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Abstract: An SEIR delayed epidemic model with nonlinear incidence and treatment rates is proposed and investigated. 

There is a realistic zone where the model's solutions are non-negative and bounded for all time. The stability of the 

two equilibrium points is explored both locally and globally. The stability and direction of Hopf-bifurcation are 

established using the normal form and center manifold reduction of the system. Finally, a numerical simulation to 

back up our analytical findings is used. The system has at most two equilibrium points, and when the delay surpasses 

a certain value, it exhibits a Hopf bifurcation. 
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1. INTRODUCTION 

Infectious disease mathematical modeling is a potent and extensively used approach for predicting 

infection, lethality, and mortality rates in a certain country or around the world, see for example 
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[1-3] and the references therein. It may also indicate the most effective administrative procedures 

and social containment measures for minimizing loss of life and productivity while also limiting 

the spread of the disease. The SIR technique (Susceptible, Infected, and Recovered) proposed by 

Kermack and McKendrick in 1927 is a popular method for developing epidemiological models 

[4]. It has been frequently used to simulate the COVID-19 epidemic's spread, control measures, 

and economic output in many countries. SIR models, for example, can be simply expanded to 

encompass other features of the disease [5-6]. In Banerjee et al., [7], for example, incorporating 

viral load and its impact on the defensive human system into the SIR model allowed for the 

identification of potential reasons for epidemic two-phase exponential growth. Another natural 

extension is to consider the virus's incubation time. SEIR-models are the most common name for 

such models, where E stands for exposed [8]. Theoretical studies of several facets of the recent 

SARS-CoV-2 pandemic used SEIR models extensively. Such models were utilized in particular to 

evaluate the influence of various lockdown intensities on epidemic propagation [9-10]. Chinazzi 

et al [11] used the SEIR model to evaluate the influence of domestic and international travel 

restrictions on the COVID-19 outbreak's spread. 

On the other hand, the latent period can range from days to years, as in influenza A H1N1 [12]. 

The generation time, which is defined as the time between a patient becoming infected and 

infecting another case [13], is influenced by the latent period. Particular focus has recently been 

dedicated to investigating specific diseases and taking into account incubation period, recovery 

time, isolation, and other aspects [14-16]. When epidemics spread, there are various kinds of delays, 

including immunization period delays, infectious period delays, and incubation period delays. The 

constant delay in [17] indicates the constant infectious period after which the infected persons are 

removed, whereas the constant delay in [18] represents the constant latency time, which is the time 

after which the infected individuals are removed. 

It is generally understood in the study of infectious disease transmission that transmission of 

infection progress plays a crucial role in epidemic behavior; that is, differing incidence rates can 

change the system's behavior. The number of infectives increases linearly in the bilinear incidence 
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rate, which is accurate for a small population of infected persons but unrealistic for a high number 

of infectives. As a result, a number of studies [1, 6, 19] have focused on nonlinear incidence rates 

in disease transmission dynamics. Based on the values of 𝑞1 and 𝑞2, there are three types of 

incidence functions 𝑔(𝐼) =
𝐼𝑞1

1+𝑑𝐼𝑞2
. For example, Xiao and Ruan [20] used a nonmonotone 

incidence rate with 𝑞1 = 1 and 𝑞2 = 2 to reflect the psychological effect. A saturated incidence 

rate is considered with 𝑞1 = 𝑞2 = 2 by Ruan and Wang in [21]. The incidence functions 𝑔(𝐼) 

may be influenced by factors such as media coverage, population density, and lifestyle [6, 22-26]. 

It's worth emphasizing that media coverage is critical in aiding both government officials and 

individuals in responding to the disease [25]. A number of mathematical models have also been 

constructed to describe the impact of media coverage on infectious disease transmission patterns. 

Sun et al. [26] investigated the effects of media coverage on transmission dynamics using a 

nonlinear function of the number of infective people 𝑔(𝐼) = 𝛽1 +
𝛽2 𝐼

𝑚+𝐼
 in their transmission term. 

Treatment is widely established for healing sickness and reducing the spread of resistant pathogens, 

and in conventional epidemic models, it is assumed to be either constant or proportional to the 

number of infected individuals. Wang and Ruan [27] proposed a SIR epidemic model with a 

constant treatment rate. 

𝑇(𝐼) = {
𝑟,     𝐼 > 0
0,      𝐼 = 0

} 

where 𝑟 is a positive constant. Further, Zhou and Fan [28] modified the treatment rate to Holling 

type II as given by: 

𝑇(𝐼) =
𝛽𝐼

1+𝛾𝐼
 , 𝐼 ≥ 0, 𝛾 > 0, 𝛽 > 0  

In addition, Dubey et al. [29] converted the treatment rate to a Holling type III functional for use 

in a susceptible–exposed–infectious–recovered (SEIR) model to describe the treatment of a 

reemerging illness with existing treatment modalities, with the following form: 

𝑇(𝐼) =
𝑎𝐼2

1+𝑏𝐼2
 , 𝐼 ≥ 0, 𝑎 > 0, 𝑏 > 0.  

In light of the foregoing, the purpose of this paper is to develop and analyze a delayed SEIR 

epidemic model that includes the effects of media coverage on disease transmission using a 
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nonlinear Monod–Haldane incidence rate, as well as to investigate the effects of a Holling type III 

treatment rate on infection disease. A time delay owing to the incubation period is also used within 

a nonlinear Monod- Haldane incidence rate.   

The paper is organized as follows: In section 2, a mathematical model formulation is 

established. In section 3, the positivity and boundedness of the solutions are discussed. In section 

4, the possible equilibrium points and the basic reproduction number are determined. Moreover, 

in sections 5 and 6, the local and global dynamics of the system are studied. In section 7, the 

conditions of Hopf bifurcation occurrence are established. In section 8, the properties of Hopf 

bifurcation are investigated. In section 9, numerical simulation illustrates the main theoretical 

results and a brief discussion. Finally, the obtained results are discussed in section 10. 

 

2. THE MODEL FORMULATION 

A mathematical epidemic model of the 𝑆𝐸𝐼𝑅 type with nonlinear incidence and treatment rates 

is proposed and studied. The entire constant population, which is denoted by 𝑁, is separated into 

four disjoint compartments so that 𝑁 = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) , where 𝑆(𝑡)  stands for 

susceptible individuals; 𝐸(𝑡) stands for exposed individuals who have been infected and take 𝜏 

to become infectious; 𝐼(𝑡)  stands for infectious individuals; 𝑅(𝑡)  stands for removed 

individuals who cannot return to the susceptible class because they have been quarantined or have 

acquired permanent immunity. The model considers three explicit functional types rates, which 

are explained below: 

1. The nonlinear Monod–Haldane functional-type incidence rate is represented by the term 

𝐹1(𝑆, 𝐼) = 𝑔1(𝐼)𝑆𝐼 =
𝛽1

1+𝛼𝐼2
𝑆𝐼 , where 𝛽1  is the measure of the force of infection and 𝛼 

reports the down-regulation or psychological effect on the infection rate when 𝐼 becomes 

large. 

2. The expression 𝐹2(𝑆, 𝐼) = 𝑔2(𝐼)𝑆𝐼 =
𝛽2𝑆𝐼

2

𝑚+𝐼
 refers to the lower value of the contact rate when 

infectious people are reported. Clearly, as the number of infected people grows uncontrolled, 

the term 𝑔2(𝐼)  approaches its maximum, which is indicated by 𝛽2 . When the reported 
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infective number reaches 𝑚, which stands for the nonresponse rate of individuals to media 

notifications, it equals half of the maximum 𝛽2. Finally, because the media alarm report can’t 

totally stop the disease from spreading, it’s believed that 𝛽1 ≥ 𝛽2.  

3. The Holling type III treatment rate is represented by the formula 𝐹3(𝐼) =
𝑎𝐼2

1+𝑏𝐼2
, where 𝑎 and 

𝑏  are both nonnegative constants that reflect the cure rate of infected persons, and the 

limitation rate of treatment availability, respectively. The Holling type III treatment rate 

describes a situation in which the removal rate increases rapidly at first due to an increase in 

infective individuals, then gradually decreases until it reaches a saturation point. Any increase 

in infective individuals after then will have no effect on the elimination rate.  

The following assumptions describe the interaction among the above four classes:   

• The susceptible population grows as the recruitment rate Λ rises, and declines as a result of 

direct contact with infectious people, as indicated by 𝐹(𝑆, 𝐼) = 𝐹1(𝑆, 𝐼) − 𝐹2(𝑆, 𝐼) and the 

natural death rate 𝜇 of all human classes.  

• The disease is transmitted by contact between the individuals in the 𝑆 compartment and 𝐼 

compartment according to the nonlinear transmission rate 𝑔1(𝐼) − 𝑔2(𝐼) = (
𝛽1

1+𝛼𝐼2
−

𝛽2𝐼

𝑚+𝐼
).  

• With a transmission rate of 𝑔1(𝐼) − 𝑔2(𝐼), the newly infected individuals from 𝑆 transfer to 

the exposed class 𝐸 and remain there for a given latent time 𝜏. In fact, the 𝐸 individuals live 

in the latent period [𝑡 − 𝜏, 𝑡]  with a probability of 𝑒−𝜇𝜏  before becoming infected or 

recovering and moving into the 𝑅-compartment with a recovery rate of 𝑘.  

