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Abstract. The purpose of this paper is to investigate the dynamics of a stochastic virus dynamical model with

both cell-to-virus infection and cell-to-cell transmission and cure rate. We show the existence of a unique global

positive solution of our system, we give a sufficient conditions for persistence of the infected cells and virus, we

prove that the virus-free equilibrium is almost sure exponentially stable. Numerical simulations are achieved to

illustrate theoretical results.
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1. INTRODUCTION AND PRELIMINARIES

In nature, there are many dangerous viruses, which cause various infectious diseases such as

the coronavirus (COVID-19), the human immunodeficiency virus (HIV), the hepatitis B virus

(HBV). Usually, there are two modes of virus transmission: by viral to cell contamination

into the extracellular area, or by cell-to-cell transmission involving direct cell to cell contact.

Therefore, many mathematical models have been proposed and developed To modeling the viral

infection dynamics. One among them the following viral model with both cell-to-virus infection
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and cell-to-cell transmission and cure rate proposed by Zhang et al. [2]

ẋ = Λ−dx− f (y,v)x+ρy,(1)

ẏ = f (y,v)x− (a+ρ)y,

v̇ = ky−uv.

Where x,y and v represent the number of host cells, infected cells, and free virus at time t,

respectively. Λ is the regeneration rate of host cells. Free virus is produced by infected cells at

a rate ky. Also, d, a and u are, respectively, the death rates of host cells, infected cells, and free

virus. ρ is the cure rate. Here, f (y,v)x = (βy+αv)x represents the total infection rate of host

cells, αvx represents the infection rate of host cells by free viruses, and βyx is the infection rate

of host cells by direct contact with an infected cell, β , and α are the infection coefficients.

The basic reproduction number [2] of (1) model is as follows

R0 =
Λ(αk+βu)
du(a+ρ)

.

Moreover, the system (1) has a unique virus-free equilibrium E0 =
(

Λ

d ,0,0
)

If R0 ≤ 1. When

R0 > 1, E0 is still present and there exists an equilibrium namely, endemic equilibrium E1 =

(x∗,y∗,v∗), where

x∗ =
Λ

dR0
,

y∗ =
Λ

a

(
1− 1

R0

)
,

v∗ =
k
u

y∗.

The dynamical behavior of model (1) is as follows:

Theorem 1.1. [2] 1. If R0 ≤ 1, the virus-free equilibrium E0 is globally asymptotically stable.

2. If 1 < R0 < 1+δ , the epidemic equilibrium E1 is globally asymptotically stable, where

δ =
(βΛ+(a−ρ)d+

√
(βΛ+(a−ρd))2+4aρd2

2ρd .

However, it’s important to incorporate the effect of environmental noises such that the white

noise because biological systems are often subject to environmental noise and determinis-

tic models do not integrate the effect of the fluctuating environment. Consequently, many
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mathematicians have developed epidemic models with stochastic differential equations(see,

[5, 6, 7, 8, 9]). Then, assuming that the environmental noise is proportional to the variables,

we obtain the following stochastic virus dynamical model with both cell-to-virus infection and

cell-to-cell transmission and cure rate as follows:

ẋ = [Λ−dx− f (y,v)x+ρy]dt +σ1xdB1(t),(2)

ẏ = [ f (y,v)x− (a+ρ)y]dt +σ2ydB2(t),

v̇ = [ky−uv]dt +σ3vdB3(t).

Where B=(B1(t),B2(t),B3(t)) are independent Brownian motions defined in a complete proba-

bility space (Ω,F ,{Ft}t≥0 ,P). The components of B are assumed to be mutually independent.

The non-negative constants σ1, σ2 and σ3 denote the intensities of the stochastic perturbations.

Let us denote by Rn
+ the set of points in Rn having only nonnegative coordinates. Throughout

this paper we assume to have a complete probability space (Ω,F ,{Ft}t≥0 ,P) with a filtration,

{Ft}t≥0 , that is right continuous and with F0 contains all P-null sets. We consider the follow-

ing stochastic differential system (3), for an d-dimensional Brownian motion B(t) on Ω.

(3) dx(t) = h(t,x)dt +g(t,x)dB(t) t ≥ 0.

A solution with initial value x(0) = x0 is denoted by x(t,x0). Assume that h(t,0) = g(t,0) = 0

for all t ≥ 0.

