,M5,M6,

M7,M8,M9,M10,M11

)
, (Sh−M1) ., Ia−M2, Il−M3, Ial−M4,Vh−M5,Ra

−M6,Rl−M7,Ral−M8,Cp−M9,Sv−M10, I v−M11)

〉
,

(17)



B1 ‖Sh (t)−M1 (t)‖2 ,

B2 ‖Ia (t)−M2 (t)‖2 ,

B3 ‖Il (t)−M3 (t)‖2 ,

B4 ‖Ial (t)−M4 (t)‖2 ,

B5 ‖Vh (t)−M5 (t)‖2 ,

B6 ‖Ra (t)−M6 (t)‖2 ,

B7 ‖Rl (t)−M7 (t)‖2 ,

B8 ‖Ral (t)−M8 (t)‖2 ,

B9
∥∥Cp (t)−M9 (t)

∥∥2
,

B10 ‖Sv (t)−M10 (t)‖2 ,

B11 ‖Iv (t)−M11 (t)‖2 ,

with
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(18)

B1 =
{
(1−b)Ωh +

k‖Ra(t)−M6(t)‖
‖Sh(t)−M1(t)‖2 +

w‖Rl(t)−M7(t)‖
‖Sh(t)−M1(t)‖2 + ψ‖Ral(t)−M8(t)‖

‖Sh(t)−M1(t)‖2

−βh((‖Iv(t)−M11(t)‖)(‖Sh(t)−M1(t)‖))
‖Sh(t)−M1(t)‖2 + d|Vh(t)−M5(t)|

‖Sh(t)−M1(t)‖2 −π

(
1

‖Sh(t)−M1(t)‖

)

−µ h

(
1

‖Sh(t)−M1(t)‖

)}
‖Sh (t)−M1 (t)‖2 ,

B2 =
{

βh(‖Iv(t)−M11(t)‖)(‖Sh(t)−M1(t)‖)
‖Ia(t)−M2(t)‖2 − π(‖Ia(t)−M2(t)‖)

‖Ia(t)−M1(t)‖2

+βhg(‖Iv(t)−M11(t)‖)(‖Vh(t)−M5(t)‖)
‖Ia(t)−M1(t)‖2 − (α+µh+φ)

‖Ia(t)−M2(t)‖

}
‖Ia (t)−M2 (t)‖2 ,

B3 =
{

π(‖Sh(t)−M1(t)‖)
‖Il(t)−M3(t)‖2 −

βl(‖(Iv(t)−M10(t))‖‖(Il(t)−M3(t))‖)
‖Il(t)−M3(t)‖2 + πq‖Vh(t)−M5(t)‖

‖Il(t)−M3(t)‖2

− (σ+µh+m+ρ)
‖Il(t)−M3(t)‖

}
‖Il (t)−M3 (t)‖2 ,

B4 =
{

βh((‖Iv(t)−M11(t)‖)(‖Il(t)−M3(t)‖))
‖Ial(t)−M4(t)‖2 + π(‖Ia(t)−M2(t)‖)

‖Ial(t)−M4(t)‖2

− (σ+µh+η+θ)(‖Ial(t)−M4(t)‖)
‖Ial(t)−M4(t)‖

}
‖Ial (t)−M4 (t)‖2 ,

B5 =
{

Ωhb− (d+µh)‖Vh(t)−M5(t)‖
‖Vh(t)−M5(t)‖2 − βhgIv(t)‖Vh(t)−M5(t)‖

‖Vh(t)−M5(t)‖2 − πq‖Vh(t)−M5(t)‖
‖Vh(t)−M5(t)‖2

}
‖Vh (t)−M5 (t)‖2 ,

B6 =
{

α(‖Ia(t)−M2(t)‖)
‖Ra(t)−M6(t)‖2 −

(k+µh)(‖Ra(t)−M6(t)‖)
‖Ra(t)−M6(t)‖

+ (1−τ)γσ(‖Ial(t)−M4(t)‖)
‖Ra(t)−M6(t)‖2

}
‖Ra (t)−M6 (t)‖2 ,
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B7 =
{

σ(‖Il(t)−M3(t)‖)
‖Rl(t)−M7(t)‖2 −

(w+µh)(‖Rl(t)−M7(t)‖)
‖Rl(t)−M7(t)‖2 + (1−τ)(1−γ)σ(‖Ial(t)−M4(t)‖)

‖Rl(t)−M7(t)‖2

}
‖Rl (t)−M7 (t)‖2 ,

B8 =
{

τσ(‖Ial(t)−M4(t)‖)
‖Ral(t)−M8(t)‖2 −

(ψ+µh)(‖Ral(t)−M8(t)‖)
‖Ral(t)−M8(t)‖2

}
‖Ral (t)−M8 (t)‖2 ,

B9 =

{
ρ(‖Il(t)−M3(t)‖)
‖Cp(t)−M9(t)‖2 +

θ(‖Ial(t)−M4(t)‖)
‖Cp(t)−M9(t)‖2 −

µb(‖Cp(t)−M9(t)‖)
‖Cp(t)−M9(t)‖2

}
∥∥Cp (t)−M9 (t)

∥∥2
,

B10 =
{

Ωv− βv(‖(Ia(t)−M2(t))‖+(‖Ial(t)−M4(t)‖))(‖Sv(t)−M10(t)‖)
‖Sv(t)−M10(t)‖2 − µv(‖Sv(t)−M10(t)‖)

‖Sv(t)−M10(t)‖2

}
‖Sv (t)−M10 (t)‖2 ,

B11 =
{

βv((‖Ia(t)−M2(t)‖)+(‖Ial(t)−M4(t)‖))(‖Sv(t)−M10(t)‖)
‖Iv(t)−M11(t)‖2 − µv(Iv(t)−M11(t))

‖Iv(t)−M11(t)‖2

}
‖Iv (t)−M11 (t)‖2 .