• The infected individuals recover and move into 𝑅 either naturally with a 𝛾 recovery rate or 

with a 𝐹3(𝐼) =
𝑎𝐼2

1+𝑏𝐼2
 treatment rate.  

As a result of the stated assumptions, the mathematical model that describes the dynamics of the 

𝑆𝐸𝐼𝑅 model, as shown in the block diagram in Fig. 1, can be built as follows.  
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𝑑𝑆

𝑑𝑇
= Λ − 𝐹(𝑆, 𝐼) − 𝜇𝑆,                                                             

𝑑𝐸

𝑑𝑇
= 𝐹(𝑆, 𝐼) − 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))  𝑒−𝜇𝜏 − (𝜇 + 𝑘)𝐸,

𝑑𝐼

𝑑𝑇
= 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))  𝑒−𝜇𝜏 − (𝜇 + 𝛾)𝐼 − 𝐹3(𝐼),     

𝑑𝑅

𝑑𝑇
= 𝐹3(𝐼) + 𝛾𝐼 − 𝜇𝑅 + 𝑘𝐸.                                                   

                  (1) 

We may deduce from the preceding system that 𝑆, 𝐸, and 𝐼 are not affected by 𝑅. Thus, it is 

sufficient to consider the following reduced system for the study, and then solve the 𝑅 equation 

independently of the system using the obtained values of 𝐼, and 𝐸.  

𝑑𝑆

𝑑𝑇
= Λ − 𝐹(𝑆, 𝐼) − 𝜇𝑆,                                                            

𝑑𝐸

𝑑𝑇
= 𝐹(𝑆, 𝐼) − 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))  𝑒−𝜇𝜏 − (𝜇 + 𝑘)𝐸,

𝑑𝐼

𝑑𝑇
= 𝐹(𝑆(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))  𝑒−𝜇𝜏 − (𝜇 + 𝛾)𝐼 − 𝐹3(𝐼).    

                 (2) 

The initial condition of the system (2) is given by 𝑆(𝜃) = Φ1(𝜃), 𝐸(𝜃) = Φ2(𝜃), 𝐼(𝜃) =

Φ3(𝜃), with Φ = [Φ1, Φ2, Φ3] ∈ 𝐶 such that Φ𝑖(𝜃) ≥ 0, 𝑖 = 1,2,3 for 𝜃 ∈ [−𝜏, 0], Φ𝑖(0) >

0, 𝑖 = 1,2,3, where 𝐶 denotes the Banach space of continuous function mapping the interval 

[−𝜏, 0]  into ℝ+
3 = {(𝑆, 𝐸, 𝐼); 𝑆 ≥ 0, 𝐸 ≥ 0, 𝐼 ≥ 0}. 

 

 

                      Figure 1: The chart for the delayed system (1). 
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3. POSITIVITY AND BOUNDEDNESS OF THE SOLUTIONS 

The system (2) keeps track of the population dynamics in each of the susceptible and infected 

compartments. As a result, it’s essential to demonstrate that all state variables with nonnegative 

initial conditions will remain positive and bounded for the rest of their lives. As a result, the 

following theorem looks at the system’s positivity and boundedness.  

Theorem 1. For all t ≥ 0, all state variables of the system (2) remain non-negative and bounded.  

Proof. First, the positivity of all solutions of system (2) is shown for 𝑡 ≥ 0.  

From, the first equation of system (2) we have for 𝑡 ≥ 0  

𝑑𝑆

𝑑𝑡
≥ −𝑆 [(

𝛽1

1+𝛼𝐼2
−

𝛽2𝐼

𝑚+𝐼
) 𝐼 + 𝜇]. 

 By solving this inequality it is obtained that:  

𝑆(𝑡) ≥ 𝑆(0) 𝑒𝑥𝑝 − {∫
𝑡

0
[(

𝛽1

1+𝛼𝐼2(∈)
−

𝛽2𝐼(∈)

𝑚+𝐼(∈)
) 𝐼(∈) + 𝜇]  𝑑 ∈}. 

 Since 𝑆(0) > 0, we get 𝑆(𝑡) > 0 for all 𝑡 ≥ 0. 

Now, the positivity of 𝐼(𝑡) is shown, from the infected equation it is observed that:  

𝑑𝐼

𝑑𝑡
= 𝐼 [(

𝛽1

(1+𝛼𝐼2(𝑡−𝜏))𝐼(𝑡)
−

𝛽2

(𝑚+𝐼(𝑡−𝜏))𝐼(𝑡)
) 𝑒−𝜇𝜏 𝑆(𝑡 − 𝜏) 𝐼(𝑡 − 𝜏) − (𝜇 + 𝛾) −

𝑎𝐼

1+𝑏𝐼2
]. 

 This gives: 

𝐼(𝑡) = 𝐼(0) 𝑒𝑥𝑝 {[∫
𝑡

0

(
𝛽1

(1 + 𝛼𝐼2(∈ −𝜏))𝐼(∈)
−

𝛽2
(𝑚 + 𝐼(∈))

) 𝑒−𝜇𝜏𝑆(∈ −𝜏)𝐼(∈ −𝜏)

−
𝑎𝐼(∈)

1 + 𝑏𝐼2(∈)
− (𝜇 + 𝛾)]  𝑑(∈)} .

 

Similarly, this implies that for all 𝑡 ≥ 0, we have 𝐼(𝑡) > 0.  

In the same manner, the proof of 𝐸(𝑡) > 0 for all  𝑡 ≥ 0 can be done  

Next, the proof of the boundedness of the solutions of system (2) for all 𝑡 ≥ 0, is given below:  

𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡). 

Then, the following is obtained:  

𝑑𝑁

𝑑𝑡
= Λ − 𝜇𝑁 − (𝛾 +

𝑎𝐼

1+𝑏𝐼
) 𝐼 − 𝑘𝐸, 

which gives that:  
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𝑑𝑁

𝑑𝑡
≤ Λ − 𝜇𝑁  

So, by Granwall Lemma, it is observed that:  

𝑁(𝑡) ≤ 𝑁(0) 𝑒−𝜇𝑡   +
Λ

𝜇
(1 − 𝑒−𝜇𝑡), 

which yields that 

lim𝑡→+∞  𝑠𝑢𝑝  𝑁(𝑡)   ≤
Λ

𝜇
.  

Furthermore, 
𝑑𝑁

𝑑𝑡
< 0, if 𝑁 >

Λ

𝜇
. 

Thus, the invariant region of the solution is 0 < lim𝑡→+∞(𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡)) ≤
Λ

𝜇
.  

This implies the boundedness of 𝑁(𝑡).  

 

4. THE EXISTENCE OF EQUILIBRIUM POINTS AND THE BASIC REPRODUCTION NUMBER 

For the existence of equilibrium points, the righthand side terms of the model (2) are set to zero, 

with 𝐹(𝑆, 𝐼) , and 𝐹3(𝐼)  are always positive, continuously differentiable, and monotonically 

rising for all 𝑆 > 0 and 𝐼 > 0. That is, they meet the following requirements:  

𝓗𝟏: 𝐹(𝑆, 𝐼) > 0, 𝐹𝑆
′(𝑆, 𝐼) > 0, 𝐹𝐼

′(𝑆, 𝐼) > 0 for all 𝑆 > 0, and 𝐼 > 0. 

𝓗𝟐: 𝐹(𝑆, 0) = 𝐹(0, 𝐼) = 𝐹𝑆
′(𝑆, 0) = 0, 𝐹𝐼

′(𝑆, 0) > 0 for all 𝑆 > 0, and 𝐼 > 0. 

𝓗𝟑: 𝐹3(0) = 0, 𝐹3
′(𝐼) > 0 for all 𝐼 > 0. 

As a result, the model (2) has two equilibrium points described below:   

1. Disease-free equilibrium point (DFEP) that denoted by 𝑄0(𝑆0, 0,0), where 𝑆0 =
Λ

𝜇
 is 

always existed and represented the eradication of infectious individuals.  

Furthermore, it is well known that the basic reproduction number is used to assess a disease’s 

transmission potential. It’s the average number of secondary infections caused by a normal 

infection in a population where everyone is vulnerable, and it’s calculated using the disease-free 

equilibrium point. As a result, the fundamental reproduction number is computed as follows: 

Consider the Jacobian matrix of infected compartments in the model (2) at 𝑄0 that can be written 

as:  
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𝐽𝐷𝐹𝐸 = [
−(𝜇 + 𝑘) 𝛽1𝑆0 − 𝛽1𝑆0  𝑒

−𝜇𝜏

0 𝛽1𝑆0  𝑒
−𝜇𝜏 − (𝜇 + 𝛾)

]. 

As a result, the linearized form of the infected compartments equations for the system (2) at 𝑄0 

can be rewritten as: 

𝑑

𝑑𝑡
𝑋(𝑡) = 𝜇1 𝑋(𝑡 − 𝜏) − 𝜇2 𝑋(𝑡),                  (3) 

where:  

𝑋(𝑡) = [
 𝐸(𝑡)
𝐼(𝑡)

], 

 with:  

𝜇1 = [
0 −𝛽1𝑆0  𝑒

−𝜇𝜏

0 𝛽1𝑆0  𝑒
−𝜇𝜏 ], 𝜇2 = [

(𝜇 + 𝑘) −𝛽1𝑆0
0 (𝜇 + 𝛾)

]. 

