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Abstract. The basic SIRS deterministic model is one of the powerful and important compartmental modeling

frameworks that serve as the foundation for a variety of epidemiological models and investigations. In this study,

a nonlinear Atangana-Baleanu fractal-fractional SIRS epidemiological model is proposed and analysed. The

model’s equilibrium points (disease-free and endemic) are studied for local asymptotic stability. The existence

of the model’s solution and its uniqueness, as well as the Hyers-Ulam stability analysis, are established. Numer-

ical solutions and phase portraits for the fractal-fractional model are generated using a recently constructed and

effective Newton polynomial-based iterative scheme for nonlinear dynamical fractal-fractional model problems.

Our numerical simulations demonstrate that fractal-fractional dynamic modeling is a very useful and appropriate

mathematical modeling tool for developing and studying epidemiological models.
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1. INTRODUCTION

Mathematical modeling is a useful tool for describing and studying various aspects of

real-world problems by constructing realistic models, which are critical in the development

of methods for preventing, controlling, and mitigating the impacts of infectious diseases. In

mathematical modeling of infectious diseases, the compartmental framework is constructed

based on the characteristics of the disease being studied as well as the objective of the model

[1]. In the literature of epidemiological modeling utilizing differential equations, the classical

SI, SIS, SIR, SIRS, and SEIR compartmental formulations have served as the foundation for a

variety of epidemiological models and investigations. Integer-order differential equations have

been widely used in the mathematical modeling framework of infectious diseases and real-

world engineering applications. Despite its vast applications in compartmental epidemiological

modeling and other engineering applications, several authors continue to utilize these types of

equations to develop and analyze their mathematical models [2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 11].

However in recent years, the concept and application of fractional order calculus in math-

ematical modeling in science and engineering has become an intriguing research subject,

as evidenced by the number of significant papers and written textbooks in recent literature

[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. In a study by Omame et al. [26],

the Atangana-Baleanu derivative was used to construct and analyze a data-driven COVID-19

and tuberculosis co-infection non-integer mathematical model. They established the global

asymptotic stability of the disease-free steady state for this new co-infection dynamical

model. In a recent study, Khan and his co-workers [27] utilized Atangana-Baleanu-Caputo

and Liouville-Caputo derivatives to introduce and analyze HIV/AIDS nonlinear fractional

order epidemiological models. Khan and Atangana [28] constructed and parameterized a

deterministic epidemiological model based on the available infection cases of COVID-19

outbreaks in Wuhan, China. They gave some analytical results on the initial constructed integer

order model, as well as numerical simulations for the Atangana-Baleanu type dynamical model

for this contagious disease. Bonyah et al. [29] formulated and analyzed an ABC fractional

operator type human African trypanosomiasis model, as well as providing numerical results.
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Fractal-fractional differential equations with fractal-fractional derivative operators are new

powerful and more efficient mathematical modeling tools [30, 31, 32, 33, 34]. These new

approaches of fractional differentiation and integration that captures fractal dynamics are

based on the generalized Mittag-Leffler law, exponential decay law and power law kernel

operators recently studied by Atangana [35]. Several recent studies have established that

the use of fractal-fractional order derivatives to develop and analyze nonlinear mathematical

models within compartmental epidemiological frameworks is suitable and generates realistic

results. For instance, the analysis of the Hepatitis B virus with asymptomatic class using

both fractional and fractal-fractional order Atangana-Baleanu operators in the Caputo sense

is detailed in a study by Zhang et al. [36]. Khan and his co-authors [37] generated some

illustrative numerical solutions for their proposed fractal-fractional COVID-19 mathematical

model using a recently established Newton polynomial based iterative scheme for Atangana-

Baleanu fractal-fractional type dynamical models. A nonlinear ShEhAhIhRhSvEvIv deterministic

fractal-fractional dengue fever mathematical model constructed with Atangana-Baleanu deriv-

ative is studied by El-Dessoky [38]. Ghanbari and Gómez-Aguilar [39] considered detailed

analysis and numerical approximations of two avian influenza fractal-fractional nonlinear

models using the power law kernel and the generalized Mittag-Leffler kernel operators.

Based on the classical deterministic competition model, Wang and Khan [40], Atangana et

al. [41], and Li et al. [42] have constructed nonlinear fractal-fractional models to study

the competition dynamics among commercial and rural banks in Indonesia using the same

data range (2004-2014). Fractal-fractional deterministic compartmental models have been

proposed and analysed to gain more insight into the transmission of the very recent COVID-19

outbreak [43, 44, 45, 46, 47, 48, 49, 50, 51, 52].Using deterministic compartmental modeling

frameworks, Ali et al. [53] and Li et al. [54] formulated and examined fractal-fractional

dynamical models of the highly infectious HIV/AIDS disease. The author of [55] presented on

the mathematical modeling of the interplay between the immune system and tumor progression

utilizing three different fractional and fractal-fractional order derivatives. In 2021, the authors

of [56] formulated and investigated a fractal-fractional mathematical model for cervical

cancer. Recently, Asamoah [57] studied a deterministic nonlinear fractal-fractional Q fever
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epidemic modeling, analysis, and numerical approximations. Also, the work in [58] studied a

fractal-fractional model for CD4+ T-Cells under the effect of HIV-1 Infection.

