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Abstract: The interplay of species in a polluted environment is one of the most critical aspects of the ecosystem. This 

paper explores the dynamics of the two-species Lokta–Volterra competition model. According to the type I functional 

response, one species is affected by environmental pollution. Whilst the other degrades the toxin according to the type 

II functional response. All equilibrium points of the system are located, with their local and global stability being 

assessed. A numerical simulation examination is carried out to confirm the theoretical results. These results illustrate 

that competition and pollution can significantly change the coexistence and extinction of each species. 

Keywords: polluted environment; competition interaction; local stability; global stability; local bifurcation. 

2010 AMS Subject Classification: 91B76. 

 

1. INTRODUCTION 

Ecosystems are the result of interactions between the environment and communities. The best 

method to understand the dynamics and behaviour of ecological interactions between species is to 

utilise a mathematical model. The earlier ecological interactions description model goes back to 
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Lotka and Volterra, now identified as the Lotka – Volterra model [1]-[2]. 

External effects such as over-predation, over-competition interaction, over-harvesting and 

pollution lead to the loss of some species [3]–[5].  

Today, Toxic pollution is one of the most significant problems confronting the biosphere. Due to 

this toxicity, the extinction of population species and biodiversity decreases. Thus, it is essential 

to assess environmental toxicity and evaluate the risk of species in a polluted atmosphere [6]. 

Organisms are regularly exposed to toxicant environments and absorb toxicants, and pollution 

endangers the survival of affected populations. [7]. Therefore, we must assess the hazard of the 

inhabitants exposed to toxicants. So, it is vital to shed light on the impacts of toxicants on 

populations and find the key-value determining a community's extinction or persistence. Recently, 

some studies have been made on toxicants emitted from household sources and industries on 

biological species [8]–[12]. For instance, Liu, Chen, and Zhang looked at a single-species system 

in a closed toxicant environment with polluted pulse input at a fixed moment. They determined 

that the inhabitants are extinct when the pulse period is less critical. The persistent condition is 

met, and the unique positive periodic attractor is globally asymptotically stable [13]. Mukherjee 

offers a model consisting of two species, one affected by environmental pollution. The toxicant 

causes an increase in mortality for the first species, while the second species reduce the toxin. He 

has proven that the system confesses positive global solutions under random fluctuation [7].  

In many papers, competition interaction has received scholars' attention[14]–[16]. In particular, a 

mathematical model has been proposed to describe the interaction among two competing 

predators-one prey [14]. It has been concluded that Hopf bifurcation could happen when the 

consumption rate of the second predator is selected as a bifurcation parameter. 

This paper proposes the result of a polluted environment on two competitive species in the case of 

continual emissions from external sources. The two species compete with each other according to 

Lotka-Volterra type functional responses. Further, it is assumed that the first species uptake 

pollutants from the environment and negatively affect the growth rate. The second species absorbs 

the contaminants but is not affected. The rest of this paper is set up as follows: Section 2 

investigates the proposed model's assumptions. In section 3, the existence of the possible 
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equilibrium points is found. Then, in section 4, the stability conditions of the steady states have 

been analysed. In section 5, the global stability of equilibriums is discussed. Further, in section 6, 

the local bifurcation near the fixed points is established. Finally, some numerical examinations are 

provided in section 7 to confirm our analytical result. 

 

2. MATHEMATICAL MODEL  

Suppose two species compete according to Lokta–Volterra type functional response in a poisoned 

environment. Type I functional response is used to describe the first species' negative effects due 

to the environment's pollution. Whilst the other degrades the toxin according to the type II 

functional response. According to the logistic growth rate form, each species grows independently. 

Based on assumptions, 𝑠1(𝑡) and 𝑠2(𝑡) are the densities of the two species at the time 𝑡. 𝑝(𝑡) 

is the quantity of the contaminant in the atmosphere. Under the above assumptions, the following 

ODEs are formulated: 

𝑑𝑠1

𝑑𝑡
= 𝑟1𝑠1 (1 −

𝑠1

𝑘
)−𝛼1𝑠1𝑠2 − 𝛽1𝑠1𝑝 = 𝑠1𝑓1(𝑠1,𝑠2,𝑝), 

𝑑𝑠2

𝑑𝑡
= 𝑟2𝑠2 (1 −

𝑠2

𝑙
) − 𝛼2𝑠1𝑠2 = 𝑠2𝑓2(𝑠1,𝑠2,𝑝),                                      (1)                                                        

𝑑𝑝

𝑑𝑡
= 𝑟3𝑝 − 𝑑𝑝 −

𝛼3𝑠2𝑝

𝛾+𝑝
− 𝛽2𝑠1𝑝 = 𝑝𝑓3(𝑠1,𝑠2,𝑝). 