Let 𝑦0 = (𝑦1, 𝑦2)
𝑇  be the initial values for number of individuals in the compartments 𝐸(𝑡)  

and 𝐼(𝑡) at 𝑡 = 0,  then from the above equation the distribution of the remaining population of 

the compartments 𝐸(𝑡) and 𝐼(𝑡) at time 𝑡 > 0 is 𝑦(𝑡) = 𝑒−𝜇2𝑡   𝑦0. Then the total number of 

newly infected individuals is: 

�̅� = ∫
∞

𝜏
𝜇1𝑦(𝑡 − 𝜏)𝑑𝑡 = 𝜇1  𝜇2

−1  𝑦0. 

Now since the matrix 𝜇2, is nonsingular then 

 𝜇1𝜇2
−1 = [

0
−𝛽1𝑆0  𝑒

−𝜇𝜏

(𝜇+𝛾)

0
𝛽1𝑆0  𝑒

−𝜇𝜏

(𝜇+𝛾)

] 

Therefore, the reproduction number for system (2) is the spectral radius of the matrix (𝜇1𝜇2
−1), 

which is given by,  𝑅0 =
𝛽1𝑆0  𝑒

−𝜇𝜏

(𝜇+𝛾)
.  

Biologically, the term 
1

(𝜇+𝛾)
 is the time spent as an infections individual, while 𝑒−𝜇𝜏  is the 

survival rate of infected individual in latent period. Hence the basic reproduction number 𝑅0  

gives the number of secondary infections of susceptible individuals that one infected individual 

can produce in a disease-free population 𝑆0. 

2. The endemic equilibrium point (EEP) that represented by 𝑄∗(𝑆∗, 𝐼∗, 𝐸∗), where 𝑆∗ and 

𝐼∗ satisfy the following equations.  
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Λ − 𝜇𝑆 = 𝐹(𝑆, 𝐼).                          (4) 

  𝐹(𝑆, 𝐼) = 𝑒𝜇𝜏((𝜇 + 𝛾)𝐼 + 𝐹3(𝐼)).                         (5) 

By substituting the expression of 𝑆 by 𝐼, we obtain the following equation for 𝐼:  

𝐺(𝐼) = 𝐹 (
Λ−𝑒𝜇𝜏((𝜇+𝛾)𝐼+𝐹3(𝐼))

𝜇
, 𝐼) − 𝑒𝜇𝜏((𝜇 + 𝛾)𝐼 + 𝐹3(𝐼)). 

Clearly, 𝐺(0) = 0 . Also, there exists a positive 𝐼0  such that Λ = 𝑒𝜇𝜏((𝜇 + 𝛾)𝐼0 + 𝐹3(𝐼0)). 

Thus  

𝐺(𝐼0) = 𝐹(0, 𝐼0) − Λ = −Λ < 0.                 (6) 

Furthermore, when 𝐼 ≥ 0, then it is obtained, due to the continuously differentiable of 𝐺(𝐼), that:  

 

𝐺′(0) = lim
𝐼→0+

𝐺(𝐼)−𝐺(0)

𝐼−0
                                                                                                          

= 𝐹𝐼
′(𝑆0, 0) − 𝑒

𝜇𝜏(𝜇 + 𝛾 + 𝐹3
′(0))𝐹𝑆

′(𝑆0, 0) − 𝑒
𝜇𝜏(𝜇 + 𝛾 + 𝐹3

′(0))

 = 𝐹𝐼
′(𝑆0, 0) − 𝑒

𝜇𝜏(𝜇 + 𝛾 + 𝐹3
′(0)) = 𝑒𝜇𝜏(𝜇 + 𝛾 + 𝐹3

′(0))(𝑅0 − 1).

 

Thus, the value of 𝑅0 > 1 ensures that 𝐺′(0) > 0. And 𝐺(𝐼) is continuous on [0, 𝐼0], then 

there exists some 𝐼∗ ∈ (0, 𝐼0)  such that 𝐺(𝐼∗) = 0 . Since 𝐹3(𝐼)  is strictly monotonically 

increasing, It is obtained that  

𝑒𝜇𝜏((𝜇 + 𝛾)𝐼∗ + 𝐹3(𝐼
∗)) < 𝑒𝜇𝜏((𝜇 + 𝛾)𝐼0 + 𝐹3(𝐼0)). 

Therefore, 𝑆∗ =
Λ−𝑒𝜇𝜏((𝜇+𝛾)𝐼∗+𝐹3(𝐼

∗))

𝜇
> 0 and then 𝐸∗ > 0, then we have proved the existence of 

EEP for model (2) under condition 𝑅0 > 1. 

 

5. STABILITY OF DFEP 

In this section, the stability of 𝑄0 is established as shown in the following theorems 

Theorem 2. The DFEP of the system (2) is  

    1.  Asymptotically stable if 𝑅0 < 1.   

    2.  Unstable if 𝑅0 > 1.   

Proof. According to the linearization technique, the Jacobian of the system (2) at the 𝑄0 is written 

as: 
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 𝐽𝑄0 =

[
 
 
 
−𝜇 0 −𝛽1𝑆0
0 −(𝜇 + 𝑘) 𝛽1𝑆0  (1 − 𝑒

−(𝜇+𝜆)𝜏)

0 0 𝛽1𝑆0  𝑒
−(𝜇+𝜆)𝜏 − (𝜇 + 𝛾)

]
 
 
 

 

Therefore, the eigenvalues can be written 𝜆1 = −𝜇  𝑎𝑛𝑑  𝜆2 = −(𝜇 + 𝑘), which are negative 

roots, while the third root that specifies the stability type for 𝑄0 can be obtained by,  

𝜆3 = 𝛽1𝑆0  𝑒
−(𝜇+𝜆)𝜏 − (𝜇 + 𝛾).  

Now, let 𝑓(𝜆) = 𝜆 − 𝛽1𝑆0  𝑒
−(𝜇+𝜆)𝜏 + (𝜇 + 𝛾), thus:   

1. If 𝑅0 > 1, it can be seen that, for real 𝜆, the following is observed:  

𝑓(0) = (𝜇 + 𝛾)[1 − 𝑅0] < 0, and as 𝜆 ⟶ ∞, then 𝑓(𝜆) = ∞.  

Hence, if 𝑅0 > 1, there exists at least one positive root of 𝑓(𝜆) = 0, and that makes 𝑄0 unstable.  

2. If 𝑅0 < 1, it is assumed that 𝜆 = 𝛼 + 𝑖𝛽, where 𝛼 = 𝛽1𝑆0  𝑒
−(𝜇+𝛼) cos(𝜏 𝛽) − (𝜇 + 𝛾), thus: 

for 𝛼 ≥ 0, it is observed that 𝛼 ≤ 𝛽1𝑆0  𝑒
−𝜇𝜏 − (𝜇 + 𝛾).  

Hence it is obtained that 𝛼 ≤ (𝜇 + 𝛾)(𝑅0 − 1), which gives a contradiction due to the negativity 

of the right-hand side of the last inequality, so 𝛼 < 0. Therefore, the disease-free equilibrium of 

system (2) is locally asymptotically stable, otherwise is unstable.  

Theorem 3. The DFEP  that is given by Q0 = (
Λ

μ
, 0,0)  of the system (2) is globally 

asymptotically stable if and only if R0 ≤ 1.  

Proof. Consider the Lyapunov function 𝑊(𝑡) = ∑𝑛𝑖=1 𝑊𝑖(𝑡), where 

𝑊1(𝑡) = ∫
𝑠(𝑡)

𝑠0
(1 −

𝑘(𝑠0)

𝑘(𝑠)
)𝑑𝑠, 

𝑊2(𝑡) = ∫
𝜏

0
𝑦(𝑠(𝑡 − 𝜃), 𝐼(𝑡 − 𝜃))𝑒−𝜇𝜃

𝑘(𝑠0)

𝑘(𝑠(𝑡−𝜃))
𝑑𝜃, 

𝑊3(𝑡) = 𝐼(𝑡), 

𝑊4(𝑡) = 𝐸(𝑡), 

with 𝑘(𝑠) =
𝐹(𝑆,𝐼)

𝐼
. Thus it is obtained that:  

 

𝑑𝑊

𝑑𝑡
= −𝜇(𝑠 − 𝑠0) (1 −

𝑘(𝑠0)

𝑘(𝑠)
) + (𝑦(𝑠(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))) 𝑒−𝜇𝜏

𝑘(𝑠0)

𝑘(𝑠(𝑡−𝜏))

     −(𝜇 + 𝛾)𝐼 −
𝑎𝐼2

1+𝑏𝐼2
− (𝜇 + 𝑘)𝐸.

 

 Furthermore, according to the conditions ℋ1,ℋ2, it is observed that  



12 

REEM MUDAR HUSSIEN, RAID KAMEL NAJI 

−𝜇(𝑠(𝑡) − 𝑠0) (1 −
𝑘(𝑠0)

𝑘(𝑠)
) ≤ 0, with equality if and only if 𝑠(𝑡) = 𝑠0. 

Now, since  

 

𝑦(𝑠(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))𝑒−𝜇𝜏
𝑘(𝑠0)

𝑘(𝑠(𝑡−𝜏))
− (𝜇 + 𝛾)𝐼                                             

= (𝜇 + 𝛾)𝐼 [
𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))

(𝜇+𝛾)𝐼
𝑒−𝜇𝜏

𝑘(𝑠0)

𝑘(𝑠(𝑡−𝜏))
− 1] .