This study has two primary objectives. The first objective is to extend and generalize

Hethcote’s [59] non-fractional order deterministic SIRS epidemic model by utilizing the

Atangana–Baleanu fractal-fractional derivative operator. The second objective is to present nu-

merical solutions to the proposed model and also provide phase portrait plots for some selected

values of the fractal and fractional orders using a Newton polynomial iterative scheme. Our

new work is motivated by the classical SIRS epidemiological model, which was constructed

and studied by Hethcote [59]. In addition, the aforementioned literature, the Atangana-Baleanu

fractal-fractional derivative, as well as the novel Newton polynomial iterative scheme [60],

have motivated our present mathematical modeling investigation.

The remaining sections of the study are organized as follows. Section 2 covers the essen-

tial preliminaries for the fractal-fractional derivative and integral. Section 3 is concerned with

formulating the non-integer order fractal-fractional SIRS model, of which we will begin with a

brief overview of the integer-order SIRS model. We will explore the model’s equilibrium points

(disease-free and endemic) local asymptotic stability in section 4. The existence of the model’s

solution and its uniqueness, as well as the Hyers-Ulam stability analysis, will be considered

in sections 5, 6, and 7 respectively. In section 8, we will provide a brief introduction of the

numerical scheme that will be utilized to compute the model’s numerical solutions and also

generate phase portrait graphs. We will further discuss the numerical simulation results in the

same section. Finally, we will conclude the study in section 9.

2. SOME IMPORTANT DEFINITIONS AND PRELIMINARIES

Definition 2.1. [35] Given that f (t) is a continuous function and fractal differentiable on an

open (a,b) with order δ2 then the fractal-fractional derivative of f (t) with order δ1 in the Caputo

sense having the generalized Mittag-Leffler type kernel is defined as follows:

(1) FF
0 Dδ1,δ2

t f (t) =
AB(δ1)

1−δ1

∫ t

0

d
dψδ2

f (ψ)Eδ1

(
− δ1

1−δ1
(t−ψ)δ1

)
dψ .
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where 0 < δ1,δ2 ≤ 1 and AB(δ1) = 1−δ1 +
δ1

Γ(δ1)
.

Definition 2.2. [35] The fractal-fractional integral of a continuous function f (t) involving the

generalized Mittag-Leffler type kernel is defined as

(2) FF
0 Iδ1,δ2

t f (t) =
δ2(1−δ1)tδ2−1

AB(δ1)
f (t)+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1 f (ψ)(t−ψ)δ1−1dψ.

3. MODEL FORMULATION

In this section, we will formulate and analyze a new fractal-fractional SIRS epidemiological

model characterized by the Atangana-Baleanu derivative. We will begin by providing a brief

overview of the classical SIRS model that assumes constant population dynamics [59]. This

compartmental model captures temporary immunity and also assumes equal vital dynamics

(birth and death rates). The population is categorized into three groups: Susceptible Individuals,

Infective Individuals, and Recovered Individuals, each with a population size of S̃(t), Ĩ(t), and

R̃(t) respectively.

FIGURE 1. Flow diagram for the classical SIRS model with constant population

dynamics where β , γ , and η represent the infection rate, removal rate, and loss

of immunity rate, respectively. The model parameter ρ represent birth rate and

natural death rate.
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Following the SIRS compartmental structure as shown above, the deterministic integer-order

initial value problem is given below:

dS̃
dt

= ρN +ηR̃(t)− β S̃(t)Ĩ(t)
N

−ρ S̃(t),

dĨ
dt

=
β S̃(t)Ĩ(t)

N
− γ Ĩ(t)−ρ Ĩ(t),(3)

dR̃
dt

= γ Ĩ(t)−ηR̃(t)−ρR̃(t),

where S̃(t)+ Ĩ(t)+ R̃(t) = N and initial conditions: S̃≥ 0, Ĩ ≥ 0, R̃≥ 0.

Now, we re-write the model problem in terms of the proportions of susceptible, infective, and

recovered individuals. For this purpose, we introduce the following new variables that represent

the proportions of the various sub-populations.

Let S = S̃
N , I = Ĩ

N and R = R̃
N , so that S+ I +R = 1.

Therefore knowing that R = 1−S− I, the model (3) becomes

dS
dt

= (ρ +η)−βS(t)I(t)−ηI(t)− (ρ +η)S(t),

dI
dt

= βS(t)I(t)− γI(t)−ρI(t),(4)

where R(t) = 1−S(t)− I(t).

Now, we utilized the fractal-fractional derivative operator defined above to generalize the

integer-order deterministic SIRS mathematical model (4) to obtain an Atanagana-Baleanu type

fractal-fractional dynamical model. It then follows that our proposed fractal-fractional SIRS

model with constant population dynamics takes the form given below:

FF
0 Dδ1,δ2

t S(t) = (ρ +η)−βS(t)I(t)−ηI(t)− (ρ +η)S(t),

FF
0 Dδ1,δ2

t I(t) = βS(t)I(t)− γI(t)−ρI(t).(5)

4. MODEL EQUILIBRIA AND LOCAL STABILITY ANALYSIS

We can easily deduce from the basic concepts in compartmental modeling of infectious diseases

that the basic reproduction number (R0) for this mathematical model is given by R0 =
β

γ+ρ
.
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Let

(6)


FF
0 Dδ1,δ2

t S(t) = 0,

FF
0 Dδ1,δ2

t I(t) = 0.

Now, by solving equation (6) without showing the steps involved, the model equilibria are given

as follows:

DE0 = (1,0) and EE∗ =

(
1

R0
,
(ρ +η)(R0−1)

β +ηR0

)
.

where DE0 is the disease-free equilibrium point and EE∗ represent the endemic equilibrium

point.