All above parameters ∈ (0,∞). Further, system (1) has been analysed with the initial values 

(𝑠01, 𝑠02, 𝑝0), where 𝑠01 ≥ 0, 𝑠02 ≥ 0, 𝑝0 ≥ 0. The flow graph of the system (1) is exposed in the 

following block diagram. 

 

Figure 1 Block diagram for system (1) 
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We assume that the two species reproduce logistically with the intrinsic growth rates 𝑟1 and 𝑟2  

with the carrying capacities 𝑘 and 𝑙, respectively; 𝛼1, 𝛼2 represent computed effect; 𝛽1is the 

decay rate of the first species due to pollution; 𝑟3 is the production rate of the toxicant into the 

surrounding outer sources. 𝑑 is the reduction rate coefficient of poisonous; 𝛼3 is the uptake rate 

of toxicants by 𝑠2 with half-saturation constant 𝛾; 𝛽2 is the uptake rate of toxicants by 𝑠1. 

The equations on the right-hand side of the system (1) are 𝐶1(𝑅+
3) on 𝑅+

3 = {(𝑠1, 𝑠2, 𝑝), 𝑠1 ≥

0, 𝑠2 ≥ 0, 𝑝 ≥ 0}. Consequently, they are Lipschitzian. Therefore, the system's (1) solution exists 

and is unique. Further, the model (1) solutions with non-negative initial values remain positive and 

bounded, as examined in the following section 

 

3. POSITIVITY AND BOUNDEDNESS OF THE SOLUTIONS 

Theorem 1. All system's (1) solutions 𝑠1(𝑡), 𝑠2(𝑡) and 𝑝(𝑡) of the system (1) with the initial 

conditions (𝑠01, 𝑠02, 𝑝0) ∈ 𝑅+
3  are positively invariant. 

Proof. By integrating the interaction function of system (1) for 𝑠1(𝑡), 𝑠2(𝑡) and 𝑝(𝑡), we get 

 

𝑠1(𝑡) = 𝑠01 𝑒𝑥𝑝 {∫ [𝑟1 (1 −
𝑠1(𝑠)

𝑘
)−𝛼1𝑠2(𝑠) − 𝛽1𝑝(𝑠)] 𝑑𝑠

𝑡

0
}, 

𝑠2(𝑡) = 𝑠02 𝑒𝑥𝑝 {∫ [𝑟2 (1 −
𝑠2(𝑠)

𝑙
) − 𝛼2𝑠1(𝑠)] 𝑑𝑠

𝑡

0
}, 

𝑝(𝑡) = 𝑝0 𝑒𝑥𝑝 {∫ [𝑟3 − 𝑑 −
𝛼3𝑠2(𝑠)

𝛾+𝑝(𝑠)
− 𝛽2𝑠1(𝑠)] 𝑑𝑠

𝑡

0
}. 

 

Then 𝑠1 ≥ 0, 𝑠2 ≥ 0 and   𝑝 ≥ 0 for all 𝑡 > 0. Hence the interior of 𝑅+
3  is an invariant set of 

the system (1). 

 

Theorem 2. All solutions 𝑠1(𝑡), 𝑠2(𝑡)  and 𝑝(𝑡)   of the system (1) with the initial values 

(𝑠01, 𝑠02, 𝑝0) are uniformly bounded. 

Proof: - Let (𝑠1(𝑡), 𝑠2(𝑡), 𝑝(𝑡)) be an arbitrary system (1) solution with a non-negative initial 

condition. Then for 𝑁(𝑡) = 𝑠1(𝑡) + 𝑠2(𝑡) + 𝑝(𝑡), we obtain 

𝑑𝑁

𝑑𝑡
=  

𝑑𝑠1

𝑑𝑡
+ 

𝑑𝑠2

𝑑𝑡
+ 

𝑑𝑝

𝑑𝑡
 

i.e., 
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𝑑𝑁

𝑑𝑡
=  𝑟1𝑠1 −

𝑟1𝑠1
2

𝑘
−𝛼1𝑠1𝑠2 − 𝛽1𝑠1𝑝 + 𝑟2𝑠2 − 

𝑟2𝑠2
2

𝑙
 − 𝛼2𝑠1𝑠2 + 𝑟3𝑝 − 𝑑𝑝 −

𝛼3𝑠2𝑝

𝛾 + 𝑝
− 𝛽2𝑠1𝑝 

Hence, according to the assumptions of the theorem, the following is obtained: 

𝑑𝑁

𝑑𝑡
≤ 𝑟1𝑠1 + 𝑟2𝑠2 + 𝑟3𝑝 − 𝑑𝑝, 

𝑑𝑁

𝑑𝑡
+ 𝜎1𝑁 ≤  2𝑟1𝑠1 + 2𝑟2𝑠2 + 2𝑟3𝑝. 