 

Then, according to the condition ℋ3, it is obtained that   

(𝜇 + 𝛾)𝐼 [𝑒−𝜇𝜏
𝑘(𝑠0)

(𝜇+𝛾)
− 1] ⇒ (𝜇 + 𝛾)𝐼[𝑅0 − 1]  

Therefore, 𝑅0 ≤ 1 yield 
𝑑𝑊

𝑑𝑡
≤ 0, ∀𝑡 > 0, where 

𝑑𝑊

𝑑𝑡
= 0 holds if 𝑠 = 𝑠0, 𝐼 = 0, and 𝐸 = 0.  

Hence 𝑄0 is globally asymptotically stable.  

 

6. STABILITY OF EEP 

The stability around EEP is investigated in this section as presented in the following theorems.  

Theorem 4 For any τ ≥ 0, the EEP of the system (2) is locally asymptotically stable if the 

following conditions are met.  

(𝑏2)
2 + ((𝜇 + 𝛾) + 𝑎4)

2 > (𝑏1)
2.                         (7) 

  (𝑏2)
2((𝜇 + 𝛾) + 𝑎4)

2 > 𝜇2(𝑏1)
2.                                (8) 

Proof. From the linearization technique, the Jacobian matrix of the system (2) at 𝑄∗ can be written 

as:  

𝐽𝑄∗ =

[
 
 
 
−𝑏2 0 −𝑏1  𝑒

𝜇𝜏

(𝑏2 − 𝜇)(1 − 𝑒
−(𝜇+𝜆)𝜏) −(𝜇 + 𝑘) 𝑏1(𝑒

𝜇𝜏 − 𝑒−𝜆𝜏)

(𝑏2 − 𝜇)𝑒
−(𝜇+𝜆)𝜏 0 𝑏1𝑒

−𝜆𝜏 − (𝜇 + 𝛾) − 𝑎4
]
 
 
 

, 

 where 

𝑏1 = (𝑎2 − 𝑎3𝑎5)𝑒
−𝜇𝜏; 𝑏2 = (𝑎1 − 𝑎3) + 𝜇  

𝑎1 =
𝛽1𝐼

∗

1+𝛼𝐼∗2
; 𝑎2 =

𝛽1𝑆
∗(1−𝛼𝐼∗2)

(1+𝛼𝐼∗2)2
; 𝑎3 =

𝛽2𝐼
∗2

𝑚+𝐼∗
 

𝑎4 =
2𝑎𝐼∗

1+𝑏𝐼∗2
; 𝑎5 =

(2𝑚+𝐼∗)𝑠∗

(𝑚+𝐼∗)𝐼∗
 ,  are positive.  

Clearly, 𝜆1 = −(𝜇 + 𝑘) < 0, and the other two eigenvalues represent the roots of the following 
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equation  

𝜆2 + (𝐶1 − 𝑏1𝑒
−𝜆𝜏)𝜆 + 𝐶2 − 𝑏1  𝜇𝑒

−𝜆𝜏 = 0.                   (9) 

 where  

𝐶1 = 𝑏2 + (𝜇 + 𝛾) + 𝑎4  

𝐶2 = 𝑏2((𝜇 + 𝛾) + 𝑎4)  

Thus,   

1. If 𝜏 = 0, so by the Hurwitz criterion the equation (9) has two negative roots. Hence the EEP 

is locally asymptotically stable. 

2. For 𝜏 > 0, if 𝑄∗  is unstable for a specific value 𝜏0 , then the roots of equation (9) must 

intersect the imaginary axis [21]. Now by contradiction, let 𝜆 = 𝑖𝜃, 𝜃 > 0  is the root of 

equation (9) and separating real and imaginary parts, we get  

−𝑏1𝜃  sin(𝜃𝜏) − 𝜇𝑏1  cos(𝜃𝜏) = 𝜃
2 − 𝐶2.                     (10) 

     −𝑏1𝜃  cos(𝜃𝜏) + 𝜇𝑏1  sin(𝜃𝜏) = 𝐶1𝜃.                             (11) 

 Furthermore, squaring and adding both sides of the above equations leads to  

𝜃4 + (𝐶1
2 − 2𝐶2 − 𝑏1

2)𝜃2 + 𝐶2
2 − 𝜇2𝑏1

2 = 0.                      (12) 

 Put 𝜃2 = 𝑍, then the last equation becomes:  

𝑍2 + 𝐴1𝑍 + 𝐴2 = 0,                                  (13) 

 where 𝐴1 = 𝐶1
2 − 2𝐶2 − 𝑏1

2 ; 𝐴2 = 𝐶2
2 − 𝜇2𝑏1

2. 

Thus, according to conditions (7, 8) the last equation has two negative real part roots. Hence 𝑄∗ 

is a locally asymptotically stable.  

Now, the global stability of 𝑄∗(𝑆∗, 𝐸∗, 𝐼∗) of the system (2) is studied using the Lyapunov direct 

method. For this objective, the following hypotheses are suggested:  

𝓗𝟒 :    
𝐺(𝐼)

𝐺(𝐼∗)
⩽

𝐼

𝐼∗
  𝑓𝑜𝑟  𝐼 ∈ (0, 𝐼∗),

𝐺(𝐼)

𝐺(𝐼∗)
⩾

𝐼

𝐼∗
  𝑓𝑜𝑟  𝐼 ⩾ 𝐼∗.  

𝓗𝟓:    𝑦(𝑠
∗, 𝐼∗) ⩽ 𝑦(𝑠(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))  𝑒−𝜇𝜏 

𝓗𝟔 :    
𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))  𝑒−𝜇𝜏

𝐸

𝐸∗
−1

⩽ 𝑦(𝑠, 𝐼) ⩽ 𝑦(𝑠, 𝐼∗).  

Theorem 5. Suppose that conditions ℋi, i = 1,2,4,5,6 are satisfied. Then the EEP is a global 
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asymptotically stable if R0 > 1.  

Proof. Consider the Lyapunov function that is given by: 

𝑉(𝑡) = 𝑉1(𝑡) + 𝑉2(𝑡),  

where  

𝑉1(𝑡) = 𝑠 − 𝑠∗ −∫
𝑠

𝑠∗

𝑦(𝑠∗, 𝐼∗)

𝑦(𝜃, 𝐼∗)
𝑑𝜃  + 𝐸 − 𝐸∗ − 𝐸∗ln

𝐸

𝐸∗
  + 𝐼 − 𝐼∗ − 𝐼∗ln

𝐼

𝐼∗

−2𝑒−𝜇𝑡∫
𝑡

𝑡−𝜏

𝑦(𝑠(𝜃), 𝐼(𝜃))𝑒𝜇𝜃𝑑𝜃.

 

  
𝑉2(𝑡) = 𝑦(𝑠∗, 𝐼∗)𝑒−𝜇𝑡 (∫

𝑡

𝑡−𝜏

𝑦(𝑠(𝜃),𝐼(𝜃))𝑒𝜇𝜃

𝑦(𝑠∗,𝐼∗)
− 1 − ln

𝑦(𝑠(𝜃),𝐼(𝜃))𝑒𝜇𝜃

𝑦(𝑠∗,𝐼∗)
) 𝑑𝜃

. 

𝑉(𝑡) is defined and continuously differentiable for all positive values of 𝑆(𝑡), 𝐸(𝑡), and 𝐼(𝑡), 

with 𝑉(0) = 0 at 𝑄∗(𝑆∗, 𝐸∗, 𝐼∗).  

Thus, the time derivative of 𝑉(𝑡) along the solution of the system (2) is given by:  

 

𝑑𝑉(𝑡)

𝑑(𝑡)
= 𝜇𝑠∗ (1 −

𝑠

𝑠∗
) (1 −

𝑦(𝑠∗,𝐼∗)

𝑦(𝑠,𝐼∗)
) + 𝑦(𝑠∗, 𝐼∗) (1 −

𝑦(𝑠∗,𝐼∗)

𝑦(𝑠,𝐼∗)
+

𝑦(𝑠,𝐼)

𝑦(𝑠,𝐼∗)
)                         

+𝑦(𝑠∗, 𝐼∗) (1 −
𝐼

𝐼∗
−
𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐼∗

𝑦(𝑠∗,𝐼∗)
) + 𝐺(𝐼∗) (

𝐺(𝐼)

𝐺(𝐼∗)
−

𝐼

𝐼∗
) (

𝐼∗

𝐼
− 1)

+𝑦(𝑠(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))𝑒−𝜇𝜏 (1 +
𝐸∗

𝐸
−

𝑦(𝑠,𝐼)𝐸∗

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐸
) − 𝑦(𝑠, 𝐼)

−2𝑦(𝑠(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))𝑒−𝜇𝜏 + 𝑦(𝑠∗, 𝐼∗)𝑙𝑛
𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏

𝑦(𝑠,𝐼)
.