4.1. Local Stablity of DE0.

Theorem 4.1. The equilibrium point DFo of the nonlinear Atangana-Baleanu fractal-fractional

SIRS model (5) is locally asymptotically stable if R0 > 1.

Proof. By computing the SIRS initial value problem’s Jacobian matrix and evaluating it at the

equilibrium point DE0, we obtain the simplified Jacobian matrix given below

(7) J(DE0) =


−(ρ +η) −β −η

0 β − (γ +ρ)

 .
The eigenvalues for the 2× 2 upper triangular Jacobian matrix are λ1 = −(ρ +η) and λ2 =

β − (γ +ρ). It is not difficult to conclude that λ1 < 0. Now for the second eigenvalue to have

negative real part, then we have

λ2 = β − (γ +ρ)< 0 =⇒ β

γ +ρ
< 1.

We can therefore say that, λ2 will have negative real part provided R0 =
β

γ+ρ
< 1.

Following this analysis, we conclude that DE0 is locally asymptotically stable. �

4.2. Local Stablity of EE∗.

Theorem 4.2. The equilibrium point EE∗ of the nonlinear Atangana-Baleanu fractal-fractional

SIRS model (5) is locally asymptotically stable if R0 > 1.
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Proof. The simplified Jacobian matrix given below is obtained by computing the SIRS initial

value problem’s Jacobian matrix and evaluating it at the equilibrium, EE∗.

(8) J(EE∗) =


−β (ρ +η)(R0−1)

(β +ηR0)
− (ρ +η) −(γ +ρ +η)

β (ρ +η)(R0−1)
(β +ηR0)

0

 .

Now, to ensure that the derived endemic equilibrium, EE∗ is locally asymptotically stable, the

two eigenvalues of J(EE∗) must have negative real components. This condition will hold true

if the Routh-Hurwitz stability criteria for the characteristic equation of the computed Jacobian

matrix are satisfied.

The characteristic equation associated with matrix J(EE∗) is given by

(9) λ
2 +d1λ +d2 = 0,

where

d1 =
β (ρ +η)(R0−1)

(β +ηR0)
+(ρ +η),

d2 =
β (ρ +η)(γ +ρ +η)(R0−1)

(β +ηR0)
.

Since R0 > 1, it follows that d1 > 0 and d2 > 0. Hence, the Routh-Hurwitz stability conditions

are satisfied. This completes the proof. �

5. EXISTENCE CRITERIA

In this part of our mathematical modeling analysis, we consider and investigate the existence

of the fractal-fractal model solution. For this purpose, we apply the fixed point theory and uti-

lizing the fractal-fractional integral operator (2), the constructed model problem (5) is converted

into an integral equation as given below.
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S(t)−S(0) =
δ2(1−δ1)tδ2−1

AB(δ1)

(
(ρ +η)−βSI−ηI− (ρ +η)S

)

+
δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1

(
(ρ +η)−βSI−ηI− (ρ +η)S

)
dψ,

I(t)− I(0) =
δ2(1−δ1)tδ2−1

AB(δ1)

(
βSI− γI−ρI

)
(10)

+
δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1

(
βSI− γI−ρI

)
dψ.

We now define some functions W1 and W2 given as follows:

W1(t,S) = (ρ +η)−βS(t)I(t)−ηI(t)− (ρ +η)S(t),

W2(t, I) = βS(t)I(t)− γI(t)−ρI(t).

We need the following assumptions to help us derive our results:

(Q∗) : Let assume that S∗(t), I∗(t), S(t) and I(t) are bounded functions such that
∥∥S(t)

∥∥≤ ξ1,∥∥I(t)
∥∥≤ ξ2.

Theorem 5.1. If the assumption (Q∗) holds true then the kernels W1 and W2 satisfies the Lips-

chitz condition and are contractions provided the following inequality holds

0≤ ϕi < 1, i = 1, 2.

Proof.

∥∥W1(t,S)−W1(t,S∗)
∥∥=∥∥((ρ +η)−βSI−ηI− (ρ +η)S

)
−
(
(ρ +η)−βS∗I−ηI− (ρ +η)S∗

)∥∥
=
∥∥−β I

(
S−S∗

)
− (ρ +η)

(
S−S∗

)∥∥
≤
(

β‖I‖+ρ +η

)∥∥(S−S∗
)∥∥

≤ϕ1
∥∥(S−S∗

)∥∥,(11)
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where ϕ1 = βξ2 +ρ +η .

∥∥W2(t, I)−W2(t, I∗)
)∥∥=∥∥(βSI− γI−ρI

)
−
(

βSI∗− γI∗−ρI∗
)∥∥

=
∥∥βS

(
I− I∗

)
− (γ +ρ)

(
I− I∗

)∥∥
≤
(

β‖S‖+ γ +ρ

)∥∥(I− I∗
)∥∥

≤ϕ2
∥∥(I− I∗

)∥∥,(12)

where ϕ2 = βξ1 + γ +ρ . �

Knowing the expressions for the two functions W1 and W2 and also assuming the initial con-

ditions S(0) = I(0) = 0, we can rewrite equation (10) in a more simplified form as follows:

S(t) =
δ2(1−δ1)tδ2−1

AB(δ1)
W1

(
t,S(t)

)
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1W1

(
ψ,S(ψ)

)
dψ,

(13)

I(t) =
δ2(1−δ1)tδ2−1

AB(δ1)
W2

(
t, I(t)

)
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1W2

(
ψ, I(ψ)

)
dψ.