Where  𝜎1 = 𝑚𝑖𝑛. {𝑟1 + 𝑟2 + (𝑟3 + 𝑑)}, then  

𝑑𝑁

𝑑𝑡
+ 𝜎1 𝑁 ≤ 2𝑟1𝑠1 + 2𝑟2𝑠2 + 2𝑟3𝑝 =  2𝜎2 

Applying Gromwell's Inequality, the following is obtained: 

0 ≤ 𝑁(𝑠1(𝑡), 𝑠2(𝑡), 𝑝(𝑡))  ≤  
2𝜎2

𝜎1
 (1 − 𝑒−𝜎1𝑡) + 𝐻(0)𝑒−𝜎1𝑡 

hence,  

0 ≤ 𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 𝑁(𝑡) ≤  
2𝜎2

𝜎1
 . 

Thus, all system's (1) solutions that are initiated in R+
3   are attracted to the region 𝜗 =

 {(𝑠1, 𝑠2, 𝑝) ∈  𝑅+
3 ∶ 𝑁 = 𝑠1 + 𝑠2 + 𝑝 ≤

2𝜎2

𝜎1
}. Thus, these solutions are uniformly bounded. 

 

4. EXISTENCE OF EQUILIBRIA 

System (1) has eight non-negative steady states, namely 

(1) The disappearing equilibrium point 𝐼1 = (0,0,0). 

(2) The first species equilibrium point 𝐼2 = (𝑘, 0,0). 

(3) The second species equilibrium point 𝐼3 = (0, 𝑙, 0). 

(4) The species' free equilibrium point 𝐼4 = (0,0, 𝑝), where is any positive real number. 

(5) The first free species equilibrium point 𝐼5 = (0, 𝑙, �̌�), where �̌� =
𝛼3𝑙

(𝑟3−𝑑)
− 𝛾 > 0 if and only if  

 

 𝛼3𝑙 > 𝛾(𝑟3 − 𝑑). (2) 

 

(6) The second free species equilibrium point 𝐼6 = (�̅�1, 0, �̅�) , where �̅�1 =
𝑟3−𝑑

𝛽2
   and �̅� =

𝑟1

𝑘𝛽1𝛽2
(𝑘𝛽2 − (𝑟3 − 𝑑)). It should be noted that for �̅�1 and �̅� to be positive, the following must 
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be the case 

 0 < (𝑟3 − 𝑑) < 𝑘𝛽2. (3) 

 

(7) The pollution free equilibrium point  𝐼7 =   (�̂�1, �̂�2, 0) , where �̂�1 =
𝑟2𝑘(𝛼1𝑙−𝑟1)

𝛼1𝛼2𝑙𝑘−𝑟1𝑟2
  and �̂�2 =

𝑟1

𝛼1
[1 −

𝑟2(𝛼1𝑙−𝑟1)

𝛼1𝛼2𝑙𝑘−𝑟1𝑟2
]. Clearly, �̂�1 > 0, if one of the following conditions hold: 

 
𝑟1 < 𝑚𝑖𝑛. {𝛼1𝑙,

𝛼1𝛼2𝑙𝑘

𝑟2
}, 

(4) 

 
𝑟1 > 𝑚𝑎𝑥. {𝛼1𝑙,

𝛼1𝛼2𝑙𝑘

𝑟2
}. 

(5) 

Further, �̂�2 > 0 if the following holds: 

 𝑟2(𝛼1𝑙 − 𝑟1) < (𝛼1𝛼2𝑙𝑘 − 𝑟1𝑟2). (6) 

 

(8) The positive equilibrium point 𝐼8 = (𝑠1
∗, 𝑠2

∗, 𝑝∗) , where 𝑠1
∗ =

𝑟2

𝛼2
(1 −

𝑠2
∗

𝑙
) , 𝑝∗ =

𝑟1

𝛽1
−

𝑟1𝑟2

𝛽1𝑘𝛼2
+

𝑠2
∗

𝛽1
(

𝑟1𝑟2

𝑙𝑘𝛼2
− 𝛼1) and 𝑠2

∗ is the root of the following equation: 

                            𝐴𝑠2
2 + 𝐵𝑠2 + 𝐶 = 0.                              (7) 

Here 𝐴 =
𝛽2𝑟2(𝑟1𝑟2−𝛼1𝛼2𝑙𝑘)