Concerning a stochastic process x(t) which is a function of B(t), when we wish to distinguish a

specific Brownian path ω , we can write x(t,ω).

The differential operator L with the function displayed in equation (3), is defined for a

function V (t,x) ∈C1,2(R+×Rn,Rd) by the formula

LV (t,x) =Vt(t,x)+Vx(t,x)h(t,x)+
1
2

Tr
[
gt(t,x)Vxxg(t,x)

]
,

where Tr means trace and t denotes the transpose of a matrix. And

Vt(t,x) =
∂V
∂ t

, Vx(t,x) =
(

∂V
∂x1

, ...,
∂V
∂xn

)
, Vxx(t,x) =

(
∂ 2V

∂xi∂x j

)
.

By using Itô’s formula, we have

dV (t,x) = LV (t,x)dt +Vx(t,x)g(t,x)dB(t).
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There exist diverse definitions of stability for the equilibrium points of (SDE). We must con-

centrate on one of them.

Definition 1.1. [11]The equilibrium x = 0 of the system (3) is said to be almost surely exponen-

tially stable if for all x0 ∈ Rn,

limsup
t→+∞

1
t

ln |x(t,x0)|< 0 almost surely (a.s.).

The following lemma are quite useful in the proof of almost sure exponential stability main

theorem.

Lemma 1.1. [3]For k ∈N, let X(t) = (X1(t),X2(t), ...,Xd(t)) be a bounded Rd valued function.

Let (t0,n) be any increasing unbounded sequence of positive real numbers. Then there is a family

of sequences
(
tl,n
)

such that for each l ∈ {1,2, ....,d} ,
(
tl,n
)

is a subsequence of
(
tl−1,n

)
and

the sequence Xl(tl,n) converges to the largest limit point of the sequence Xl(tl−1,n).

Lemma 1.2. [4]For any initial value (x(0),y(0),v(0)) ∈ R3
+, the solution (x(t),y(t),v(t)) of

model (2) has the following properties:

lim
t→∞

x(t)
t

= 0, lim
t→∞

y(t)
t

= 0, lim
t→∞

v(t)
t

= 0, a.s.

limsup
t→∞

lnx(t)
t

≤ 0, limsup
t→∞

lny(t)
t
≤ 0, limsup

t→∞

lnv(t)
t
≤ 0, a.s.

lim
t→∞

∫ t
0 x(s)dB1(s)

t
≤ 0, lim

t→∞

∫ t
0 y(s)dB2(s)

t
≤ 0, lim

t→∞

∫ t
0 v(s)dB3(s)

t
≤ 0, a.s.

The rest of this paper is organized as follows. In Section 2, we show the existence of unique

positive global solution to the given stochastic system. exponential stability and persistence

in mean results are investigated in Section 3 and Section 4, respectively. In Section 5, the

analytical results are illustrated with the support of numerical examples. Finally, we terminate

the paper with conclusion and future directions.

2. EXISTENCE AND UNIQUENESS OF THE GLOBAL POSITIVE SOLUTION

In this section, we will show the existence, positivity of solutions of model (2).

Theorem 2.1. For any initial value X(0) = (x(0),y(0),v(0)) ∈ R3
+, there is a unique solution

X(t) = (x(t),y(t),v(t)) on t ≥ 0 which remains in R3
+ with probability one.
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Proof 2.1. Since the coefficients of system (2) are locally Lipshitz continuous, for any initial

value X(0) ∈ R3
+, there exists a unique local solution X(t) on t ∈ [0,τe) , where τe is the explo-

sion time[10]. We need to show that this solution is global almost surely that is, τe = ∞ a.s. Let

n0 be sufficiently large such that every component of X(0) lies within the interval
[

1
n0
,n0

]
. For

each integer n≥ n0, define the stopping times:

τn = inf
{

t ∈ [0,τe) : x(t) /∈
(

1
n
,n
)

or y(t) /∈
(

1
n
,n
)

orv(t) /∈
(

1
n
,n
)}

,

where we set inf{ /0} = ∞ (as usual /0 denotes the empty set). Obviously, τn is increasing as

n→ ∞. Set τ∞ = lim
n→∞

τn, and τ∞ ≤ τe (a.s). Now we need to show τ∞ = ∞ a.s. If this statement

is violated, then there exist T > 0 and ε ∈ (0,1) such that

P(τ∞ ≤ T )> ε.