Recursively, equation (13) becomes

Sn(t) =
δ2(1−δ1)tδ2−1

AB(δ1)
W1

(
t,Sn−1(t)

)
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1W1

(
ψ,Sn−1(ψ)

)
dψ,

(14)

In(t) =
δ2(1−δ1)tδ2−1

AB(δ1)
W2

(
t, In−1(t)

)
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1W2

(
ψ, In−1(ψ)

)
dψ.

Now considering the difference between recursive expressions we obtain

DSn+1(t) = Sn+1−Sn

=
δ2(1−δ1)tδ2−1

AB(δ1)
W1

(
t,Sn(t)

)
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1W1

(
ψ,Sn(ψ)

)
dψ

−

(
δ2(1−δ1)tδ2−1

AB(δ1)
W1

(
t,Sn−1(t)

)
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1W1

(
ψ,Sn−1(ψ)

)
dψ

)

=
δ2(1−δ1)tδ2−1

AB(δ1)

(
W1

(
t,Sn(t)

)
−W1

(
t,Sn−1(t)

))
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
(

W1

(
ψ,Sn(ψ)

)
−W1

(
ψ,Sn−1(ψ)

))
dψ,
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DIn+1(t) = In+1− In

=
δ2(1−δ1)tδ2−1

AB(δ1)
W2

(
t, In(t)

)
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1W2

(
ψ, In(ψ)

)
dψ

−

(
δ2(1−δ1)tδ2−1

AB(δ1)
W2

(
t, In−1(t)

)
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1W2

(
ψ, In−1(ψ)

)
dψ

)

=
δ2(1−δ1)tδ2−1

AB(δ1)

(
W2

(
t, In(t)

)
−W2

(
t, In−1(t)

))
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
(

W2

(
ψ, In(ψ)

)
−W2

(
ψ, In−1(ψ)

))
dψ.

Taking the norms of the above recursive differences we have

∥∥DSn+1(t)‖= ‖Sn+1−Sn
∥∥

=

∥∥∥∥δ2(1−δ1)tδ2−1

AB(δ1)

(
W1

(
t,Sn(t)

)
−W1

(
t,Sn−1(t)

))
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
(

W1

(
ψ,Sn(ψ)

)
−W1

(
ψ,Sn−1(ψ)

))
dψ

∥∥∥∥,

∥∥DIn+1(t)‖= ‖In+1− In
∥∥

=

∥∥∥∥δ2(1−δ1)tδ2−1

AB(δ1)

(
W2

(
t, In(t)

)
−W2

(
t, In−1(t)

))
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
(

W2

(
ψ, In(ψ)

)
−W2

(
ψ, In−1(ψ)

))
dψ

∥∥∥∥.
Theorem 5.2. The non-integer deterministic Atangana-Baleanu type compartmental model (5)

has a solution provided the inequality below holds true:

κ = max{ϕ1, ϕ2}< 1.

Proof. We define two functions Z1n(t) and Z2n(t) given by

Z1n(t) = Sn+1(t)−S(t),(15)

Z2n(t) = In+1(t)− I(t).(16)
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By taking the norm of the function Z1n(t) defined above we obtain∥∥Z1n(t)‖= ‖Sn+1−S
∥∥

=

∥∥∥∥δ2(1−δ1)tδ2−1

AB(δ1)

(
W1

(
t,Sn(t)

)
−W1

(
t,S(t)

))
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
(

W1

(
ψ,Sn(ψ)

)
−W1

(
ψ,S(ψ)

))
dψ

∥∥∥∥
≤ δ2(1−δ1)tδ2−1

AB(δ1)

∥∥∥∥W1

(
t,Sn(t)

)
−W1

(
t,S(t)

)∥∥∥∥
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
∥∥∥∥W1

(
ψ,Sn(ψ)

)
−W1

(
ψ,S(ψ)

)∥∥∥∥dψ

≤ δ2(1−δ1)tδ2−1

AB(δ1)
ϕ1

∥∥∥∥Sn−S
∥∥∥∥+ δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
ϕ1

∥∥∥∥Sn−S
∥∥∥∥dψ

≤

(
δ2(1−δ1)

AB(δ1)
+

δ1δ2Γ(δ2)

AB(δ1)Γ(δ1 +δ2)

)
ϕ1

∥∥∥∥Sn−S
∥∥∥∥

≤

(
δ2(1−δ1)

AB(δ1)
+

δ1δ2Γ(δ2)

AB(δ1)Γ(δ1 +δ2)

)n

κ
n
∥∥∥∥S1−S

∥∥∥∥.

It follows that Z1n(t) =⇒ 0 as n→ ∞ provided κ < 1.

Similarly, by taking the norm of the second function Z2n(t) defined above we have

∥∥Z2n(t)‖= ‖In+1− I
∥∥

=

∥∥∥∥δ2(1−δ1)tδ2−1

AB(δ1)

(
W2

(
t, In(t)

)
−W2

(
t, I(t)

))
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
(

W2

(
ψ, In(ψ)

)
−W2

(
ψ, I(ψ)

))
dψ

∥∥∥∥
≤ δ2(1−δ1)tδ2−1

AB(δ1)

∥∥∥∥W2

(
t, In(t)

)
−W2

(
t, I(t)

)∥∥∥∥
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
∥∥∥∥W2

(
ψ, In(ψ)

)
−W2

(
ψ, I(ψ)

)∥∥∥∥dψ

≤ δ2(1−δ1)tδ2−1

AB(δ1)
ϕ2

∥∥∥∥In− I
∥∥∥∥+ δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
ϕ2

∥∥∥∥In− I
∥∥∥∥dψ

≤

(
δ2(1−δ1)

AB(δ1)
+

δ1δ2Γ(δ2)

AB(δ1)Γ(δ1 +δ2)

)
ϕ2

∥∥∥∥In− I
∥∥∥∥

≤

(
δ2(1−δ1)

AB(δ1)
+

δ1δ2Γ(δ2)

AB(δ1)Γ(δ1 +δ2)

)n

κ
n
∥∥∥∥I1− I

∥∥∥∥.