𝛼2
2𝑙3𝛽1

, 𝐵 = (𝑟3 − 𝑑 −
𝛽2𝑟2

𝛼2
) (

𝑟1𝑟2−𝛼1𝛼2𝑙𝑘

𝛼2𝛽1𝑘𝑙
) +

𝛾𝛽2𝑟2

𝛼2𝑙
+

𝑟1𝑟2𝛽2(𝑘𝛼2−𝑟2)

𝛼2
2𝛽1𝑘𝑙

, 

𝐶 = (𝑟3 − 𝑑 −
𝛽2𝑟2

𝛼2
) (𝛾 +

𝑟1(𝑘𝛼2−𝑟2)

𝛼2𝛽1𝑘
). Using Descartes's rule of sign Eq. (7) has a unique positive 

root if the sign of 𝐵 and 𝐶 are the same and opposite to the sign of 𝐴, or if the sign of 𝐴 and 

𝐵 are the same and opposite to the sign of 𝐶. That means one of the following conditions must 

be the case: 

1. 𝐴 > 0, 𝐵 > 0 and 𝐶 < 0, 

2. 𝐴 < 0, 𝐵 < 0 and 𝐶 > 0, 

3. 𝐵 > 0, 𝐶 > 0 and 𝐴 < 0, 

4. 𝐵 < 0, 𝐶 < 0 and 𝐴 > 0. 

Further, for 𝑠1
∗and 𝑝∗ to be positive, the following must be the case 

 𝑙𝑟1(𝑟2−𝑘𝛼2)

𝑟1𝑟2−𝛼1𝛼2𝑙𝑘
< 𝑠2

∗ < 𝑙. (8) 
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5. LOCAL STABILITY 

This section explores the local stability behaviour of system (1) 's equilibrium points. 

The Jacobin matrix of system (1) at any point, say (𝑠1, 𝑠2, 𝑝), can be written as: 

𝐽 =

[
 
 
 
 𝑠1

𝜕𝑓1

𝜕𝑠1
+ 𝑓1 𝑠1

𝜕𝑓1

𝜕𝑠2
𝑠1

𝜕𝑓1

𝜕𝑝

𝑠2
𝜕𝑓2

𝜕𝑠1
𝑠2

𝜕𝑓2

𝜕𝑠2
+ 𝑓2 𝑠2

𝜕𝑓2

𝜕𝑝

𝑝
𝜕𝑓3

𝜕𝑠1
𝑝

𝜕𝑓3

𝜕𝑠2
𝑝

𝜕𝑓3

𝜕𝑝
+ 𝑓3]

 
 
 
 

= (𝑎𝑖𝑗)3×3
, 

where, 𝑎11 = 𝑟1 −
2𝑟1𝑠1

𝑘
− 𝛼1𝑠2 − 𝛽1𝑝   𝑎12 = −𝛼1𝑠1   𝑎13 = −𝛽1𝑠1   𝑎21 = −𝛼2𝑠2   𝑎22 =

𝑟2 −
2𝑟2𝑠2

𝑙
− 𝛼2𝑠1  𝑎23 = 0  𝑎31 = −𝛽2𝑝  𝑎32 = −

𝛼3𝑝

𝛾+𝑝
  𝑎33 = 𝑟3 − 𝑑 −

𝛾𝛼3𝑠2

(𝛾+𝑝)2
− 𝛽2𝑠1. 

1. The Jacobian matrix at  𝐼1= (0,0,0) is given as: 

 

 

𝐽(𝐼1) = [

𝑟1 0 0
0 𝑟2 0
0 0 𝑟3 − 𝑑

] 

 

(9) 

Then,  𝐽(𝐼1)  has the eigenvalues 𝜆11 = 𝑟1 > 0,   𝜆12 = 𝑟2 > 0,  and 𝜆13 = 𝑟3 − 𝑑 , which 

means 𝐼1 is unstable if 𝑟3 > 𝑑. Further,  𝐼1 is a saddle point when 𝑟3 < 𝑑. 

2. The Jacobian matrix at 𝐼2 = (𝑘, 0,0) is given as: 

 

𝐽(𝐼2) = [

−𝑟1 −𝛼1𝑘 −𝛽1𝑘
0 𝑟2 − 𝛼2𝑘 0
0 0 𝑟3 − 𝑑 − 𝛽2𝑘

]. 