If we consider the Ortain null-rector (Sh, Ia, Il, Ial,Vh,Ra,Rl,Rl,Ral,Cp,Sv, Iv) and take some

iterations in equation (18), we obtain the following:

(19)

〈
Φ

(
Sh, Ia, Il, Ial,Vh,Ra,Rl,Ral,Cp,Sv, Iv

)
−Φ

(
M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11

)
, Sh−M1, Ia−M2, Il−M3, Ial−M4,Vh−M5,Ra−M6,Rl−M7,Ral−M8,

Cp−M9,Sv−M10, Iv−M11

〉,
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(20)



B1 ‖Sh (t)−M1 (t)‖‖Sh (t)‖ ,

B2 ‖Ia (t)−M2 (t)‖‖Ia (t)‖ ,

B3 ‖Il (t)−M3 (t)‖‖Il (t)‖ ,

B4 ‖Ial (t)−M4 (t)‖‖Ial (t)‖ ,

B5 ‖Vh (t)−M5 (t)‖‖Vh (t)‖ ,

B6 ‖Ra (t)−M6 (t)‖‖Ra (t)‖ ,

B7 ‖Rl (t)−M7 (t)‖‖Rl (t)‖ ,

B8 ‖Ral (t)−M8 (t)‖‖Ral (t)‖ ,

B9
∥∥Cp (t)−M9 (t)

∥∥∥∥Cp (t)
∥∥ ,

B10 ‖Sv (t)−M10 (t)‖‖Sv (t)‖ ,

B11 ‖Iv (t)−M11 (t)‖‖Iv (t)‖ .

Following the results obtained in Eq (16) and Eq (19) one can conclude that the iterative

approach is stable.
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3.2.1. Predictor-Corrector Adams-Bashforth-Mouton Method.

(21) Θ(t) =
n−1

∑
k=0

Θ
k(t) tk

k!
+

1
T (Θ)

t∫
0

(t− v)Θ−1 f (v,Θ(v))dv, t < T.

The equation (21) is considered to have a singular solution expressed in the interval t ∈ [0,1]

the equation (21) holds the Volterra integral equation given by equation (22):

(22) Θ(t) =
n−1

∑
k=0

Θ
k(t) tk

k!
+

1
T (Θ)

t∫
0

(t− v)Θ−1 f (v,Θ(v))dv, t < T,

where Θ > 0 and C
o Dϖ

t represents the Liouvile-Caputo Operator.

The scheme for this work is Predictor-Conector Adom-Bashforth-Moulton iterated [32]. The

associated general iterative solution is given by

(23)

gQ
k+1 =

n−1
∑
j=0

t j
k+1
j! g( j)

0 + 1
T (Θ)

k
∑
j=0

Pj,k+1g
(
t j,Θ j

)
,

Θk+1 =
n−1
∑
j=0

t j
k+1
j! g( j)

0 + 1
T (0)

(
k
∑
j=0

r j,k+1
(
t j,Θ j

)
+ rk+1,k+1g

(
tk+1,g

Q
k+1

))
,

r j,k+1 = hΘ

Θ(Θ+1)


kΘ+1− (k−Θ)Θ j = 0,(
(k− j+2)Θ+1 (k− j)Θ+1−2(k− j+1)Θ+1

)
1≤ j ≤ k,

1 j = k+1,

p j,k+1 = hΘ

Θ

(
(k+1− j)Θ−2(k− j+1)Θ

)
.

Making use of this iterative scheme the context of Adams-Bashford Technique as follows:

Sh (t) =
n−1
∑

k=0
Sh (0)

k tk

k! +
1

T (Θ)

t∫
0

(t− v)Θ−1


(1−b)Ωh + kRa (t)+wRl (t)

+ψRal (t)−βhIv (t)Sh (t)

+dVh (t)−πSh (t)−µhSh (t)

dv
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(24)

Il (t) =
n−1
∑

k=0
Ia (0)

k tk

k! +
1

T Θ

t∫
0

(t− v)Θ−1

 βhIv (t)Sh (t)−πIa (t)+βhgIv (t)Vh (t)

−(α +µh +φ) Ia (t)

dv

Ia (t) =
n−1
∑

k=0
Ia (0)

k tk

k! +
1

T Θ

t∫
0

(t− v)Θ−1

 πSh (t)−βlIv (t) Il (t)+πqVh (t)