FRACTAL-FRACTIONAL SIRS EPIDEMIC MODEL WITH TEMPORARY IMMUNITY 13

Again, it follows that Z2n(t) =⇒ 0 as n→ ∞ provided κ < 1. This completes the proof. �

6. UNIQUENESS OF THE MODEL SOLUTIONS

In this part of the study, we consider and investigate the uniqueness of the fractal-fractal

model solution.

Theorem 6.1. The non-integer deterministic Atangana-Baleanu type compartmental model (5)

has a unique solution provided the inequality below holds true:(
δ2(1−δ1)

AB(δ1)
+

δ1δ2Γ(δ2)

AB(δ1)Γ(δ1 +δ2)

)
ϕi ≤ 1, f or i = 1,2.(17)

Proof. Let us assume that there exists another solution, S̃(t), Ĩ(t) for the constructed fractal-

fractional epidemiological model (5) such that

S̃(t) =
δ2(1−δ1)tδ2−1

AB(δ1)
W1

(
t, S̃(t)

)
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1W1

(
ψ, S̃(ψ)

)
dψ,

(18)

Ĩ(t) =
δ2(1−δ1)tδ2−1

AB(δ1)
W2

(
t, Ĩ(t)

)
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1W2

(
ψ, Ĩ(ψ)

)
dψ.

Here, we take the norm of the difference between S(t) and S̃(t) to obtain the following results:

‖S(t)− S̃(t)
∥∥= ∥∥∥∥δ2(1−δ1)tδ2−1

AB(δ1)

(
W1

(
t,S(t)

)
−W1

(
t, S̃(t)

))
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
(

W1

(
ψ,S(ψ)

)
−W1

(
ψ, S̃(ψ)

))
dψ

∥∥∥∥
≤ δ2(1−δ1)tδ2−1

AB(δ1)

∥∥∥∥W1

(
t,S(t)

)
−W1

(
t, S̃(t)

)∥∥∥∥
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
∥∥∥∥W1

(
ψ,S(ψ)

)
−W1

(
ψ, S̃(ψ)

)∥∥∥∥dψ

≤ δ2(1−δ1)tδ2−1

AB(δ1)
ϕ1

∥∥∥∥S− S̃
∥∥∥∥+ δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
ϕ1

∥∥∥∥S− S̃
∥∥∥∥dψ

≤

(
δ2(1−δ1)

AB(δ1)
+

δ1δ2Γ(δ2)

AB(δ1)Γ(δ1 +δ2)

)
ϕ1

∥∥∥∥S− S̃
∥∥∥∥.
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We can further simplify the above inequality in the form:[
1−

(
δ2(1−δ1)

AB(δ1)
+

δ1δ2Γ(δ2)

AB(δ1)Γ(δ1 +δ2)

)
ϕ1

]∥∥S− S̃
∥∥≤ 0.

From this inequality we can write that
∥∥S− S̃

∥∥= 0. It then follows that S = S̃.

‖I(t)− Ĩ(t)
∥∥= ∥∥∥∥δ2(1−δ1)tδ2−1

AB(δ1)

(
W2

(
t, I(t)

)
−W2

(
t, Ĩ(t)

))
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
(

W2

(
ψ, I(ψ)

)
−W2

(
ψ, Ĩ(ψ)

))
dψ

∥∥∥∥
≤ δ2(1−δ1)tδ2−1

AB(δ1)

∥∥∥∥W2

(
t, I(t)

)
−W2

(
t, Ĩ(t)

)∥∥∥∥
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
∥∥∥∥W2

(
ψ, I(ψ)

)
−W2

(
ψ, Ĩ(ψ)

)∥∥∥∥dψ

≤ δ2(1−δ1)tδ2−1

AB(δ1)
ϕ2

∥∥∥∥I− Ĩ
∥∥∥∥+ δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
ϕ2

∥∥∥∥I− Ĩ
∥∥∥∥dψ

≤

(
δ2(1−δ1)

AB(δ1)
+

δ1δ2Γ(δ2)

AB(δ1)Γ(δ1 +δ2)

)
ϕ2

∥∥∥∥I− Ĩ
∥∥∥∥.

Further simplification of the above inequality gives[
1−

(
δ2(1−δ1)

AB(δ1)
+

δ1δ2Γ(δ2)

AB(δ1)Γ(δ1 +δ2)

)
ϕ2

]∥∥I− Ĩ
∥∥≤ 0.

From this inequality we can state that
∥∥I− Ĩ

∥∥ = 0. It then follows that I = Ĩ. This completes

the proof. �

7. HYERS-ULAM STABILITY

Definition 7.1. The integral system (13) is said to be Hyers-Ulam stable if there exist a constant

νi > 0 for i ∈ N1
2, satisfying for every ϑi, i ∈ N1

2.