 

(10) 

Then, 𝐽(𝐼2) has the eigenvalues 𝜆21 = −𝑟1 < 0,  𝜆22 = 𝑟2 − 𝛼2𝑘 and 𝜆23 = 𝑟3 − 𝑑 − 𝛽2𝑘. 𝐼2 

is a locally asymptotical stable point, if and only if the following condition is satisfied: 

 𝑘 > 𝑚𝑎𝑥. {
𝑟2

𝛼2
,
𝑟3−𝑑

𝛽2
}, 

 

(11) 

3. The Jacobian matrix at 𝐼3 = (0, 𝑙, 0) is given as: 

 

 

𝐽(𝐼3) = [

𝑟1 − 𝛼1𝑙 0 0
−𝛼2𝑙 −𝑟2 0

0 0 𝑟3 − 𝑑 −
𝛼3𝑙

𝛾

]. 

 

(12) 
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Then, 𝐽(𝐼3)  has the eigenvalues 𝜆31 = 𝑟1 − 𝛼1𝑙, 𝜆32 = −𝑟2 < 0  and 𝜆33 = 𝑟3 − 𝑑 −
𝛼3𝑙

𝛾
 . That 

means 𝐼3 is a locally asymptotical stable if and only if the following is satisfied 

 𝑙 > 𝑚𝑎𝑥. {
𝑟1

𝛼1
,
(𝑟3−𝑑)𝛾

𝛼3
}. 

 

(13) 

4. The Jacobian matrix at 𝐼4 = (0,0, 𝑝) is given as: 

 

𝐽(𝐼4) = [

𝑟1 0 0
0 𝑟2 0

−𝛽2�̃�
−𝛼3�̃�

𝛾+�̃�
𝑟3 − 𝑑

]. 

 

 

(14) 

Then,  𝐽(𝐼4)  has the eigenvalues 𝜆41 = 𝑟1 > 0,   𝜆42 = 𝑟2 > 0,  and 𝜆43 = 𝑟3 − 𝑑 , which 

means 𝐼4 is unstable if 𝑟3 > 𝑑. Further,  𝐼4 is a saddle point when 𝑟3 < 𝑑. 

 

5. The Jacobian matrix at 𝐼5 = (0, 𝑙, �̌�) is given as: 

 

 

𝐽(𝐼5) = [

𝑟1 − 𝛼1𝑙 − 𝛽1�̌� 0 0
−𝛼2𝑙 −𝑟2 0

−𝛽2�̌�
𝛼3𝑝

𝛾+𝑝
𝑟3 − 𝑑 −

𝛼3𝛾𝑙

(𝛾+𝑝)2

]. 

 

 

(15) 

Then, 𝐽(𝐼5)  has the eigenvalues 𝜆51 = 𝑟1 − 𝛼1𝑙 − 𝛽1�̌� , 𝜆52 = −𝑟2 < 0  and 𝜆53 = 𝑟3 − 𝑑 −

𝛼3𝛾𝑙

(𝛾+𝑝)2
. That means 𝐼5 is locally asymptotically stable if  

 𝑙 > 𝑚𝑎𝑥. {
𝑟1−𝛽1𝑝

𝛼1
,
(𝑟3−𝑑)(𝛾+𝑝)2

𝛼3𝛾
}. (16) 

 

6. The Jacobian matrix at 𝐼6 = (�̅�1, 0, �̅�) is given as: 

 

𝐽(𝐼6) =

[
 
 
 
−𝑟1(𝑟3−𝑑)

𝑘𝛽2
−𝛼1�̅�1 −𝛽1�̅�1

0 𝑟2 − 𝛼2�̅�1 0

−𝛽2�̅�
𝛼3�̅�

𝛾+�̅�
0 ]

 
 
 

. 

 

(17) 
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Then, the characteristic equation of 𝐽(𝐼6) is given by:  

 (𝑟2 − 𝛼2�̅�1 − 𝜆) (𝜆2 +
𝑟1(𝑟3−𝑑)

𝑘𝛽2
𝜆 − 𝛽1𝛽2�̅�1�̅�). (18) 

The eigenvalues of Eq. (18) can be written as follows 𝜆62 = 𝑟2 − 𝛼2�̅�1, 𝜆61 + 𝜆63 =
−𝑟1(𝑟3−𝑑)

𝑘𝛽2
<

0 and 𝜆61. 𝜆63 = −𝛽1𝛽2�̅�1�̅� < 0. That means  𝐼6 is a saddle point. 

7. The Jacobian matrix at 𝐼7 =  (�̂�1, �̂�2, 0) is given as: 

 

𝐽(𝐼7) =

[
 
 
 
 

−𝑟1�̂�1

𝑘
−𝛼1�̂�1 −𝛽1�̂�1

−𝛼2�̂�2
−𝑟2�̂�2

𝑙
0

0 0 𝑟3 − 𝑑 −
𝛼3�̂�2

𝛾
− 𝛽2�̂�1]

 
 
 
 

. 