−(σ +µh +m+ρ) Il (t)

dv

Ial (t) =
n−1
∑

k=0
Ial (0)

k tk

k! +
1

T Θ

t∫
0

(t− v)Θ−1

 βhIv (t) Il (t)+πIa (t)

−(σ +µh +η +θ) Ial (t)

dv

Vh (t) =
n−1
∑

k=0
Ial (0)

k tk

k! +
1

T Θ

t∫
0

(t− v)Θ−1

 Ωhb− (d +µh)Vh (t)

−βhgIv (t)Vh (t)−πqVh (t)

dv

Ra (t) =
n−1
∑

k=0
Ra (0)

k tk

k! +
1

T Θ

t∫
0

(t− v)Θ−1

 αIa (t)− (k+µh)Ra (t)

+(1− τ)γσ Ial (t)

dv

Rl (t) =
n−1
∑

k=0
Rl (0)

k tk

k! +
1

T Θ

t∫
0

(t− v)Θ−1

 σ Il (t)− (w+µh)Rl (t)

+(1− τ)(1− γ)σ Ial (t)

dv

Ral (t) =
n−1
∑

k=0
Ral (0)

k tk

k! +
1

T Θ

t∫
0

(t− v)Θ−1 [τσ Ial− (ψ +µh)Ral (t)]dv

Cp (t) =
n−1
∑

k=0
Cp (0)

k tk

k! +
1

T Θ

t∫
0

(t− v)Θ−1 [ρIl (t)+θ Ial (t)−µbCp (t)]dv

Sv (t) =
n−1
∑

k=0
Sv (0)

k tk

k! +
1

T Θ

t∫
0

(t− v)Θ−1 [Ωv−βv (Ia (t)+ Ial (t))Sv (t)−µvSv (t)]dv

Iv (t) =
n−1
∑

k=0
Iv (0)

k tk

k! +
1

T Θ

t∫
0

(t− v)Θ−1 [βv (Ia (t)+ Ial (t))Sv (t)−µvIv (t)]dv
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4. EXISTENCE AND UNIQUENESS OF SOLUTIONS

Let Γ be a convex, bounded, and closed subset of a Banach space ϒ and χ :Γ→ Γ a con-

densing map, where ϒ has a fixed point in Γ . Consider the initial value problem on the

cylinder ∆ = {(t,n) ∈ R×ϒ : t ∈ [0,T ] ,y ∈ Γ(0,κ)} fixed for some T > 0, κ > 0, and sup-

pose ∃∆ ∈ (0,ζ ) , and Sh, Ia, Il, Ial, Vh, Ra, Rl, Ral, Cp, Sv, Iv ∈ L1/∆ (0,T,R
+). It follows that

|(R,n)−R(t,x)| ≤ L1(t)‖n− x‖, ∀ (t,n), (t,x) ∈ R. so that,

Sh = S0h +S1h,

Ia = I0a + I1a,

Il = I0l + I1l,

Ial = I0al + I1al,

Vh = V0h +V1h,

Ra = R0a +R1a,

Rl = R0l +R1l,

Ral = R0al +R1al,

Cp = C0p +C1p,

Sv = S0v +S1v,

Iv = I0v + I1v,

and the suppositions below hold:

(1) S0h, I0a, I0l, I0al, V0h, R0a, R0l, R0al, C0p, S0v, and I0v are bounded and lipszchitz.

(2) S1h, I1l, I1al, V1h, R1a, R1l, C1p, S1v, and I1v are compact and bounded.

(3) |(R,n)−R(t,x)| ≤ L1(t)‖n− x‖, ∀ (t,n), (t,x) ∈ R.

Employing the Riemann-Liouville integral to both sides of equation (3) we obtain the system

of integral equations below:

(25)

Sh (t) = Sh (0)+ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 S0h (η ,Sh (η))dη +

∫ t

0
(t−η)ϖ−1 S1h (η)dη ,

Ia (t) = Ia (0)+ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 I0a (η , Ia (η))dη +

∫ t

0
(t−η)ϖ−1 I1a (η)dη ,
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Il (t) = Il (0)+ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 I0l (η , Il (η))dη +

∫ t

0
(t−η)ϖ−1 I1l (η)dη ,

Ial (t) = Ial (0)+ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 I0al (η , Ial (η))dη +

∫ t

0
(t−η)ϖ−1 I1al (η)dη ,

Vh (t) = Vh (0)+ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1V0h (η ,Vh (η))dη +

∫ t

0
(t−η)ϖ−1V1h (η)dη ,

Ra (t) = Ra (0)+ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 R0a (η ,Ra (η))dη +

∫ t

0
(t−η)ϖ−1 R1a (η)dη ,

Rl (t) = Rl (0)+ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 R0l (η ,Rl (η))dη +

∫ t

0
(t−η)ϖ−1 R1l (η)dη ,

Ral (t) = Ral (0)+ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 R0al (η ,Ral (η))dη +

∫ t

0
(t−η)ϖ−1 R1al (η)dη ,

Cp (t) = Cp (0)+ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1C0p (η ,Cp (η))dη +

∫ t

0
(t−η)ϖ−1C1p (η)dη ,

Sv (t) = Sv (0)+ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 S0v (η ,Sv (η))dη +

∫ t

0
(t−η)ϖ−1 S1v (η)dη ,

Iv (t) = Iv (0)+ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 I0v (η , Iv (η))dη +

∫ t

0
(t−η)ϖ−1 I1v (η)dη .