 

Accordingly, it is obtained that 

 

𝑑𝑉(𝑡)

𝑑(𝑡)
= 𝜇𝑠∗ (1 −

𝑠

𝑠∗
) (1 −

𝑦(𝑠∗,𝐼∗)

𝑦(𝑠,𝐼∗)
) + 𝑦(𝑠∗, 𝐼∗) (1 −

𝑦(𝑠∗,𝐼∗)

𝑦(𝑠,𝐼∗)
+ ln

𝑦(𝑠∗,𝐼∗)

𝑦(𝑠,𝐼∗)
)                      

+𝑦(𝑠∗, 𝐼∗) (1 −
𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐼∗

𝑦(𝑠∗,𝐼∗)𝐼
+ 𝑙𝑛

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐼∗

𝑦(𝑠∗,𝐼∗)𝐼
)

+𝑦(𝑠∗, 𝐼∗) (1 −
𝑦(𝑠∗,𝐼∗)𝐼

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐼∗
+ 𝑙𝑛

𝑦(𝑠∗,𝐼∗)𝐼

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐼∗
)

+𝑦(𝑠(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))𝑒−𝜇𝜏 (1 −
𝑦(𝑠,𝐼)𝐸∗

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐸
+ 𝑙𝑛

𝑦(𝑠,𝐼)𝐸∗

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐸
)

+𝑦(𝑠(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))𝑒−𝜇𝜏 (1 −
𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐸

𝑦(𝑠,𝐼)𝐸∗
+ 𝑙𝑛

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐸

𝑦(𝑠,𝐼)𝐸∗
)

+𝐺(𝐼∗) (
𝐺(𝐼)

𝐺(𝐼∗)
−

𝐼

𝐼∗
) (

𝐼∗

𝐼
− 1) − 𝑦(𝑠, 𝐼) − 2𝑦(𝑠(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))𝑒−𝜇𝜏

+𝑦(𝑠∗, 𝐼∗) (
𝑦(𝑠,𝐼)

𝑦(𝑠,𝐼∗)
−

𝐼

𝐼∗
− 1 +

𝑦(𝑠∗,𝐼∗)𝐼

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐼∗
)

+𝑦(𝑠(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))𝑒−𝜇𝜏 (
𝐸

𝐸∗
− 1 +

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐸

𝑦(𝑠,𝐼)𝐸∗
)

 

The function 𝑌(𝑆, 𝐼) is monotonically increasing for any 𝑆 > 0, hence it is obtained that:  
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𝜇𝑠∗ (1 −
𝑠

𝑠∗
) (1 −

𝑦(𝑠∗,𝐼∗)

𝑦(𝑠,𝐼∗)
) ⩽ 0.                                                   (14) 

By the properties of the function 𝑔(𝑥) = 1 − 𝑥 + ln (𝑥), when (𝑥 > 0), it is noted that the global 

maximum of 𝑔(𝑥) is 𝑔(1) = 0. Hence 𝑔(𝑥) ⩽ 0, where 𝑥 > 0, so the following inequalities 

hold true:  

 

1 −
𝑦(𝑠∗,𝐼∗)

𝑦(𝑠,𝐼∗)
+ ln

𝑦(𝑠∗,𝐼∗)

𝑦(𝑠,𝐼∗)
⩽ 0

1 −
𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐼∗

𝑦(𝑠∗,𝐼∗)𝐼
+ ln

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐼∗

𝑦(𝑠∗,𝐼∗)𝐼
⩽ 0

1 −
𝑦(𝑠∗,𝐼∗)𝐼

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐼∗
+ ln

𝑦(𝑠∗,𝐼∗)𝐼

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐼∗
⩽ 0

1 −
𝑦(𝑠,𝐼)𝐸∗

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐸
+ ln

𝑦(𝑠,𝐼)𝐸∗

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐸
⩽ 0

1 −
𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐸

𝑦(𝑠,𝐼)𝐸∗
+ ln

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐸

𝑦(𝑠,𝐼)𝐸∗
⩽ 0}

 
 
 
 

 
 
 
 

.              (15) 

 Further, by the conditions ℋ𝑖 , 𝑖 = 4,5,6, the following inequalities hold:  

𝐺(𝐼)

𝐺(𝐼∗)
⩽

𝐼

𝐼∗
, 𝑓𝑜𝑟 𝐼 ∈ (0, 𝐼∗), 𝑎𝑛𝑑 

𝐺(𝐼)

𝐺(𝐼∗)
⩾

𝐼

𝐼∗
, 𝑓𝑜𝑟 𝐼 ⩾ 𝐼∗,                

𝑦(𝑠∗, 𝐼∗) (
𝑦(𝑠,𝐼)

𝑦(𝑠,𝐼∗)
−

𝐼

𝐼∗
− 1 +

𝑦(𝑠∗,𝐼∗)𝐼

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐼∗
) ≤ 0,                

𝑦(𝑠(𝑡 − 𝜏), 𝐼(𝑡 − 𝜏))𝑒−𝜇𝜏 (
𝐸

𝐸∗
− 1 +

𝑦(𝑠(𝑡−𝜏),𝐼(𝑡−𝜏))𝑒−𝜇𝜏𝐸

𝑦(𝑠,𝐼)𝐸∗
) ≤ 0

     

}
 
 

 
 

.              (16) 

Hence, 
𝑑𝑉(𝑡)

𝑑𝑡
⩽ 0  for all 𝑆(𝑡) , 𝐸(𝑡) , and 𝐼(𝑡)  are positive, and according to the Lyapunov 

LaSalle asymptotic stability theorem [30], it is obtained that 𝑄∗ is globally asymptotically stable.  

 

7.  HOPF BIFURCATION 

The existence of periodic solutions of the system (2) around the EEP is explored in this section in 

the sense of the Hopf bifurcation theorem, which requires the existence of a pair of complex 

conjugate eigenvalues that are pure imaginary at the bifurcation point with the derivative of their 

real parts with respect to the bifurcation parameter not vanishing. 

Note that, when condition (7) holds while condition (8) is reflected (𝐴2 < 0), then equation (13) 

has a unique positive root, namely 𝜃0. Therefore, there is a single pair of purely imaginary roots 

∓𝑖𝜃0 satisfying equation (9). From equations (10,11), we get:  

sin(𝜃0𝜏) =
𝐶2−𝜃0

2−𝜇𝑏1cos(𝜃0𝜏)

𝑏1𝜃0
, 
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        cos(𝜃0𝜏) =
𝜇𝐶2−(𝐶1+𝜇)𝜃0

2

(𝜃0
2+𝜇2)𝑏1

. 

 Then, 𝜏𝑛 corresponding to 𝜃0 can be obtained as  

𝜏𝑛 =
1

𝜃0
(arccos (

𝜇𝐶2−(𝐶1+𝜇)𝜃0
2

𝑏1(𝜃0
2+𝜇2)

) + 2𝑛𝜋) , 𝑛 = 0,1,2, . ..                         (17) 

 Define  

𝜏0 = min 𝜏𝑛 , 𝑛 ≥ 0,                                     (18) 

Therefore, the following theorem is obtained. 

Theorem 6. The EEP of the system (2) is asymptotically stable when τ ∈ [0, τ0) and it undergoes 

Hopf bifurcation where τ = τ0  

Proof. For the 𝜏 ∈ [0, 𝜏0) the proof follows from the previous theorem. However, for 𝜏 = 𝜏0, the 

existence of the Hopf bifurcation will be proved if we can show that 𝑄∗ is conditionally stable, 

that is the single pair of complex conjugate eigenvalues that is pure imaginary at 𝜏 = 𝜏0 satisfies 

[
𝑑(𝑅𝑒𝜆(𝜏))

𝑑𝜏
]
𝜏=𝜏0

≠ 0 

Differentiating equation (9) with respect to 𝜏, using the chain rule as 𝜆 is a function of 𝜏, we have  

(2𝜆 + 𝐶1 − 𝑏1𝑒
−𝜆𝜏 + (𝜆 + 𝜇)𝑏1𝜏𝑒

−𝜆𝜏)
𝑑𝜆

𝑑𝜏
= −𝜆𝑏1𝑒

−𝜆𝜏(𝜆 + 𝜇). 

 From equation (9), it is obtained that  

(
𝑑𝜆

𝑑𝜏
)
−1

=
(2𝜆+𝐶1)

−𝜆(𝜆2+𝐶1𝜆+𝐶2)
+

𝑏1

𝜆𝑏1(𝜆+𝜇)
−

𝜏

𝜆
. 

 Therefore, 

𝑑

𝑑𝜏
(𝑅𝑒𝜆)|𝜆=𝑖𝜃0 = 𝑅𝑒 (

𝑑𝜆

𝑑𝜏
)
−1

|𝜆=𝑖𝜃0

= 𝑅𝑒 [
1

𝜃0
(

(2𝑖𝜃0 + 𝐶1)

𝜃0
2𝑖 + 𝐶1𝜃0 − 𝐶2𝑖

+
𝑏1

−𝑏1𝜃0 + 𝑖𝑏1𝜇
+ 𝑖𝜏)]

=
1

𝜃0
(
2𝜃0(𝜃0

2 − 𝐶2) + 𝐶1
2𝜃0 − 𝑏1

2𝜃0
(𝑏1𝜃0)2 + (𝑏1𝜇)2

)

=
2𝜃0

2 + (𝐶1
2 − 2𝐶2 − 𝑏1

2)

(𝑏1𝜃0)2 + (𝑏1𝜇)2

 

Obviously, under the condition (7), we have 
𝑑

𝑑𝜏
(𝑅𝑒𝜆)|𝜆=𝑖𝜃0 > 0. Therefore, the transversality 

condition holds true and hence Hopf bifurcation occurs at 𝜃 = 𝜃0, 𝜏 = 𝜏0.  



17 

THE DELAYED EPIDEMIC MODEL DYNAMICS 

8.  THE DIRECTION AND STABILITY OF THE HOPF BIFURCATION 

The conditions for making system (2) undergoes a Hopf bifurcation near 𝑄∗ at critical value 

𝜏 = 𝜏0, are found. In this section, however, with the use of the normal form and the center manifold 

reduction for the functional differential equations introduced by [31] the properties of the Hopf 

bifurcation at 𝜏 = 𝜏0 are established.  