 

 

(19) 

Then, the characteristic equation of 𝐽(𝐼7) is given by:  

 (𝑟3 − 𝑑 −
𝛼3�̂�2

𝛾
− 𝛽2�̂�1 − 𝜆) [𝜆2 +

(𝑙𝑟1�̂�1+𝑘𝑟2�̂�2)

𝑘𝑙
𝜆 + �̂�1�̂�2 (

𝑟1𝑟2

𝑘𝑙
− 𝛼1𝛼2)]. (20) 

The eigenvalues of Eq. (20) can be written as follows 𝜆73 = 𝑟3 − 𝑑 −
𝛼3�̂�2

𝛾
− 𝛽2�̂�1, 𝜆71 + 𝜆72 =

−(𝑙𝑟1�̂�1+𝑘𝑟2�̂�2)

𝑘𝑙
< 0 and 𝜆71. 𝜆72 = �̂�1�̂�2 (

𝑟1𝑟2

𝑘𝑙
− 𝛼1𝛼2). 

That means 𝐼7 is locally asymptotically stable if  

 𝑟3 < 𝑑 +
𝛼3�̂�2

𝛾
+ 𝛽2�̂�1, (21) 

 𝑟1𝑟2 > 𝛼1𝛼2𝑘𝑙. (22) 

 

8. The Jacobian matrix at 𝐼8 = (𝑠1
∗, 𝑠2

∗, 𝑝∗) is given as: 

 

𝐽(𝐼8) =

[
 
 
 
 

−𝑟1𝑠1
∗

𝑘
−𝛼1𝑠1

∗ −𝛽1𝑠1
∗

−𝛼2𝑠2
∗ −𝑟2𝑠2

∗

𝑙
0

−𝛽2𝑝
∗ −𝛼3𝑝∗

𝛾+𝑝∗
𝑟3 − 𝑑 −

(𝛾+𝑝∗)(𝛼3𝑠2
∗)−(𝛼3𝑝∗𝑠2

∗)

(𝛾+𝑝∗)2
− 𝛽2𝑠1

∗
]
 
 
 
 

= (𝑏𝑖𝑗)3×3
, 

 

(23) 

 

where, 𝑏11 =
−𝑟1𝑠1

∗

𝑘
 , 𝑏12 = −𝛼1𝑠1

∗ , 𝑏13 = −𝛽1𝑠1
∗ , 𝑏21 = −𝛼2𝑠1

∗ , 𝑏22 =
−𝑟2𝑠2

∗

𝑙
 , 𝑏23 = 0 , 𝑏31 =
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−𝛽2𝑝
∗, 𝑏32 =

−𝛼3𝑝∗

𝛾+𝑝∗ , and 𝑏33 = 𝑟3 − 𝑑 −
𝛾𝛼3𝑠2

∗

(𝛾+𝑝∗)2
− 𝛽2𝑠1

∗. 

So, the characteristic equation of 𝐽(𝐼8) can be written as: 

 𝜆3 + 𝐴1𝜆
2 + 𝐴2𝜆 + 𝐴3 = 0, (24) 

where,  

𝐴1 = −(𝑚1 + 𝑏33), 

𝐴2 = 𝑏22𝑏33 − 𝑚2 − 𝑚3, 

𝐴3 = 𝑚2𝑏33 + 𝑏13𝑏31𝑏22, 

∆= 𝐴1𝐴2 − 𝐴3 = −𝑚1𝑚2 + (𝑏11 + 𝑏33)𝑚3 + 𝑏22𝑏33𝐴1 − 𝑏11𝑏22𝑏33. 

Here, 𝑚1 = 𝑏11 + 𝑏22 < 0, 𝑚2 = 𝑏12𝑏21 − 𝑏11𝑏22 and 𝑚3 = 𝑏13𝑏31 − 𝑏11𝑏33. 

Now, according to the Routh-Hurwitz criteria [18], all the eigenvalues of 𝐽(𝐼8) have roots with 

negative real parts, on condition that 𝐴1 > 0, 𝐴3 > 0 and ∆> 0. Then, is a locally asymptotical 

stable point if the following conditions are satisfied 

 −𝑏13𝑏31𝑏22

𝑚2
< 𝑏33 < 𝑚𝑖𝑛. {

−𝑚1𝑚2+(𝑏11+𝑏33)𝑚3+𝑏22𝑏33𝐴1

𝑏11𝑏22
, −(𝑏11 + 𝑏22)}. 

 

(25) 

 

6. GLOBAL DYNAMICAL BEHAVIOUR 

This section discusses the conditions of the global stability property of the system's (1) equilibria 

using the Lyapunov method. 