Theorem 2. Based on the suppositions 1 and 2 above, the initial value problem has at least one

solution in the interval [0,T ] dependent on the condition

(26) ξ =
ν ‖L‖1/∇ T K

Λ(ϖ)
< 1,

where K = ζ −∇ and Γ =
(

1−∇

ζ−∇

)1−∇

.

Proof. Let υ be such that ψ (0)+ 1
Λ(ϖ)ν

(
‖H1‖1/∇ +‖H2‖1/∇

)
T K ≤ υ and suppose that the

closed ball in a Banach space ([0,T ] ,ϒ) , with sup‖·‖.

Considering a Banach space ([0,T ] ,ϒ) ,n 7→ S0h +S1hn with
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(27)

S0h (t) = S1h (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 S0h (η ,n(η))dη ,

S1h (t) = S1h (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 S1h (η ,n(η))dη ,

I0a (t) = I1a (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 I0a (η ,n(η))dη ,

I1a (t) = I1a (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 I1a (η ,n(η))dη ,

I0l (t) = I1l (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 I0l (η ,n(η))dη ,

I1l (t) = I1l (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 I1l (η ,n(η))dη ,

I0al (t) = I1al (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 I0al (η ,n(η))dη ,

I1al (t) = I1al (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 I1al (η ,n(η))dη ,

V0h (t) = V1h (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1V0h (η ,n(η))dη ,

V1h (t) = V1h (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1V1h (η ,n(η))dη ,

R0a (t) = R1a (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 R0a (η ,n(η))dη ,

R1a (t) = R1a (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 R1a (η ,n(η))dη ,

R0l (t) = R1l (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 R0l (η ,n(η))dη ,

R1l (t) = R1l (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 R1l (η ,n(η))dη ,
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R0al (t) = R1al (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 R0al (η ,n(η))dη ,

R1al (t) = R1al (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 R1al (η ,n(η))dη ,

C0p (t) = C1p (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1C0p (η ,n(η))dη ,

C1p (t) = C1p (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1C1p (η ,n(η))dη ,

S0v (t) = S1v (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 S0v (η ,n(η))dη ,

S1v (t) = S1v (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 S1v (η ,n(η))dη ,

I0v (t) = I1v (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 I0v (η ,n(η))dη ,

I1v (t) = I1v (0)+ 1
Λ(ϖ)

∫ tr

0
(1−η)ϖ−1 I1v (η ,n(η))dη ,

We need to prove that Sh (Γυ)⊂ Γυ , for n ∈ Γυ .

(28)

‖Sh (t)‖ ≤ |Sh (0)|+ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 S0h (η ,n(η))dη

≤ |Sh (0)|+ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 Soh (η ,n(η))dη

+ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 S1h (η ,n(η))dη

≤ |Sh (0)|+ 1
Λ(ϖ)

(∫ t

0
(t−η)

ϖ−1
1−∇ dη

)1−∇(∫ t

0
M1/∇

1 (η)dη

)∇

+ 1
Λ(ϖ)

(∫ t

0
(t−η)

ϖ−1
1−∇ dη

)1−∇(∫ t

0
M1/∇

2 (η)dη

)∇
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≤ |Sh (0)|+
ν1(‖M1‖1/∇+‖M2‖1/∇)

Λ(ϖ) T K1 ≤ υ1.

Using the same strategy, we get

(29)

‖Ia (t)‖ ≤ |Ia (0)|+
ν2(‖M3‖1/∇+‖M4‖1/∇)

Λ(ϖ) T K2 ≤ υ2,

‖Il (t)‖ ≤ |Il (0)|+
ν3(‖M5‖1/∇+‖M6‖1/∇)

Λ(ϖ) T K3 ≤ υ3,

‖Ial (t)‖ ≤ |Ial (0)|+
ν4(‖M7‖1/∇+‖M8‖1/∇)

Λ(ϖ) T K4 ≤ υ4,

‖Vh (t)‖ ≤ |Vh (0)|+
ν5(‖M9‖1/∇+‖M10‖1/∇)

Λ(ϖ) T K5 ≤ υ5,

‖Ra (t)‖ ≤ |Ra (0)|+
ν6(‖M11‖1/∇+‖M12‖1/∇)

Λ(ϖ) T K6 ≤ υ6,

‖Rl (t)‖ ≤ |Rl (0)|+
ν7(‖M13‖1/∇+‖M14‖1/∇)

Λ(ϖ) T K7 ≤ υ7,

‖Ral (t)‖ ≤ |Ral (0)|+
ν8(‖M15‖1/∇+‖M16‖1/∇)

Λ(ϖ) T K8 ≤ υ8,

∥∥Cp (t)
∥∥ ≤

∣∣Cp (0)
∣∣+ ν9(‖M17‖1/∇+‖M18‖1/∇)

Λ(ϖ) T K9 ≤ υ9,

‖Sv (t)‖ ≤ |Sv (0)|+
ν10(‖M19‖1/∇+‖M20‖1/∇)