Hence, there is an integer n1 ≥ n0 such that

(4) P(τ∞ ≤ T )≥ ε, for all n≥ n1.

Define a C2−function V1 : R3
+ −→ R+ by

V1(x,y,v) =
(

x− c− c ln
x
c

)
+(y−1− lny)+(v−1− lnv) ,

where c > 0 is sufficiently small constant in order to have cα < u and cβ + k < a. Using Itô’s

formula for all t ∈ [0,τn), we have

dV1(x,y,v) = LV1dt +(x− c)dB1(t)+(y−1)dB2(t)+(v−1)dB3(t),

where

LV1 =
(

1− c
x

)
[Λ−dx− f (y,v)x+ρy]+

(
1− 1

y

)
[ f (y,v)x− (a+ρ)y]

+

(
1− 1

v

)
[ky−uv]

≤ c(βy+αv)+(k−a)y−uv+Λ+ cd +a+ρ +u+
1
2
(
σ

2
1 c+σ

2
2 +σ

2
3
)
.

Note that

(cβ + k−a)y < 0 and (cα−u)v < 0.
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Hence,

dV1(x,y,v)≤K dt +(x− c)dB1(t)+(y−1)dB2(t)+(v−1)dB3(t),

where K =Λ+ cd + a+ ρ + u+ 1
2

(
σ2

1 c+σ2
2 +σ2

3
)
. Integrating both sides of the above in-

equality from 0 to τn∧T yields∫
τn∧T

0
dV1(x,y,v)≤

∫
τn∧T

0
K ds+M1(τn∧T ),

where τn∧T = min{τn,T} and

M1(s) =
∫ s

0
(x− c)dB1(r)+

∫ s

0
(y−1)dB2(r)+

∫ s

0
(v−1)dB3(r).

Note that M1(s) is a mean zero martingale process. Then taking the expectations leads to

EV1 (x(τn∧T ) ,y(τn∧T ) ,v(τn∧T ))≤V1 (x(0) ,y(0) ,v(0))+K T.

Set Ωn = {τn ≤ T} for m≥ m1 and by (4), we have P(τ∞ ≤ T )≥ ε for each m≥ m1. we have

V1 (x(τn∧T ) ,y(τn∧T ) ,v(τn∧T ))≥ min
i∈{1,c}

{(
n− i− i ln

n
i

)
,

(
1
n
− i− i ln

1
in

)}
:= Ln.

Then we obtain

V1 (X (0))+K T ≥ E [1ΩnV1 (x(τn∧T ) ,y(τn∧T ) ,v(τn∧T ))]≥ εLn,

where 1Ωn is the indicator function of Ωn. Letting n→ +∞ leads to the contradiction ∞ =

V1 (x(0) ,y(0) ,v(0))+K T < ∞. So we must therefore have τ∞ = ∞ a.s. This completes the

proof. �

3. PERSISTENCE IN MEAN

The goal of this section is to give a sufficient condition for the persistence in mean of virus

and infected cells. For simplicity, we introduce the following notation:

〈x〉t =
1
t

∫ t

0
x(s)ds.

The definition of persistence in mean is given by
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Definition 3.1. Model (2) is said to be persistence in the mean, if

liminf
t→∞

1
t

∫ t

0
y(s)ds > 0, liminf

t→∞

1
t

∫ t

0
v(s)ds > 0 a.s.

Let

R∗s =
Λ(αk+βu)(

u+ σ2
3

2

)(
a+ρ +

σ2
2

2

)(
d +

σ2
1

2

) .
Theorem 3.1. Let (x(t),y(t),v(t)) be the solution of system (2) with any initial value

(x(0),y(0),v(0)) ∈ R3
+. Assume that R∗s > 1. Then

liminf
t→∞

1
t

∫ t

0
v(s)ds ≥ k

αk+βu

(
d +

σ2
1

2

)
[R∗s −1]> 0, a.s.

liminf
t→∞

1
t

∫ t

0
y(s)ds ≥ u

αk+βu

(
d +

σ2
1

2

)
[R∗s −1]> 0, a.s.