 

Theorem 3. Assume that  𝐼2 = (𝑘, 0,0) is exist., then the basin of attraction of 𝐼2  is the sub-

region of R+
3  which can be defined as: ∅1 = {(𝑠1, 𝑠2, 𝑝): 𝑠1 ≥

(𝑑−𝑟3)𝛼1+𝑘𝑟2𝛽1

𝛽1
, 𝑠2 ≥ 0, 𝑝 ≥ 0}. 

Proof: Define 𝑤2 = 𝑐1 (𝑠1 − 𝑘 − 𝑘 𝑙𝑛
𝑠1

𝑘
) + 𝑐2𝑠2 + 𝑐3𝑝 , where 𝑐1 , 𝑐2  and 𝑐3  are positive 

constants to be determined. 𝑤2(𝑠1, 𝑠2, p) is a positive definite about 𝐼2. Thus, 

𝑑𝑤2

𝑑𝑡
= 𝑐1(𝑠1 − 𝑘) [−

𝑟1𝑠1

𝑘
− 𝛼1𝑠2 − 𝛽1𝑝 + 𝑟1] + 𝑐2𝑠2 [𝑟2 (1 −

𝑠2

𝑙
) − 𝛼2𝑠1]  

+ 𝑐3𝑝 [𝑟3 − 𝑑 −
𝛼3𝑠2

𝛾 + 𝑝
− 𝛽2𝑠1] 

i.e., 
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𝑑𝑤2

𝑑𝑡
=

−𝑐1𝑟1(𝑠1 − 𝑘)2

𝑘
−𝑐1𝛼1𝑠1𝑠2+𝑐1𝑘𝛼1𝑠2 − 𝑐1𝛽1𝑠1𝑝 + 𝑐1𝛽1𝑘𝑝 + 𝑐2𝑟2𝑠2 −

𝑐2𝑟2𝑠2
2

𝑙

− 𝑐2𝛼2𝑠1𝑠2 + 𝑐3𝑝(𝑟3 − 𝑑) −
𝑐3𝛼3𝑝𝑠2

𝛾 + 𝑝
− 𝑐3𝛽2𝑠1𝑝. 

By choosing the positive constant as: 𝑐1 =
𝑑−𝑟3

𝑘𝛽1
,  𝑐2 = 𝑐3 = 1, the following is obtained, 

𝑑𝑤2

𝑑𝑡
= −

𝑟2𝑠2
2

𝑙
−

𝑟1(𝑑 − 𝑟3)(𝑠1 − 𝑘)2

𝛽1𝑘2
−

(𝑑 − 𝑟3)𝛼1𝑠1𝑠2

𝑘𝛽1
+

(𝑑 − 𝑟3)𝛼1𝑠2

𝛽1
−

(𝑑 − 𝑟3)𝑠1𝑝

𝑘
+𝑟2𝑠2

− 𝛼2𝑠1𝑠2 −
𝛼3𝑝𝑠2

𝛾 + 𝑝
− 𝛽2𝑠1𝑝. 

Then, 
𝑑𝑤2

𝑑𝑡
< 0 if the reduction rate coefficient of the toxicant is greater than its production rate. 

Hence, 𝑤2  is a Lyapunov function. Therefore, any solution stating from ∅1  approach 

asymptotically to 𝐼2. 

 

Theorem 4. Assume that  𝐼3 = (0, 𝑙, 0) is exist, then the basin of attraction of 𝐼3  is the sub-

region of R+
3  which can be defined as: ∅2 = {(𝑠1, 𝑠2, 𝑝): 𝑠1 ≥ {

(𝑟1+𝛼2𝑙)𝑘

𝑟1
} , 𝑠2 > 0, 𝑝 ≥ 0}. 

Proof: Define 𝑤3 = 𝑠1 + (𝑠2 − 𝑙 − 𝑙 ln
𝑠2

𝑙
) + 𝑝, where 𝑤3(𝑠1, 𝑠2, p) is a positive definite about 

𝐼3. Thus,  

𝑑𝑤3

𝑑𝑡
== 𝑠1 [𝑟1 (1 −

𝑠1

𝑘
)−𝛼1𝑠2−𝛽1𝑝] + (𝑠2 − 𝑙) [

−𝑟2𝑠2

𝑙
− 𝛼2𝑠1 + 𝑟2]

+ 𝑝 [𝑟3 − 𝑑 −
𝛼3𝑠2

𝛾 + 𝑝
− 𝛽2𝑠1] 

i.e., 

𝑑𝑤3

𝑑𝑡
= 𝑠1𝑟1 −

𝑟1𝑠1
2

𝑘
− 𝛼1𝑠1𝑠2 − 𝛽1𝑠1𝑝 −

𝑟2(𝑠2 − 𝑙)2

𝑙
− 𝛼2𝑠1𝑠2 + 𝑙𝛼2𝑠1 + (𝑟3 − 𝑑)𝑝

−
𝛼3𝑝𝑠2

𝛾 + 𝑝
−𝛽2𝑝𝑠1 

Then, 
𝑑𝑤3

𝑑𝑡
< 0 if the production rate of the toxicant is less than its reduction coefficient rate. 