Λ(ϖ) T K10 ≤ υ10,

‖Iv (t)‖ ≤ |Iv (0)|+
ν11(‖M21‖1/∇+‖M22‖1/∇)

Λ(ϖ) T K11 ≤ υ11,

and therefore,
(

Sh (Γυ) , Ia (Γυ) , Il (Γυ) , Ial (Γυ) ,Vh (Γυ) ,Ra (Γυ) ,Rl (Γυ) ,Ral (Γυ) ,

Cp (Γυ) ,Sv(Γυ) , Iv (Γυ)

)
⊂ Γυ

We now prove that S0h, I0a, I0l, I0al, V0h, R0a, R0l, R0al, C0p, S0v, and I0v are contractions. For

n,x ∈ Γυ , we have
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(30)

‖S0hn(t)−S1hx(t)‖ ≤ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 L(η) |n(η)− x(η)|dη

≤ 1
Λ(ϖ)

(∫ t

0
(t−η)

ϖ−1
1−∇ dη

)1−∇ (
L1/∇ (η)dη

)∇ ‖n− x‖

≤ Ψi ‖n− x‖ ,

‖I0an(t)− I1ax(t)‖ ≤ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 L(η) |n(η)− x(η)|dη

≤ 1
Λ(ϖ)

(∫ t

0
(t−η)

ϖ−1
1−∇ dη

)1−∇ (
L1/∇ (η)dη

)∇ ‖n− x‖

≤ Ψi ‖n− x‖ ,

‖I0ln(t)− I1lx(t)‖ ≤ 1
Λ(ϖ)

∫ t
0 (t−η)ϖ−1 L(η) |n(η)− x(η)|dη

≤ 1
Λ(ϖ)

(∫ t

0
(t−η)

ϖ−1
1−∇ dη

)1−∇ (
L1/∇ (η)dη

)∇ ‖n− x‖

≤ Ψi ‖n− x‖ ,

‖I0ln(t)− I1lx(t)‖ ≤ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 L(η) |n(η)− x(η)|dη

≤ 1
Λ(ϖ)

(∫ t

0
(t−η)

ϖ−1
1−∇ dη

)1−∇ (
L1/∇ (η)dη

)∇ ‖n− x‖

≤ Ψi ‖n− x‖ ,

‖I0aln(t)− I1alx(t)‖ ≤ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 L(η) |n(η)− x(η)|dη
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≤ 1
Λ(ϖ)

(∫ t

0
(t−η)

ϖ−1
1−∇ dη

)1−∇ (
L1/∇ (η)dη

)∇ ‖n− x‖

≤ Ψi ‖n− x‖ ,

‖V0hn(t)−V1hx(t)‖ ≤ 1
Λ(ϖ)

∫ t
0 (t−η)ϖ−1 L(η) |n(η)− x(η)|dη

≤ 1
Λ(ϖ)

(∫ t
0 (t−η)

ϖ−1
1−∇ dη

)1−∇ (
L1/∇ (η)dη

)∇ ‖n− x‖

≤ Ψi ‖n− x‖ ,

∥∥C0pn(t)−C1px(t)
∥∥ ≤ 1

Λ(ϖ)

∫ t

0
(t−η)ϖ−1 L(η) |n(η)− x(η)|dη

≤ 1
Λ(ϖ)

(∫ t
0 (t−η)

ϖ−1
1−∇ dη

)1−∇ (
L1/∇ (η)dη

)∇ ‖n− x‖

≤ Ψi ‖n− x‖ ,

‖S0vn(t)−S1vx(t)‖ ≤ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 L(η) |n(η)− x(η)|dη

≤ 1
Λ(ϖ)

(∫ t

0
(t−η)

ϖ−1
1−∇ dη

)1−∇ (
L1/∇ (η)dη

)∇ ‖n− x‖

≤ Ψi ‖n− x‖ ,

‖I0vn(t)− I1vx(t)‖ ≤ 1
Λ(ϖ)

∫ t

0
(t−η)ϖ−1 L(η) |n(η)− x(η)|dη

≤ 1
Λ(ϖ)

(∫ t

0
(t−η)

ϖ−1
1−∇ dη

)1−∇ (
L1/∇ (η)dη

)∇ ‖n− x‖

≤ Ψi ‖n− x‖ ,
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Where

(31) Ψi =
νi ‖L‖1/∇ T λi

Λ(ϖ)
< 1, i ∈ {1,2,3,4,5,6,7,8,9,10,11}

These equations prove that S0h, I0a, I0l, I0al,V0h, R0a, R0l, R0al,C0p, S0v, and I0v are contractions

and satisfy

(32)

‖Soh (n)−S1h (x)‖ ≤ Ψi ‖n− x‖ ,

‖Ioa (n)− I1a (x)‖ ≤ Ψi ‖n− x‖ ,

‖Ioa (n)− I1a (x)‖ ≤ Ψi ‖n− x‖ ,

‖Iol (n)− I1l (x)‖ ≤ Ψi ‖n− x‖ ,

‖Ioal (n)− I1al (x)‖ ≤ Ψi ‖n− x‖ ,

‖Voh (n)−V1h (x)‖ ≤ Ψi ‖n− x‖ ,

‖Roa (n)−R1a (x)‖ ≤ Ψi ‖n− x‖ ,

‖Rol (n)−R1l (x)‖ ≤ Ψi ‖n− x‖ ,

‖Roal (n)−R1al (x)‖ ≤ Ψi ‖n− x‖ ,

∥∥Cop (n)−C1p (x)
∥∥ ≤ Ψi ‖n− x‖ ,

‖Sov (n)−S1v (x)‖ ≤ Ψi ‖n− x‖ ,

‖Iov (n)− I1v (x)‖ ≤ Ψi ‖n− x‖ ,
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for i ∈ {1,2,3,4,5,6,7,8,9,10,11}