∣∣∣∣S(t)− δ2(1−δ1)tδ2−1

AB(δ1)
W1

(
t,S(t)

)
− δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1W1

(
ψ,S(ψ)

)
dψ

∣∣∣∣≤ ϑ1,

∣∣∣∣I(t)− δ2(1−δ1)tδ2−1

AB(δ1)
W2

(
t, I(t)

)
− δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1W2

(
ψ, I(ψ)

)
dψ

∣∣∣∣≤ ϑ2.
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There exist approximate solution (Sz(t), Iz(t)) for the model problem (5) satisfying the follow-

ing integral equations

Sz(t) =
δ2(1−δ1)tδ2−1

AB(δ1)
W1

(
t,Sz(t)

)
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1W1

(
ψ,Sz(ψ)

)
dψ,

Iz(t) =
δ2(1−δ1)tδ2−1

AB(δ1)
W2

(
t, Iz(t)

)
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1W2

(
ψ, Iz(ψ)

)
dψ.

such that ∣∣∣∣S(t)−Sz(t)
∣∣∣∣≤ τ1ϑ1,∣∣∣∣I(t)− Iz(t)
∣∣∣∣≤ τ1ϑ2.

Theorem 7.1. Suppose that assumption (Q∗) is satisfied then the model problem (5) is Hyers-

Ulam stable.

Proof. Following the results from theorem (6.1), we have established that the nonlinear deter-

ministic model (5) has a unique solution. Let consider (Sz(t), Iz(t)) to be the approximate

solution of the mathematical model, then we have∣∣∣∣S(t)−Sz(t)
∣∣∣∣= ∣∣∣∣δ2(1−δ1)tδ2−1

AB(δ1)

(
W1

(
t,S(t)

)
−W1

(
t,Sz(t)

))
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
(

W1

(
ψ,S(ψ)

)
−W1

(
ψ,Sz(ψ)

))
dψ

∣∣∣∣
≤ δ2(1−δ1)tδ2−1

AB(δ1)
ϕ1

∥∥∥∥S−Sz
∥∥∥∥+ δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
ϕ1

∥∥∥∥S−Sz
∥∥∥∥dψ

≤

(
δ2(1−δ1)

AB(δ1)
+

δ1δ2Γ(δ2)

AB(δ1)Γ(δ1 +δ2)

)
ϕ1

∥∥∥∥S−Sz
∥∥∥∥.

Now, let ϕ1 = ϑ1,

(
δ2(1−δ1)
AB(δ1)

+ δ1δ2Γ(δ2)
AB(δ1)Γ(δ1+δ2)

)∥∥∥∥S−Sz
∥∥∥∥= ν1 . Then we have

∣∣∣∣S(t)−Sz(t)
∣∣∣∣≤ ν1ϑ1.



16 OKYERE, SEIDU, NANTOMAH, ASAMOAH∣∣∣∣I(t)− Iz(t)
∣∣∣∣= ∣∣∣∣δ2(1−δ1)tδ2−1

AB(δ1)

(
W2

(
t, I(t)

)
−W2

(
t, Iz(t)

))
+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
(

W2

(
ψ, I(ψ)

)
−W2

(
ψ, Iz(ψ)

))
dψ

∣∣∣∣
≤ δ2(1−δ1)tδ2−1

AB(δ1)
ϕ2

∥∥∥∥I− Iz
∥∥∥∥+ δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1(t−ψ)δ1−1
ϕ2

∥∥∥∥I− Iz
∥∥∥∥dψ

≤

(
δ2(1−δ1)

AB(δ1)
+

δ1δ2Γ(δ2)

AB(δ1)Γ(δ1 +δ2)

)
ϕ2

∥∥∥∥I− Iz
∥∥∥∥.

Similarly, let ϕ2 = ϑ2,

(
δ2(1−δ1)
AB(δ1)

+ δ1δ2Γ(δ2)
AB(δ1)Γ(δ1+δ2)

)∥∥∥∥I− Iz
∥∥∥∥ = ν2. Then the above inequality

takes the form given below: ∣∣∣∣I(t)− Iz(t)
∣∣∣∣≤ ν2ϑ2.

Hence the results follows. �

8. ITERATIVE SCHEME FOR FRACTAL-FRACTIONAL MODEL PROBLEM

In this section, we will provide a brief construction of the numerical iterative scheme that

we will use to solve our model problem in this study. The detailed analytical construction of

this novel Newton polynomial based iterative scheme for fractal-fractional model problems

characterized by the Atangana-Baleanu derivative can be found in a numerical computational

textbook written by Atangana and Araz [60]. It is important to mention that this newly devel-

oped iterative scheme has been applied in some recent works by the authors in [61, 62, 57, 63]

to numerically solve their mathematical models.

Let us consider a fractal-fractional initial value problem given by

(19)


FF
0 Dδ1,δ2

t p(t) = ξ

(
t, p(t)

)
,

p(0) = p0.

Then by using the fractal-fractional integral, we convert equation (19) into

(20)

p(t)− p(0) =
δ2(1−δ1)tδ2−1

AB(δ1)
ξ

(
t, p(t))+

δ1δ2

AB(δ1)Γ(δ1)

∫ t

0
ψ

δ2−1
ξ

(
ψ, p(ψ))(t−ψ)δ1−1dψ.
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Let Q
(

t, p(t)
)
= δ2tδ2−1ξ

(
t, p(t)

)
. Therefore at the point tm+1 = (m+1)h, we obtain

(21) p(tm+1)− p(0) =
(1−δ1)

AB(δ1)
Q
(

tm, p(tm))+
δ1

AB(δ1)Γ(δ1)

∫ tm+1

0
Q
(

ψ, p(ψ))(tm+1−ψ)δ1−1dψ.