Theorem 7.  

1. Suppose that 𝑀2 > 0 (𝑀2 < 0) then the Hopf bifurcation is supercritical (subcritical) and 

the bifurcating periodic solutions exist for 𝜏 > 𝜏0 (𝜏 < 𝜏0);  

2. Suppose that 𝜈2 < 0  (𝜈2 > 0) then the periodic solutions are stable (unstable); 

3. Suppose that 𝑇2 > 0 (𝑇2 < 0) then the periodic solutions are increase (decrease); 

where 𝑀2, 𝜈2, and 𝑇2 are given below 

𝐶1(0) =
𝑖

2𝑤0𝜏0
(𝑔11  𝑔20 − 2|𝑔11|

2 −
|𝑔02|

2

3
) +

𝑔21

2
,

𝑀2 = −
𝑅𝑒{𝐶1(0)}

𝑅𝑒{
𝑑𝜆

𝑑𝜏
(𝜏0)}

,                                                   

𝜈2 = 2𝑅𝑒{𝐶1(0)},                                               

𝑇2 =
−𝐼𝑚{𝐶1(0)}+𝑀2  𝐼𝑚{

𝑑𝜆

𝑑𝜏
(𝜏0)}

𝑤0𝜏0
.                           }

  
 

  
 

                      (19) 

Proof. Let 𝑢1(𝑡) = 𝑆(𝑡) − 𝑆∗ , 𝑢2(𝑡) = 𝐸(𝑡) − 𝐸∗ , 𝑢3(𝑡) = 𝐼(𝑡) − 𝐼∗ , and 𝜏 = 𝜏0 + 𝛾 , where 

𝜏0  is define by Eq. (18) and 𝛾 ∈ ℝ . Then system (2) can be transformed into a functional 

differential equation in 𝐶 = 𝐶([−1,0],ℝ3) as follows:  

𝑢′(𝑡) = 𝐿𝛾(𝑢𝑡) + 𝑓(𝛾, 𝑢𝑡),                                   (20) 

 where  

𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡))
𝑇 ∈ 𝐶 = 𝐶([−1,0], ℝ3)  and 𝐿𝛾: 𝐶 → ℝ3 , 𝑓:ℝ × 𝐶 → ℝ3  

are given by:  

𝐿𝛾(𝜙) = (𝛾 + 𝜏0)[𝑀𝜙(0) + 𝑁𝜙(−1)]                         (21) 

 and the nonlinear term is  

𝑓(𝛾, 𝜙) = (𝛾 + 𝜏0) (
𝐹1
𝐹2
𝐹3

) 
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 where  

𝑀 = (

𝑓10
(1)

0 𝑓01
(1)

𝑓10000
(2)

𝑓01000
(2)

𝑓00100
(2)

0 0 𝑓100
(3)

) = [

−𝑏2 0 −𝑏1  𝑒
𝜇𝜏

(𝑏2 − 𝜇) −(𝜇 + 𝑘) 𝑏1𝑒
𝜇𝜏

0 0 −(𝜇 + 𝛾) − 𝑎4
],  

𝑁 = (

0 0 0

𝑓00010
(2)

0 𝑓00001
(2)

𝑓010
(3)

0 𝑓001
(3)

) = [

0 0 0
−(𝑏2 − 𝜇)𝑒

−(𝜇+𝜆)𝜏 0 −𝑏1𝑒
−𝜆𝜏

(𝑏2 − 𝜇)𝑒
−(𝜇+𝜆)𝜏 0 𝑏1𝑒

−𝜆𝜏 ], 

with 𝑏1, 𝑏2, and 𝑎4 are given in the 𝐽𝑄∗, while 

𝐹1 = ∑𝑖+𝑘≥2   
1

𝑖!𝑘!
  𝑓𝑖𝑘

(1)
𝜙1
𝑖 (0)𝜙3

𝑘(0), 

𝐹2 = ∑
1

𝑖!𝑗!𝑘!𝑚!𝑛!
  𝑓𝑖𝑗𝑘𝑚𝑛

(2)
𝜙1
𝑖 (0)𝜙2

𝑗
(0)𝜙3

𝑘(0)�̃�1
𝑚(−1)�̃�3

𝑛(−1)𝑖+𝑗+𝑘+𝑚+𝑛≥2 , 

 𝐹3 = ∑𝑘+𝑚+𝑛≥2   
1

𝑘!𝑚!𝑛!
  𝑓𝑘𝑚𝑛

(3)
𝜙3
𝑘(0)�̃�1

𝑚(−1)�̃�3
𝑛(−1), 

where, 𝜙(𝜃) = (𝜙1(𝜃), 𝜙2(𝜃), 𝜙3(𝜃)) ∈ 𝐶,−1 ≤ 𝜃 ≤ 0, with 

 𝑓𝑖𝑘
(1)𝜙1

𝑖 (0)𝜙3
𝑘(0) =

𝜕𝑖+𝑘𝑓(1)

𝜕𝜙1
𝑖𝜙3

𝑘 |
(𝜙1,𝜙3)=(0,0)

, 

𝑓𝑖𝑗𝑘𝑚𝑛
(2) 𝜙1

𝑖 (0)𝜙2
𝑗
(0)𝜙3

𝑘(0)𝜙1
𝑚(−1)𝜙3

𝑛(−1) =
𝜕𝑖+𝑗+𝑘+𝑚+𝑛𝑓(2)

𝜕𝜙1
𝑖𝜙2

𝑗
𝜙3
𝑘�̃�1

𝑚�̃�3
𝑛
|
(𝜙1,𝜙1,𝜙3,�̃�1,�̃�3)=(0,0,0,−1,−1)

,   

𝑓𝑘𝑚𝑛
(3) 𝜙3

𝑘(0)�̃�1
𝑚(−1)�̃�3

𝑛(−1) =
𝜕𝑘+𝑚+𝑛𝑓(3)

𝜕𝜙3
𝑘�̃�1

𝑚�̃�3
𝑛 |

(𝜙3,�̃�1,�̃�3)=(0,−1,−1)
. 

According to the Riesz representation theorem there is a 3 × 3  matrix function 𝜓(𝜃, 𝛾), 𝜃 ∈

[−1,0], such that  

𝐿𝛾(𝜙) = ∫
0

−1
𝑑𝜓(𝜃, 𝛾)𝜙(𝜃), 𝜙 ∈ 𝐶.                             (22) 

 In fact, It can be choose  

𝜓(𝜃, 𝛾) = (𝛾 + 𝜏0)(𝑀𝛿(𝜃) − 𝑁𝛿(𝜃 + 1)),                     (23) 

where, 𝛿 is the Dirac delta function.  

For 𝜙 ∈ C([−1,0],ℝ3), It is defined that  

𝐴(𝛾)𝜙(𝜃) = {

𝑑𝜙(𝜃)

𝑑𝜃
,                𝜃 ∈ [−1,0),

∫
0

−1
𝑑𝜓(𝑆, 𝛾)𝜙(𝑆), 𝜃 = 0,

                          (24) 
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and 

𝑅(𝛾)𝜙(𝜃) = {
0,              𝜃 ∈ [−1,0)

𝑓(𝛾, 𝜙),        𝜃 = 0.
                            (25) 

 Thus, system (20) is equivalent to the abstract operator differential equation  

𝑢′(𝑡) = 𝐴(𝛾) 𝑢𝑡 + 𝑅(𝛾) 𝑢𝑡,                                (26) 

where, 𝑢𝑡 = 𝑢(𝑡 + 𝜃), 𝜃 ∈ [−1,0].  

Now, for 𝜑 ∈ 𝐶1([−1,0], (ℝ3)∗), the adjoint operator 𝐴∗ of 𝐴(0) is defined as: 

𝐴∗𝜑(𝑆) = {

−
𝑑𝜑(𝑆)

𝑑𝑆
,                 𝑆 ∈ (0,1]

∫
0

−1
𝜑(−𝑡)𝑑𝜙𝑇(𝑡, 0),    𝑆 = 0

                                        (27)  

 and a bilinear form  

〈𝜑(𝑆), 𝜙(𝜃)〉 = �̅�(0)  𝜙(0) − ∫
0

𝜃=−1
∫
𝜃

∈=0
�̅�(∈ −𝜃)  𝑑𝜓(𝜃)  𝜙(∈)  𝑑 ∈,         (28) 

where, 𝜓(𝜃) = 𝜓(𝜃, 0), clearly 𝐴(0) and 𝐴∗ are adjoint operators. Thus, for 𝛾 = 0 by a simple 

computation, we can calculate 𝑞(𝜃) = (1, 𝑞1, 𝑞2)
𝑇 𝑒𝑖𝑤0𝜏0𝜃 be the eigenvector of 𝐴(0) belonging 

to the eigenvalue 𝑖𝑤0𝜏0  and 𝑞∗(𝑆) = 𝐷(1, 𝑞1
∗, 𝑞2

∗)𝑇  𝑒−𝑖𝑤0𝜏0𝑆  is the eigenvector of 𝐴∗  that 

associated with the eigenvalue −𝑖𝑤0𝜏0, where  

𝑞1 =
−𝑓10000

(2)
−𝑓00010

(2)
  𝑒−𝑖𝜏0𝑤0−(𝑓00100

(2)
−𝑓00001

(2)
  𝑒−𝑖𝜏0𝑤0)𝑞2

𝑓01000
(2)

−𝑖𝑤0
, 𝑞2 =

𝑖𝑤0−𝑓10
(1)

𝑓01
(1) ,  

𝑞1
∗ = −

𝑓10
(1)
+𝑖𝑤0+𝑓010

(3)
  𝑒−𝑖𝜏0𝑤0𝑞2

∗

𝑓10000
(2)

+𝑓00010
(2)

  𝑒−𝑖𝜏0𝑤0
,  

𝑞2
∗ =

𝑓01
(1)
[𝑓10000
(2)

+𝑓00010
(2)

  𝑒−𝑖𝜏0𝑤0]−[𝑓00100
(2)

+𝑓00001
(2)

  𝑒−𝑖𝜏0𝑤0][𝑓10
(1)
+𝑖𝑤0]

[𝑓00100
(2)

+𝑓00001
(2)

  𝑒−𝑖𝜏0𝑤0][𝑓010
(3)
𝑒−𝑖𝜏0𝑤0−𝑓100

3 −𝑓001
(3)
  𝑒−𝑖𝜏0𝑤0−𝑖𝑤0]

.  