Next we prove that S1h, I1a, I1l, I1al, V1h, R1a, R1l, R1al, C1p, S1v, and I1v are compact. For

0≤ k1 ≤ k2 ≤ T we have

(33)

‖S1hk (k1)−S1hx(k2)‖ ≤ 1
Λ(ϖ)

∣∣∣∣∫ k2

0
(k2−η)ϖ−1 S1h (η ,n(η))dη

−
∫ k1

0 (k1−η)ϖ−1 S1h (η ,n(η))dη

∣∣∣∣
≤ 1

Λ(ϖ)

∫ k1

0

(
(k1−η)ϖ−1− (k2−η)ϖ−1

)
M11 (η)dη

+
∫ k2

0
(k2−η)ϖ−1 M11 (η)dη

≤ 1
Λ(ϖ)

[∫ k1

0

(
(k1−η)ϖ−1− (k2−η)ϖ−1

) 1
1−∇ dη

]1−∇

(M11 (η)dη)∇

+ 1
Λ(ϖ)

(∫ k2

0
(k2−η)

ϖ−∇

1−∇ dη

)(
M1/∇

11 (η)dη

)∇

≤ νi
Λ(ϖ)

[
k

ϖ−∇

1−∇

1 − k
ϖ−∇

1−∇

2 +(k2− k1)
ϖ−∇

1−∇

]1−∇

‖M11‖1/∇

+ νi
Λ(ϖ) (k2− k1)

ϖ−∇ ‖M11‖1/∇

≤ νi
Λ(ϖ)

[
(k2− k1)

ϖ−∇

1−∇

]
‖M11‖1/∇ + νi

Λ(ϖ) (k2− k1)
ϖ−∇ ‖M11‖1/∇

≤ 2νi‖M11‖1/∇
Λ(ϖ) (k2− k1)

ϖ−∇
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Using the same strategy, we obtain

(34)

‖I1ak (k1)− I1ax(k2)‖ ≤ 2νi‖M21‖1/∇
Λ(ϖ) (k2− k1)

ϖ−∇ ,

‖I1lk (k1)− I1lx(k2)‖ ≤ 2νi‖M31‖1/∇
Λ(ϖ) (k2− k1)

ϖ−∇ ,

‖I1alk (k1)− I1alx(k2)‖ ≤ 2νi‖M41‖1/∇
Λ(ϖ) (k2− k1)

ϖ−∇ ,

‖V1hk (k1)−V1hx(k2)‖ ≤ 2νi‖M51‖1/∇
Λ(ϖ) (k2− k1)

ϖ−∇ ,

‖R1ak (k1)−R1ax(k2)‖ ≤ 2νi‖M61‖1/∇
Λ(ϖ) (k2− k1)

ϖ−∇ ,

‖R1lk (k1)−R1lx(k2)‖ ≤ 2νi‖M71‖1/∇
Λ(ϖ) (k2− k1)

ϖ−∇ ,

‖R1alk (k1)−R1alx(k2)‖ ≤
2νi‖M81‖1/∇

Λ(ϖ) (k2− k1)
ϖ−∇ ,

∥∥C1pk (k1)−C1px(k2)
∥∥ ≤ 2νi‖M91‖1/∇

Λ(ϖ) (k2− k1)
ϖ−∇ ,

‖S1vk (k1)−S1vx(k2)‖ ≤ 2νi‖M101‖1/∇
Λ(ϖ) (k2− k1)

ϖ−∇ ,

‖I1vk (k1)− I1vx(k2)‖ ≤ 2νi‖M111‖1/∇
Λ(ϖ) (k2− k1)

ϖ−∇ ,

for νi ∈ {1,2,3, ...,11}.

From the Arzela-Ascoli principle, it can be concluded that S1h
(
Γζ

)
, I1a

(
Γζ

)
, I1l

(
Γζ

)
,

I1al
(
Γζ

)
, V1h

(
Γζ

)
, R1a

(
Γζ

)
, R1l

(
Γζ

)
, R1al

(
Γζ

)
, C1p

(
Γζ

)
, S1v

(
Γζ

)
, I1v

(
Γζ

)
are relatively

compact, which means that S1h, I1a, I1l, I1al, V1h, R1a, R1l, R1al, C1p, S1v, and I1v are compact.