Next, by applying Newton polynomial and performing some detailed analytical calculations

and simplifications, the iterative scheme for the fractal-fractional model problem (19) is given

by

pm+1 = p0 +
(1−δ1)

AB(δ1)
δ2tδ2−1

m ξ

(
tm, pm

)
+

δ1hδ1

AB(δ1)Γ(δ1 +1)

m

∑
ϑ=2

δ2tδ2−1
ϑ−2 ξ

(
tϑ−2, pϑ−2

)[(
m−ϑ +1

)δ1
−
(

m−ϑ

)δ1

]
(22)

+
δ1hδ1

AB(δ1)Γ(δ1 +2)

m

∑
ϑ=2

δ2tδ2−1
ϑ−1 ξ

(
tϑ−1, pϑ−1

)
δ2tδ2−1

ϑ−2 ξ

(
tϑ−2, pϑ−2

)
×


(

m−ϑ +1

)δ1
(

m−ϑ +3+2δ1

)

−

(
m−ϑ

)δ1
(

m−ϑ +3+3δ1

)


+
δ1hδ1

2AB(δ1)Γ(δ1 +3)

m

∑
ϑ=2


δ2tδ2−1

ϑ
ξ

(
tϑ , pϑ

)
−2δ2tδ2−1

ϑ−1 ξ

(
tϑ−1, pϑ−1

)
+δ2tδ2−1

ϑ−2 ξ

(
tϑ−2, pϑ−2

)


×


(

m−ϑ +1

)δ1
[

2
(

m−ϑ

)2
+
(

3δ1−10
)(

m−ϑ

)
+2δ 2

1 +9δ1 +12

]

−

(
m−ϑ

)δ1
[

2
(

m−ϑ

)2
+
(

5δ1−10
)(

m−ϑ

)
+6δ 2

1 +18δ1 +12

]
 .

Converting the nonlinear fractal-fractional SIRS epidemic model (5) into the form of the initial

value problem (19) we have

(23)



FF
0 Dδ1,δ2

t S(t) = H1

(
t,S(t), I(t)

)
,

FF
0 Dδ1,δ2

t I(t) = H2

(
t,S(t), I(t)

)
,

S(0) = S0; I(0) = I0.

Following the iterative scheme given by equation (22), the corresponding Newton polynomial

based iterative scheme for our model problem (23) can be written as follows:
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Sm+1 =S0 +
(1−δ1)

AB(δ1)
δ2tδ2−1

m H1

(
tm,Sm, Im

)
+

δ1hδ1

AB(δ1)Γ(δ1 +1)

m

∑
ϑ=2

δ2tδ2−1
ϑ−2 H1

(
tϑ−2,Sϑ−2, Iϑ−2

)[(
m−ϑ +1

)δ1
−
(

m−ϑ

)δ1

]

+
δ1hδ1

AB(δ1)Γ(δ1 +2)

m

∑
ϑ=2

δ2tδ2−1
ϑ−1 H1

(
tϑ−1,Sϑ−1, Iϑ−1

)
δ2tδ2−1

ϑ−2 H1

(
tϑ−2,Sϑ−2, Iϑ−2

)
×


(

m−ϑ +1

)δ1
(

m−ϑ +3+2δ1

)

−

(
m−ϑ

)δ1
(

m−ϑ +3+3δ1

)


+
δ1hδ1

2AB(δ1)Γ(δ1 +3)

m

∑
ϑ=2


δ2tδ2−1

ϑ
H1

(
tϑ ,Sϑ , Iϑ

)
−2δ2tδ2−1

ϑ−1 H1

(
tϑ−1,Sϑ−1, Iϑ−1

)
+δ2tδ2−1

ϑ−2 H1

(
tϑ−2,Sϑ−2, Iϑ−2

)
(24)

×


(

m−ϑ +1

)δ1
[

2
(

m−ϑ

)2
+
(

3δ1−10
)(

m−ϑ

)
+2δ 2

1 +9δ1 +12

]

−

(
m−ϑ

)δ1
[

2
(

m−ϑ

)2
+
(

5δ1−10
)(

m−ϑ

)
+6δ 2

1 +18δ1 +12

]
 .

Im+1 = I0 +
(1−δ1)

AB(δ1)
δ2tδ2−1

m H2

(
tm,Sm, Im,

)
+

δ1hδ1

AB(δ1)Γ(δ1 +1)

m

∑
ϑ=2

δ2tδ2−1
ϑ−2 H2

(
tϑ−2,Sϑ−2, Iϑ−2

)[(
m−ϑ +1

)δ1
−
(

m−ϑ

)δ1

]

+
δ1hδ1

AB(δ1)Γ(δ1 +2)

m

∑
ϑ=2

δ2tδ2−1
ϑ−1 H2

(
tϑ−1,Sϑ−1, Iϑ−1

)
δ2tδ2−1

ϑ−2 H2

(
tϑ−2,Sϑ−2, Iϑ−2

)
×


(

m−ϑ +1

)δ1
(

m−ϑ +3+2δ1

)

−

(
m−ϑ

)δ1
(

m−ϑ +3+3δ1

)
(25)

+
δ1hδ1

2AB(δ1)Γ(δ1 +3)

m

∑
ϑ=2


δ2tδ2−1

ϑ
H2

(
tϑ ,Sϑ , Iϑ

)
−2δ2tδ2−1

ϑ−1 H2

(
tϑ−1,Sϑ−1, Iϑ−1

)
+δ2tδ2−1

ϑ−2 H2

(
tϑ−2,Sϑ−2, Iϑ−2

)


×


(

m−ϑ +1

)δ1
[

2
(

m−ϑ

)2
+
(

3δ1−10
)(

m−ϑ

)
+2δ 2

1 +9δ1 +12

]

−

(
m−ϑ

)δ1
[

2
(

m−ϑ

)2
+
(

5δ1−10
)(

m−ϑ

)
+6δ 2

1 +18δ1 +12

]
 .