Proof 3.1. We define the function Y as follows:

Y (x,y,v) =− lnx−q1 lny−q2 lnv− β

k
v,

where q1 and q2 are constants to be determined later. By Itô’s formula, we get

(5) dY (x,y,v) = LY dt−σ1dB1(t)−q1σ2dB2(t)−q2σ3dB3(t).

Where

LY = −Λ

x
− q1αvx

y
− q2ky

v
+d +βy+αv− ρy

x
+

σ2
1

2
−q1βx+q1(a+ρ)

+
q1σ2

2
2

+q2u+
q2σ2

3
2
−βy+

βu
k

v

≤ −3 3
√

Λq1αq2k+d +
σ2

1
2

+q1

[
a+ρ +

σ2
2

2

]
+q2

[
u+

σ2
3

2

]
+

αk+βu
k

v.

Hence, we can choose q1 and q2 :

q1 =
Λ(αk+βu)(

u+ σ2
3

2

)(
a+ρ +

σ2
2

2

)2 , q2 =
Λ(αk+βu)(

u+ σ2
3

2

)2(
a+ρ +

σ2
2

2

) ,
such that

q1

(
a+ρ +

σ2
2

2

)
= q2

(
u+

σ2
3

2

)
=

Λ(αk+βu)(
u+ σ2

3
2

)(
a+ρ +

σ2
2

2

) .
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Therefore,

LY ≤ − Λ(αk+βu)(
u+ σ2

3
2

)(
a+ρ +

σ2
2

2

) +d +
σ2

1
2

+
αk+βu

k
v

= −
(

d +
σ2

1
2

) Λ(αk+βu)(
u+ σ2

3
2

)(
a+ρ +

σ2
2

2

)(
d +

σ2
1

2

) −1

+ αk+βu
k

v

:= −
(

d +
σ2

1
2

)
[R∗s −1]+

αk+βu
k

v.

Integrating both sides of (5) from 0 to t and dividing by t yields that

lnx(0)− lnx(t)
t

+
q1 (lny(0)− lny(t))

t
+

q2 (lnv(0)− lnv(t))
t

+
β

k
v(0)− v(t)

t

≤−
(

d +
σ2

1
2

)
[R∗s −1]+

αk+βu
k

〈v〉t−
σ1

t

∫ t

0
dB1(s)−

q1σ2

t

∫ t

0
dB2(s)

−q2σ3

t

∫ t

0
dB3(s).

By strong law of large numbers [1], we obtain

lim
t→∞

σi

t

∫ t

0
dBi(s) = 0 a.s., for (i = 1,2,3) .

Then by Lemma 1.2, we get

liminf
t→∞

〈v〉t ≥
k

αk+βu

(
d +

σ2
1

2

)
[R∗s −1]> 0 a.s.

From system (2), we have

v(t)− v(0)
t

= k 〈y〉t−u〈v〉t +
σ3

t

∫ t

0
v(s)dB3(s).

Making use of Lemma 1.2, we get

liminf
t→∞

〈y〉t ≥
u

αk+βu

(
d +

σ2
1

2

)
[R∗s −1]> 0 a.s.

The theorem is proved. �
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4. EXPONENTIAL STABILITY

Let define the following subset ∆ of sample paths:

∆ =
{

ω ∈Ω : x(t,ω),y(t,ω),v(t,ω) ∈ R3
+ for all t ≥ 0

}
.

Next, we introduce some important notation and property for our theorem on almost sure expo-

nential stability.

(6) H(t) = θ1

(
Λ

d
− x
)
+θ2y+θ3v,

and

V2(t) = lnH(t).

Where

θ1 = αk+βu,(7)

θ2 = u(a+ρ),

θ3 = α(a+ρ).

Proposition 4.1. If

limsup
t→∞

〈LV2(X(t)〉< 0 a.s.

Then H(t) converges exponentially to 0 a.s.

Proof 4.1. By the Itô’s formula, we have

V2(X(t)) =V2(X(0))+
∫ t

0
LV2 (X(s))ds+M2(t)

where

M2(t) =
∫ t

0

σ1x(s)
H(X(s))

dB1(s)+
∫ t

0

σ2y(s)
H(X(s))

dB1(s)+
∫ t

0

σ3v(s)
H(X(s))

dB1(s)

=
∫ t

0

(
σ1x(s)

H(X(s))
+

σ2y(s)
H(X(s))

+
σ3v(s)

H(X(s))

)
dB(s)

The strong law of large numbers for local martingales see [1], implies that

lim
t→∞

M2(t)
t

= 0 a.s.
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And we have

lim
t→∞

V2(X(0))
t

.