Since S0h, I0a, I0l, I0al, V0h, R0a, R0l, R0al, C0p, S0v, and I0v are contractions and S1h, I1a, I1l,

I1al,V1h, R1a, R1l, R1al,C1p, S1v, and I1v are compact and therefore completely continuous. The

maps Sh = S0h+S1h, Ia = I0a+ I1a, Il = I0l + I1l, Ial = I0al + I1al,Vh =V0h+V1h, Ra = R0a+R1a,

Rl = R0l +R1l, Ral = R0al +R1al, Cp = C0p +C1p, Sv = S0v + S1v, and Iv = I0v + I1v are con-

densing on Γυ , and we get the existence of fixed points of Sh, Ia, Il, Ial, Vh, Ra, Rl, Ral, Cp, Sv,
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and Iv respectively. Finally we prove that the given initial value problem has solution in the real

interval [0,T ] . To prove this, we consider supposition 3 Condition (31), and the map H given

by

(35)

H [Sh (t)] = Sh (0)+ 1
Λ(ϖ)

∫ t

0
(1−η)ϖ−1 Sh (η ,Sh (η))dη ,

H [Ia (t)] = Ia (0)+ 1
Λ(ϖ)

∫ t

0
(1−η)ϖ−1 Ia (η , Ia (η))dη ,

H [Il (t)] = Il (0)+ 1
Λ(ϖ)

∫ t

0
(1−η)ϖ−1 Il (η , Il (η))dη ,

H [Ial (t)] = Ial (0)+ 1
Λ(ϖ)

∫ t

0
(1−η)ϖ−1 Ial (η , Ial (η))dη ,

H [Vh (t)] = Vh (0)+ 1
Λ(ϖ)

∫ t

0
(1−η)ϖ−1Vh (η ,Vh (η))dη ,

H [Ra (t)] = Ra (0)+ 1
Λ(ϖ)

∫ t

0
(1−η)ϖ−1 Ra (η ,Ra (η))dη ,

H [Rl (t)] = Rl (0)+ 1
Λ(ϖ)

∫ t

0
(1−η)ϖ−1 Rl (η ,Rl (η))dη ,

H [Ral (t)] = Ral (0)+ 1
Λ(ϖ)

∫ t

0
(1−η)ϖ−1 Ral (η ,Ral (η))dη ,

H [Cp (t)] = Cp (0)+ 1
Λ(ϖ)

∫ t

0
(1−η)ϖ−1Cp (η ,Cp (η))dη ,

H [Sv (t)] = Sv (0)+ 1
Λ(ϖ)

∫ t

0
(1−η)ϖ−1 Sv (η ,Sv (η))dη ,

H [Iv (t)] = Iv (0)+ 1
Λ(ϖ)

∫ t

0
(1−η)ϖ−1 Iv (η , Iv (η))dη .

For S0h (t) , I0a (t) , I0l (t) , I0al (t) , V0h (t) , R0a (t) , R0l (t) , R0al (t) ,C0p (t) , S0v (t) , I0v (t) ∈ Γζ ,

we get



A COINFECTED MODELING OF ANTHRAX AND LISTERIOSIS WITH POWER LAW 33

(36)

|H [Sh (t)]−F [Sh (t)]| ≤ 1
Λ(ϖ)

∫ t

0
(1−η)ϖ−1 L1 (η) |S0h (η)−S1h (η)|dη

≤ 1
Λ(ϖ)

[∫ t

0
(t−η)

ϖ−1
1−∇ dη

]1−∇[∫ t

0
L1/∇

1 (η)dη

]∇

≤ ν1‖L1‖1/∇T K1

Λ(ϖ)
‖S0h−S1h‖ ;

Using the same strategy, we obtain

(37)

|H [Ia (t)]−F [Ia (t)]| ≤ ν2‖L2‖1/∇T K2

Λ(ϖ)
‖I0a− I1a‖ ,

|H [Il (t)]−F [Il (t)]| ≤ ν3‖L3‖1/∇T K3

Λ(ϖ)
‖I0l− I1l‖ ,

|H [Ial (t)]−F [Ial (t)]| ≤ ν4‖L4‖1/∇T K4

Λ(ϖ)
‖I0al− I1al‖ ,

|H [Vh (t)]−F [Vh (t)]| ≤ ν5‖L5‖1/∇T K5

Λ(ϖ)
‖V0h−V1h‖ ,

|H [Ra (t)]−F [Ra (t)]| ≤ ν6‖L6‖1/∇T K6

Λ(ϖ)
‖R0a−R1a‖ ,

|H [Rl (t)]−F [Rl (t)]| ≤ ν7‖L7‖1/∇T K7

Λ(ϖ)
‖R0l−R1l‖ ,

|H [Ral (t)]−F [Ral (t)]| ≤
ν8‖L8‖1/∇T K8

Λ(ϖ)
‖R0al−R1al‖ ,

∣∣H [Cp (t)]−F [Cp (t)]
∣∣ ≤ ν9‖L9‖1/∇T K9

Λ(ϖ)

∥∥C0p−C1p
∥∥ ,

|H [Sv (t)]−F [Sv (t)]| ≤ ν10‖L10‖1/∇T K10

Λ(ϖ)
‖S0v−S1v‖ ,

|H [Iv (t)]−F [Iv (t)]| ≤ ν11‖L11‖1/∇T K11

Λ(ϖ)
‖I0v− I1v‖ .
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For the cases above, condition(31 ) is assured, and the existence of the unique solution for the

model is thus proved.