8.1. Simulation Results and Discussion. This subsection of our study is concerned with the

numerical results, which include both solution paths and phase portraits of the fractal-fractional
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model. The nonlinear deterministic model is simulated using the Newton polynomial-based

numerical iterative scheme [60] briefly presented in the previous section. For this purpose, the

numerical solutions or trajectories of the newly constructed fractal-fractional model (5) were

obtained by utilizing the following initial conditions: S(0)= 0.99 and I(0)= 0.01. Additionally,

the following parameter values were also utilized, where ρ =
1

65∗365
, η = 0.02, γ = 1

3 , and

β = R0 ∗ (γ +ρ) with R0 = 3. Furthermore, in these numerical illustrations, it is important to

note that the same parameter values were used to generate the various numerical solutions and

phase portraits except in Figure 6, where β = R0 ∗ (γ +ρ) with R0 = 0.8 was utilized. Figures

2(a) and 2(b) show the fractal dynamics of the proposed model. It is noticed in Figure 2(a) that

the fractal order of 0.99 takes the same trajectory shape as the fractional order of 1 and increases

above the other fractal orders. In Figure 2(b), it can be seen that the trajectory shapes of the

various fractal orders are the same, but there is a shift in the epidemic peak as the fractal order

reduces. This indicates that, during an epidemic spread, the behavioural nature of individuals

affects the epidemic, resulting in a delay of the epidemic peak. Figures 2(c) and 2(d) show the

fractional dynamics of the proposed model. It is noticed in Figure 2(c) that the fractional order

takes the same trajectory shape as the integer order of 1 and increases as the fractional order

decreases. In Figure 2(d), it can be observed that the trajectory shapes of the various fractional

orders are the same, but there is a reduction in the epidemic peak as the fractional order reduces.

Figures 2(e) and 2(f) show the fractal-fractional dynamics of the proposed model. It is noticed

in Figure 2(e) that the fractal-fractional nature of susceptible increases as the fractal-fractional

order reduces. In Figure 2(f), it can be seen that the trajectory shapes of the various fractal-

fractional orders give a unique curve, where the epidemic peaks are below the preceding fractal-

fractional orders. The trajectories in Figures 2(a)-2(f) show the hidden inner dynamics of the

model and the memory effects on each compartmental class. Furthermore, Figures 3-6 show

that there are inter-unique phase portraits for the fractal-fractional epidemic model when the

fractal-fractional order is changed.
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FIGURE 2. Solution paths for the fractal-fractional epidemic model

for different selected values of δ1(1,0.99,0.95,0.90,0.85,0.80) and

δ2(1,0.99,0.95,0.90,0.85,0.80) as shown in the various subplots with

R0 = 3.
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FIGURE 3. Phase portraits for the fractal-fractional epidemic model for δ2 =

1,0.99,0.95,0.90,0.85,0.80 with fixed δ1 = 1 and R0 = 3.
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FIGURE 4. Phase portraits for the fractal-fractional epidemic model for δ1 =

1,0.99,0.95,0.90,0.85,0.80 with fixed δ2 = 1 and R0 = 3.
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FIGURE 5. Phase portraits for the fractal-fractional epidemic model with δ1 =

δ2 = 1,0.99,0.95,0.90,0.85,0.80 and R0 = 3.
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FIGURE 6. Phase portraits for the fractal-fractional epidemic model with δ1 =

δ2 = 1,0.99,0.95,0.90,0.85,0.80 and R0 = 0.8.
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9. CONCLUSION

In our present mathematical modeling formulation, we have proposed and studied a nonlin-

ear Atangana-Baleanu fractal-fractional SIRS deterministic model. The model’s equilibrium

points (disease-free and endemic) are studied for local asymptotic stability. The existence of

the model’s solution and its uniqueness, as well as the Hyers-Ulam stability analysis, are es-

tablished. The recently developed and effective Newton polynomial-based iterative scheme for

nonlinear fractal-fractional model problems has been used to solve our proposed SIRS deter-

ministic model. Our numerical solution shows that there is a shift in the epidemic peak when

we fix the fractional order and vary the fractal order. Also, when the fractal order is fixed but the

fractional order varies, the epidemic peak shifts and reduces. Additionally, when both the fractal

and fractional orders are simultaneously varied, we notice a shift and reduction in the epidemic

peak. These dynamics show that when an epidemic spreads, the behavior of the people affects

the epidemic, thus causing it to take a longer time to reach its peak. Additionally, for different

selected values of the fractal and fractional orders, phase portraits for the newly constructed

model are also generated. Our numerical simulations demonstrate that fractal-fractional dy-

namic modeling is a very useful and appropriate mathematical modeling tool for developing

and studying epidemiological models.
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