From bilinear inner product (28), we get:  

⟨𝑞∗(𝑆), 𝑞(𝜃)⟩ = �̅� [1 + �̅�1
∗𝑞1 + �̅�2

∗𝑞2 + �̅�1
∗𝜏0𝑒

−𝑖𝑤0𝜏0(𝑓00010
(2)

+ 𝑓00001
(2)

𝑞2)

+�̅�2
∗𝜏0𝑒

−𝑖𝑤0𝜏0(𝑓010
(3)
+ 𝑓001

(3)
𝑞2)] .

           (29) 

Let, 𝐷 = [1 + 𝑞1
∗�̅�1 + 𝑞2

∗�̅�2 + 𝜏0  𝑒
−𝑖𝑤0𝜏0 [𝑞1

∗(𝑓00010
(2)

+ 𝑓00001
(2)

�̅�2) + 𝑞2
∗(𝑓010

(3)
+ 𝑓001

(3)
�̅�2)]]

−1

, 

where, �̅� is the conjugate complex number of 𝐷, then ⟨𝑞∗, 𝑞⟩ = 1 and ⟨𝑞∗, �̅�⟩ = 0.  

In the following, using similar arguments as in [31], it can be determined the properties of the Hopf 
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bifurcation: 

 

𝑔20 = 2𝜏0�̅�(𝐿1 + 𝐿5�̅�1
∗ + 𝐿9�̅�2

∗)

𝑔11 = 𝜏0�̅�(𝐿2 + 𝐿6�̅�1
∗ + 𝐿10�̅�2

∗)

𝑔02 = 2𝜏0�̅�(𝐿3 + 𝐿7�̅�1
∗ + 𝐿11�̅�2

∗)

𝑔21 = 2𝜏0�̅�(𝐿4 + 𝐿8�̅�1
∗ + 𝐿12�̅�2

∗)}
 
 

 
 

                                (30) 

where 

𝐿1 = 𝑓11
(1)
  𝑞2 + 𝑓02

(1)
  𝑞2

2, 

𝐿2 = 𝑓11
(1)
  (𝑞1 + �̅�2) + 2𝑓02

(1)
  𝑞2�̅�2, 

𝐿3 = 𝑓11
(1)
  𝑞2 + 𝑓02

(1)
  𝑞2

2, 

𝐿4 = 𝑓11
(1)
(  𝑞2 + 𝑤11

(1)
(0) +

1

2
  �̅�2  𝑤20

(1)
(0) +

1

2
  𝑤20

(3)
(0) + 𝑤11

(3)
(0))

+𝑓02
(1)
(�̅�2  𝑤20

(3)
(0) + 2𝑞2  𝑤11

(3)
(0))

, 

𝐿5 = 𝑓10100
(2)

  𝑞2 + 𝑓00200
(2)

  𝑞2
(2)
+ 𝑓00002  𝑞2

(2)
  𝑒−2𝑖𝑤0𝜏0, 

𝐿6 = 𝑓10100
(2) (𝑞2 + �̅�2) + 2𝑓00200

(2)
  𝑞2�̅�2 + 2𝑓00002

(2)
  𝑞2

2  𝑒−2𝑖𝑤0𝜏0, 

𝐿7 = 𝑓10100
(2)

  �̅�2 + 𝑓00200
(2)

  �̅�2 + 𝑓00002  �̅�2
2  𝑒2𝑖𝑤0𝜏0, 

𝐿8 = 𝑓10100
(2)

(  𝑞2 + 𝑤11
(1)
(0) +

1

2
�̅�2  𝑤20

(1)
(0) +

1

2
𝑤20
(3)
(0) + 𝑤11

(3)
(0))

+𝑓00200
(2)

(�̅�2  𝑤20
(3)
(0) + 2𝑞2  𝑤11

(3)
(0))

+𝑓00002
(2)

(�̅�2  𝑤20
(3)
(−1)  𝑒𝑖𝑤0𝜏0 + 𝑞2  𝑤11

(3)
(−1)  𝑒−𝑖𝑤0𝜏0)

, 

𝐿9 = 𝑓011
(3)
  𝑞2  𝑒

−2𝑖𝑤0𝜏0 + 𝑓200
(3)
  𝑞2

2 + 𝑓002
(3)
  𝑞2

2  𝑒−2𝑖𝑤0𝜏0, 

𝐿10 = 𝑓011
(3)(𝑞2 + �̅�2) + 2𝑓200  𝑞2  �̅�2 + 2𝑓002  𝑞2  �̅�2, 

𝐿11 = 𝑓011
(3)
  �̅�2  𝑒

2𝑖𝑤0𝜏0 + 𝑓200
(3)
  �̅�2

2 + 𝑓002
(3)
  �̅�2

2  𝑒2𝑖𝑤0𝜏0, 

𝐿12 = 𝑓011
(3)
( 𝑞2  𝑤11

(1)
(−1)  𝑒−𝑖𝑤0𝜏0 +

1

2
�̅�2  𝑤20

(1)
(−1)  𝑒𝑖𝑤0𝜏0 + 𝑤11

(3)
(−1)𝑒−𝑖𝑤0𝜏0

+
1

2
  𝑤20

(3)
(−1)  𝑒𝑖𝑤0𝜏0) + 𝑓200

(3)
(�̅�2  𝑤20

(3)
(0) + 2𝑞2  𝑤11

(3)
(0))

+𝑓002
(3)
(�̅�2  𝑤20

(3)
(−1)  𝑒𝑖𝑤0𝜏0 + 𝑞2  𝑤11

(3)
(−1)  𝑒−𝑖𝑤0𝜏0)

. 

with 
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𝑤20(𝜃) =
𝑖𝑔20

𝑤0𝜏0
  𝑞(0)  𝑒𝑖𝑤0𝜏0𝜃 +

𝑖�̅�02

3𝑤0𝜏0
  �̅�(0)  𝑒−𝑖𝑤0𝜏0𝜃 + 𝐸1  𝑒

2𝑖𝑤0𝜏𝜃.             (31) 

𝑤11(𝜃) = −
𝑖𝑔11

𝑤0𝜏0
  𝑞(0)  𝑒𝑖𝑤0𝜏0𝜃 +

𝑖�̅�11

𝑤0𝜏0
�̅�(0)  𝑒−𝑖𝑤0𝜏0𝜃 + 𝐸2.                      (32) 

Notice that, 𝐸1 = (𝐸1
(1)
, 𝐸1

(2)
, 𝐸1

(3)
)
𝑇

 and 𝐸2 = (𝐸2
(1)
, 𝐸2

(2)
, 𝐸2

(3)
)
𝑇

 can be determined from the 

following equations: 

𝐽1
∗ 𝐸1 = 2𝜏0𝐽1.                                        (33) 

𝐽2
∗ 𝐸2 = −𝜏0𝐽2.                                        (34) 

 where  

𝐽1
∗ = (2𝑖𝑤0𝜏0𝐼 − ∫

0

−1
𝑑𝜓(𝜃)  𝑒2𝑖𝑤0𝜏0𝜃),  

𝐽2
∗ = (∫

0

−1
𝑑𝜓(𝜃)), 

𝐽1 = (𝐿1  𝐿5  𝐿9)
𝑇,  

𝐽2 = (𝐿2  𝐿6  𝐿10)
𝑇. 

Accordingly, it is obtained that: 

 𝐽1
∗ =

(

 
 
 

2𝑖𝑤0 − 𝑓10
(1)
    0    −𝑓01

(1)

−𝑓10000
(2)

− 𝑓00010
(2)

𝑒−2𝑖𝑤0𝜏0𝜃    2𝑖𝑤0 − 𝑓01000
(2)

    −𝑓00100
(2)

− 𝑓00001
(2)

𝑒−2𝑖𝑤0𝜏0𝜃

−𝑓010
(3)
  𝑒−2𝑖𝑤0𝜏0𝜃    0    2𝑖𝑤0 − 𝑓100

(3)
− 𝑓001

(3)
𝑒−2𝑖𝑤0𝜏0𝜃)

 
 
 

. 