�

In this section, the numerical simulation results are presented with a step size of h = 0.001.

The numerical scheme employed was based on Adam-type predictor-corrector as extensively

examined in [32]. The parameter values utilised some were obtained in [1] and others were

estimated: b = 0.01, Ωh = 0.001, k = 0.01, w = 0.01, ψ = 0.07, βh = 0.005, π = 0.08, d =

0.001, µh = 0.05, α = 0.33, φ = 0.2, βl = 0.005, σ = 0.05, m = 0.2, ρ = 0.02, η = 0.08,

θ = 0.04, Ωh = 0.4, q = 0.02, τ = 0.01, µb = 0.0025, γ = 0.006, Ωv = 0.005, βv = 0.05,

µv = 0.008, κ = 10000, v = 0.5, g = 0.001

Figure 2(a) represents the number of Susceptible individuals (Sh) and as the fractional order

derivative increases from 0.7 towards 1 the number of Susceptible individuals reduce. This is

reasonable since more people get infected and move out of the (Sh) class. In Figure 2(b), the

number of individuals infected with Anthrax (Ia) reduce as the fractional order derivatives in-

crease. Therefore, increasing the fractional order can help curb the disease spread. Figure 2(c)

represents the individuals infected with Listeriosis (Il). Increasing the fractional order from 0.7

towards 1 leads to a decrease in the number of individuals in this class. Similar to the case of the

Anthrax disease, the spread of Listeriosis can also be reduced by increasing the fractional order.

Figure 2(d) shows the dynamics of the coinfected individuals. We observe that the number of

individuals infected with both Anthrax and Listeriosis (Ial) increases as the fractional order de-

rivative decreases from 1 towards 0.7. From the results obtained in 2(b) and 2(c), it is plausible

therefore to say that if we increase the fractional order instead, the number of coinfected indi-

viduals will decrease. Figure 2(e) shows how the number of individuals Vaccinated Vh changes

with the fractional order. The observed decrease in the number of individuals getting vaccinated

as the fractional order increases is justifiable since an increase in the fractional order causes a

decrease in the number of individuals infected with both or any of the diseases.
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FIGURE 2. Numerical simulation of model 4 via Power law for different values

of ϖ
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Figure 3(a) is for the number of individuals recovered from Anthrax (Ra). It shows that the

number of individuals reduce as the fractional order derivatives increase towards 1. Thus a

decrease in the fractional order is required for more people to recover from Anthrax. In Figure

3(b), Unlike the case with the individuals recovering from Anthrax, we observe an increase

in the number of individuals who have recovered from Listeriosis (Rl) as the fractional order

derivative increases from 0.7 towards 1. In this case therefore, an increase in the fractional

order derivative is needed for more listeriosis infected persons to recover. Figure 3(c) represents

individuals recovered from both Anthrax and Listeriosis (Ral). Here, the number of individuals

reduce as the fractional order derivative increase. It is clear that these dynamics are influenced

by the changes that occur in the number of Anthrax recovered individuals as the fractional order

derivative changes. Figure 3(d) shows the changes in the population of pathogen infested animal

carcasses (Cp) in the soil. we observe a decrease in the concentration of the carcasses as the

fractional order derivative increases towards 1. Hence, we need to increase the fractional order

derivative in order to decrease the concentration of the pathogens in the environment and intend

reduce the spread of Anthrax. In Figure 3(e) the number of susceptible animals (Sv) increases

as the fractional order derivative increases. This is justifiable because more animals get infected

and move out of the susceptible class as the fractional order derivative increases. In Figure

3(f) the number of animals infected with Anthrax (Iv) reduces as the fractional order derivative

increases from 0.7 towards 1.
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FIGURE 3. Numerical simulation of model 4 via Power law for different values

of ϖ continues.
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5. CONCLUSION

We analyse a coinfection model of anthrax and listeriosis using frcational order derivative, in

particular, the Liouville- Caputo operator. Our model is the fractional order version of the inte-

ger order model of Osman and Makinde [1]. The basic properties of the model such as existence

and uniqueness and positivity of solutions were investigated. The stability analysis of Liouville-

Caputo operator with Power Law was also studied. we use Adams-type predictor-corrector

method to qualitatively analyse the model trajectories subject to certain initial conditions. We

simulate the model by varying fractional orders (ϖ = 0.7, 0.85, 0.9, 0.1) and the numerical

simulation results suggest that the coinfection dynamics depend notably on the fractional order

derivative and some specific model parameters. Decreasing the prevalence of the coinfection

entails decreasing the prevalence and spread of the individual diseases. The figures obtained in

the simulations indicate that the prevalence and spread of the individual diseases is decreased

by an increase in the fractional order derivative, thus, the fractional order derivative practically

drives the dynamics of the coinfection. The figures obtained show similar numerical simulation

results to those obtained in the Anthrax Listeriosis integer order coinfection model [1]. In the

classical case ϖ = 1, the results obtained are in agreement with those obtained by Osman and

Makinde and suggests that our fractional model is well posed. The use of the Liouville-Caputo

operator, permits a better description in the history of the biological process. We thus suggest

that complex models are much better examined using fractional order derivatives.
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