Then

limsup
t→∞

V2(X(t)) = limsup
t→∞

〈LV2(X(t)〉 a.s.

The proof of proposition is completed. �

We calculate LV2,

LV2 = −θ1

H
[Λ−dx− f (y,v)x+ρy]+

θ2

H
[ f (y,v)x− (a+ρ)y]

+
θ3

H
[ky−uv]− 1

2

[(
θ1σ1x

H

)2

+

(
θ2σ2y

H

)2

+

(
θ3σ3v

H

)2
]
.

Through Lemma 1.1 we can see, for every sample path ω ∈ ∆, a sequence tn which is increasing

and unbounded, such that

limsup
t−→∞

〈LV2(ω)〉t = lim
n−→∞

L 〈V2(ω)〉tn ,

also for which we can define the following limits :

x̄ = lim
n−→∞

〈x〉tn , ȳ = lim
n−→∞

〈 y
H

〉
tn
, v̄ = lim

n−→∞

〈 v
H

〉
tn
, r = lim

n−→∞

〈
Λ

d − x
H

〉
tn

.

The conditions θ1r+θ2ȳ+θ3v̄ = 1 can be seen to hold.

Let

Φ(θ) = Φ(θ1,θ2,θ3) = limsup
t−→∞

〈LV2〉t .

Then

Φ(θ) = θ1 [−dr+(β ȳ+α v̄) x̄−ρ ȳ]+θ2 [(β ȳ+α v̄) x̄− (a+ρ) ȳ](8)

+
θ3

H
[kȳ−uv̄]− 1

2

[
(θ1σ1x̄)2 +(θ2σ2ȳ)2 +(θ3σ3v̄)2

]
.

Define a parameter as follows :

Rs =
Λ(αk+βu)

du(a+ρ)+ ĝ
,

whrer ĝ is a minimum of the continuous and positive function g : [0,1]−→ R defined as

g(z) =
θ2θ3

[
(σ2z)2 +σ2

3 (1− z)2
]

2 [βθ3z+αθ2 (1− z)]
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Theorem 4.1. If Rs < 1,Then y and v are almost surely converge exponentially to 0.

Proof 4.2. For θ2and θ3 define in (7) and for θ1 = 0, we define

H∗ = θ2y+θ3v, and V∗ = lnH∗.

We complet the proof of theorem by prove that

limsup
t−→∞

〈LV∗〉t < 0.

Let Φ∗ = Φ(0,θ2,θ3). We need to prove that Φ∗ < 0. From (8), we have

Φ∗ = θ2 [(β ȳ+α v̄) x̄− (a+ρ) ȳ]+
θ3

H
[ky−uv̄]− 1

2

[
(θ2σ2ȳ)2 +(θ3σ3v̄)2

]
< θ2

Λ

d
(β ȳ+α v̄)−θ4 (β ȳ+α v̄)− 1

2

[
(θ2σ2ȳ)2 +(θ3σ3v̄)2

]
.

Notice that

(θ2σ2ȳ)2 +(θ3σ3v̄)2 =
(θ2σ2ȳ)2 +(θ3σ3v̄)2

β ȳ+α v̄
(β ȳ+α v̄) ,

and θ3v̄ = 1−θ2ȳ. Thus

Φ∗ < θ2
Λ

d
(β ȳ+α v̄)−θ4 (β ȳ+α v̄)−g(θ2ȳ)(β ȳ+α v̄)

Therefore we obtain

Φ∗ < θ2
Λ

d
(β ȳ+α v̄)−θ4 (β ȳ+α v̄)−g∗ (β ȳ+α v̄)

= θ4(Rs−1)(β ȳ+α v̄)< 0.

�

Theorem 4.2. If Rs < 1, then the virus-free equilibrium is almost surely exponentially stable.

Proof 4.3. From Theorem 4.1, we have lim
t→+∞

y(t) = 0 a.s. and lim
t→+∞

v(t) = 0 a.s.. suppose that

for some subset ∆̃ of ∆ with P
(
∆̃
)
> 0, on ∆̃ we have.

(9) lim
t→+∞

(
Λ

d
− x(t)

)
6= 0.