𝐽2
∗ =

(

 
 
 

−𝑓10
(1)
    0    −𝑓01

(1)

−𝑓10000
(2)

− 𝑓00010
(2)

    −𝑓01000
(2)

    −𝑓00100
(2)

− 𝑓00001
(2)

  

−𝑓010    0    −𝑓100
(3)
− 𝑓001

(3)
)

 
 
 

. 

Thus, 𝐸1
(𝑖)
=

2△𝑖

△
, 𝑖 = 1,2,3 , where △= 𝐷𝑒𝑡 (𝐽1

∗)  and △𝑖  is the value of the determinant 𝑉𝑖 , 

where 𝑉𝑖  is formed by replacing the 𝑖𝑡ℎ  column vector of 𝐽1
∗  by 𝐽1  for 𝑖 = 1,2,3. Similarly, 

𝐸2
(𝑖)
=

2△̅𝑖

△̅
, 𝑖 = 1,2,3, where  △̅= 𝐷𝑒𝑡 (𝐽2

∗) and △̅𝑖 is the value of the determinant 𝑈𝑖, where 𝑈𝑖 

is formed by replacing the 𝑖𝑡ℎ column vector of 𝐽2
∗ by 𝐽2 for 𝑖 = 1,2,3. 

Consequently, 𝑤20(𝜃)  and 𝑤11(𝜃)  can be computed using equations (31)-(34). Then the 
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expressions given in equation (19) can be determined depending on those given in equation (30) 

and the proof is done.   

 

9. THE NUMERICAL SIMULATIONS  

The objectives of this section are to determine the effect of changing parameter values and to 

corroborate our analytical conclusions from previous sections by employing a standard MATLAB 

algorithm with different physiologically plausible sets of hypothetical parameter values as shown 

in Eq. (35) and Eq. (36) respectively.  

𝛬 = 3, 𝛽1 = 0.055, 𝛽2 = 0.0001, 𝜇 = 0.3,𝑚 = 10, 𝛼 = 0.0001,
𝑘 = 0.1, 𝛾 = 0.01, 𝑎 = 0.25, 𝑏 = 0.1, 𝜏 = 2

             (35) 

and 

𝛬 = 5, 𝛽1 = 0.05, 𝛽2 = 0.01, 𝜇 = 0.05,𝑚 = 10, 𝛼 = 0.1,
𝑘 = 0.1, 𝛾 = 0.18, 𝑎 = 0.1, 𝑏 = 0.3, 𝜏 = 2

                 (36) 

To explore the influence of changing one or more parameter values at a time on the dynamical 

behavior of model (2), the following results were obtained: 

1. The requirement of theorem 3 is satisfied for parameters in the set (35), i.e. 𝑅0  =  0.97 <

 1 . In this scenario, the system (2)'s DFEP that is given by 𝑄0(10, 0)  is locally 

asymptotically stable (see Figure 2). 

2. The condition of theorem 5 is satisfied, for parameters in the set (35) with 𝛽1 = 0.09, i.e. 

𝑅0  =  1.59 >  1 . Then the EEP that is given by 𝑄∗(8.71, 0.49)  is a globally 

asymptotically stable (see Figure 3). 

3. The dynamic behavior of the system (2) is unaffected qualitatively by changing the 

parameter values (𝛾. 𝑘) that is, the system still approaches an endemic equilibrium point. 

4. On the other hand, for the set of data (36), it is observed that system (2) approaches 

𝑄∗(59.2,6.67) and 𝑅0  =  19.67 >  1, starting from different initial sets of points (see 

Figure 4). 

5. Figure 5 shows the impact of altering 𝛽1 on the infected population 𝐼(𝑡), keeping the rest 

of parameters as in set (36). It was discovered that they have a positive proportionality. In 
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contrast, as illustrated in Figure 6, there is a negative proportionality between the 𝛼 rate 

and the infected population. 

 

Figure 2: The solution of the system (2) for the parameters set (35) starting from different initial points. (a) 

A globally asymptotically stable DFEP in the 𝑆𝐼 −plane. (b) Time series of (a). 

 

Figure 3: The solution of the system (2) for the parameters set (35) with 𝛽1 = 0.09 starting from different 

initial points. (a) A globally asymptotically stable EEP in the 𝑆𝐼 −plane. (b) Time series of (a). 
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Figure 4: The solution of the system (2) for the parameters set (36) starting from different initial points. (a) 

A globally asymptotically stable EEP in the 𝑆𝐼 −plane. (b) Time series of (a). 

 

Figure 5: The infected trajectory of the system (2) as a function of time for the parameters set (36) with 

different values of 𝛽1.    
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Figure 6: The infected trajectory of the system (2) as a function of time for the parameters set (36) with 

𝛽1 = 0.55 and different values of 𝛼. 

6. Figure 7 shows the impact of altering 𝑎 on the infected population 𝐼(𝑡), keeping the rest 

of parameters as in set (36). It was discovered that they have a negative proportionality. In 

contrast, as illustrated in Figure 8, there is a positive proportionality between the 𝑏 rate 

and the infected population. 

7. The impact of varying 𝛼  and/or 𝑎 , on the infected population, keeping the rest of 

parameters as in set (36), is investigated in Figure 9. It is observed that increasing both of 

them decreases the infected population.   

8. The impact of varying 𝑚, on the infected population, keeping the rest of parameters as in 

set (36), is investigated in Figure 10. It is observed that they have a positive proportionality.   

9. The impact of varying 𝜇, on the infected population, keeping the rest of parameters as in 

set (36), is investigated in Figure 11. It is observed that they have a negative proportionality.  

10. Now, the requirements of the theorem 6 is satisfied for parameters in the set (36) with 𝜏0 = 4.1, as 

shown in the figures 12,13, and 14. It is observed that for 𝜏 < 𝜏0, the EEP is asymptotic stable. 

However, for 𝜏 > 𝜏0, the EEP becomes unstable and a Hopf bifurcation occurs with an increasing 

period as 𝜏 increases. 
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Figure 7: The infected trajectory of the system (2) as a function of time for the parameters set (36) with 

𝛽1 = 0.55 and different values of 𝑎.     

 

Figure 8: The infected trajectory of the system (2) as a function of time for the parameters set (36) with 

𝛽1 = 0.55 and different values of 𝑏. 
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Figure 9: The infected trajectory of the system (2) as a function of time for the parameters set (36) with 

𝛽1 = 0.55 and different values of 𝛼, and 𝑎. 

 

Figure 10: The infected trajectory of the system (2) as a function of time for the parameters set (36) with 

𝛽1 = 0.55 and different values of 𝑚. 
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Figure 11: The infected trajectory of the system (2) as a function of time for the parameters set (36) with 

𝛽1 = 0.55 and different values of 𝜇. 

 

Figure 12: The solution of the system (2) for the parameters set (36) with 𝜇 = 4 . (a) A globally 

asymptotically stable EEP in the 𝑆𝐼 −plane. (b) Time series of (a). 
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Figure 13: The solution of the system (2) for the parameters set (36) with 𝜇 = 4.1. (a) Hopf bifurcation 

occurs in the 𝑆𝐼 −plane with small period. (b) Time series of (a). 

 

Figure 14: The solution of the system (2) for the parameters set (36) with 𝜇 = 5. (a) Hopf bifurcation 

occurs in the 𝑆𝐼 −plane with long period. (b) Time series of (a). 

 

10. CONCLUSIONS 

A delayed SEIR epidemic model is developed in this study so that it includes the effects of two 

nonlinear functions: the effect of media coverage on disease transmission and the effect of 

treatment rate on infection disease. The mathematical examination of the model reveals the 
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existence of two equilibria, the DFEP, and the EEP. The local and global asymptotic stability of 

DFEP and EEP, respectively, is investigated by establishing the basic reproduction number 𝑅0. It 

is obtained 𝑅0 < 1 implies that the disease can be eradicated from society, whereas 𝑅0 > 1 

implies that it will persist. Assumptions (H1)–(H6) are provided to obtain the global stability of 

the equilibrium points of system (2). It has been demonstrated that the EEP is asymptotically stable 

for 𝑅0 > 1  when the delay 𝜏  does not reach a particular value 𝜏0 . However, for 𝜏 > 𝜏0 , it 

becomes the unstable point, and a Hopf bifurcation occurs. The center manifold technique in the 

sense of Hassard is used to study all of the properties of the Hopf bifurcation theoretically. Finally, 

the global dynamics of the system (2) are numerically explored using Matlab version 2013 for 

various sets of parameters and initial points. The following are the outcomes. 

The system (2) has two equilibrium points: the FDEP and EEP, which are a globally asymptotically 

stable for different sets of parameters provided that 𝑅0 < 1 and 𝑅0 > 1 respectively. Moreover, 

the EEP becomes unstable and the solution approaches asymptotically to periodic dynamics due 

to Hopf bifurcation when 𝜏 > 𝜏0. The infected population is proportional positively to changing 

the contact rate before the media coverage alert while retaining the rest of the parameters as in set 

(36). The inhibitory impact rate and the infected population, on the other hand, have a negative 

proportionality. The infected population is proportional positively to changing the limitation rate 

while retaining the rest of the parameters as in set (36). The cure rate and the infected population, 

on the other hand, have a negative proportionality. The infected population is proportional 

positively to changing the non-response rate of individuals to media coverage while retaining the 

rest of the parameters as in set (36). The natural death rate and the infected population, on the other 

hand, have a negative proportionality. Finally, the infected population is proportional negatively 

to changing the inhibitory effect and / or cure rate while retaining the rest of the parameters as in 

set (36). 
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