Therefore, from (6) and (8) . In particular we choose θ1 = θ2 = θ3 = 1. From (9) and by the

definition of ȳ and v̄, on ∆̃ we have

ȳ = 0 a.s and v̄ = 0 a.s.
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So, from (8) it follows that

Φ(θ)≤−dr− 1
2

σ
2
1 x̄2.

Therefore,

Φ(θ)< 0 a.s.

From Proposition 4.1 it follows that on ∆̃, we have that

lim
t→+∞

(
Λ

d
− x(t)

)
= 0 a.s.

This is a contradiction, the proof is completed. �

5. NUMERICAL SIMULATION

To illustrate our analytical results, we give numerical simulations of model (2) using Euler

scheme[12].

Example 5.1. We consider Stochastic Virus system with parameters Λ = 20,d = 0.2,β =

0.0008,α = 0.0005,ρ = 0.1,a = 0.02,k = 2,u = 1,σ1 = 0.03,σ2 = 0.04,σ3 = 0.06. By cal-

culation, we have R∗s = 1.4733 > 1, in this case, The infected cells and virus persistence in

mean Figure 1 illustrates this result. So, if the white noise is large enough such that R∗s < 1

The infected cells and virus go extinction.

Example 5.2. In this example, we save the same parameter values as those in example 5.1,

besides, we choose σ1 = 0.3, σ2 = 0.4, σ3 = 0.6, ρ = 0.17. A simple calculation yields that

Rs = 0.4986 < 1, therefore according to Theorem 4.2, the virus-free equilibrium almost sure

exponential stability. as illustrated in Figure 3.

6. CONCLUSION

In this paper, we have introduced and analyzed a stochastic virus dynamical model with both

cell-to-virus infection and cell-to-cell transmission by including random perturbations of white

noise into variables. Firstly, We have shown that the unique global solution of the stochastic

system (2) is positive for any initial value. Employing some methods of stochastic analysis we

proved that the infected cells and virus persistence in mean if R∗s > 1. And If Rs < 1 then the

virus-free equilibrium is almost sure exponentially stable. We can introduce and investigate a
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new version of the stochastic Virus model (2) by introducing a different type of noise which is

the Lévy noise. We will investigate this case in our future works.
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FIGURE 1. Numerical simulation of the path x(t), y(t) and v(t) for the stochastic and

deterministic systems as given in Example 5.1.
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FIGURE 2. Numerical simulation of the path x(t), y(t) and v(t) for the stochastic and

deterministic systems as given in Example 5.2.
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Differ. Equ. 2020 (2020), 70. https://doi.org/10.1186/s13662-020-2521-6.

[8] A. El Koufi, J. Adnani, A. Bennar, N. Yousfi, Analysis of a stochastic SIR model with vaccination and

nonlinear incidence rate, Int. J. Differ. Equ. 2019 (2019), 9275051. https://doi.org/10.1155/2019/9275051.

[9] A.E. Koufi, A. Bennar, N. Yousfi, Dynamics of a stochastic SIRS epidemic model with regime switching and

specific functional response, Discr. Dyn. Nat. Soc. 2020 (2020), 5898456. https://doi.org/10.1155/2020/589

8456.

[10] R. Situ, Theory of stochastic differential equations with jumps and applications, mathematical and analytical

techniques with applications to engineering, New York, Springer, (2005).

[11] X. Mao. Stochastic differential equations and applications, Horwood, Chichester, (1997).

[12] P.E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Springer-Verlag Berlin Hei-

delberg, (1992).

https://doi.org/10.1080/17442508008833146
https://doi.org/10.1080/17442508008833146
https://doi.org/10.1155/2015/758362
https://doi.org/10.1007/s10441-017-9308-5
https://doi.org/10.1016/j.physa.2015.11.023
https://doi.org/10.1016/j.physa.2019.123488
https://doi.org/10.1016/j.jde.2015.08.024
https://doi.org/10.1186/s13662-020-2521-6
https://doi.org/10.1155/2019/9275051
https://doi.org/10.1155/2020/5898456
https://doi.org/10.1155/2020/5898456

	1. Introduction and Preliminaries
	2. Existence and Uniqueness of the Global Positive Solution
	3. Persistence in Mean
	4. Exponential Stability
	5. Numerical Simulation
	6. Conclusion
	Conflict of Interests
	References