Hence, 𝑤3  is a Lyapunov function. Therefore, any solution stating from ∅2  approach 

asymptotically to 𝐼3. 
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Theorem 5. Assume that  𝐼5 = (0, 𝑙, �̌�)  exist, then the basin of attraction of 𝐼5   is the sub-

region of R+
3  which can be defined as: ∅3 = {𝑠1, 𝑠2, 𝑝): 𝑠1 > 0, 𝑠2 ≥

𝑟1+𝛼2𝑙+𝑝𝛽2

𝛼2
, 𝑝 = �̌�}. 

Proof: Define 𝑤4 = 𝑠1 + (𝑠2 − 𝑙 − 𝑙 ln
𝑠2

𝑙
) + (𝑝 − �̌� − �̌� ln

𝑝

𝑝
), where 𝑤4(𝑠1, 𝑠2, p) is a positive 

definite about 𝐼5. Thus, 

𝑑𝑤4

𝑑𝑡
= 𝑠1 [𝑟1 (1 −

𝑠1

𝑘
)−𝛼1𝑠2 − 𝛽1𝑝] + (𝑠2 − 𝑙) [

−𝑟2𝑠2

𝑙
− 𝛼2𝑠1 + 𝑟2]

+ (𝑝 − �̌�) [−
𝛼3𝑠2

𝛾 + 𝑝
− 𝛽2𝑠1 +

𝛼3𝑙

𝛾 + �̌�
]. 

Therefore, 

𝑑𝑤4

𝑑𝑡
= 𝑠1(𝑟1 − 𝛼2𝑠2 + 𝑙𝛼2 + 𝛽2�̌�) −

𝛼3𝑠2(𝑝 − �̌�)

𝛾 + 𝑝
+

𝛼3𝑙(𝑝 − �̌�)

𝛾 + �̌�
− 𝛽2𝑠1𝑝 −

𝑟1𝑠1
2

𝑘
−

𝑟2(𝑠2 − 𝑙)2

𝑙
. 

Then, 
𝑑𝑤4

𝑑𝑡
< 0 in ∅3. Hence, 𝑤4 is a Lyapunov function. Therefore, any solution stating from 

∅3 approach asymptotically to 𝐼5. 

 

Theorem 6. Suppose that the following conditions are satisfied 

 𝑘𝑙(𝛼1 + 𝛼2)
2 ≤ 4𝑟1𝑟2, (26) 

 𝑑 > 𝑟3. (27) 

Then 𝐼7 = (�̂�1, �̂�2, 0) is globally asymptotically stable in R+
3 . 

Proof: Define 𝑤6 = 𝑐1 (𝑠1 − �̂�1 − �̂�1 ln
𝑠1

�̂�1
) + 𝑐2 (𝑠2 − �̂�2 − �̂�2 ln

𝑠2

�̂�2
) + 𝑐3𝑝 , where 𝑐1 , 𝑐2  and 

𝑐3 are positive constants to be determined. 𝑤6(𝑠1, 𝑠2, p) is a positive definite about 𝐼7. Thus, 

𝑑𝑤6

𝑑𝑡
= 𝑐1(𝑠1 − �̂�1) [−

𝑟1𝑠1

𝑘
−𝛼1𝑠2 − 𝛽1𝑝 +

𝑟1�̂�1

𝑘
+𝛼1�̂�2]

+ 𝑐2(𝑠2 − �̂�2) [−
𝑟2𝑠2

𝑙
− 𝛼2𝑠1 +

𝑟2�̂�2

𝑙
+ 𝛼2�̂�1]+𝑐3𝑝 [𝑟3 − 𝑑 −

𝛼3𝑠2

𝛾 + 𝑝
− 𝛽2𝑠1]. 

Therefore, 

𝑑𝑤6

𝑑𝑡
= −

𝑐1𝑟1
𝑘

(𝑠1 − �̂�1)
2 − (𝑐1𝛼1 + 𝑐2𝛼2)(𝑠1 − �̂�1) (𝑠2 − �̂�2) −

𝑐2𝑟2
𝐿

(𝑠2 − �̂�2)
2 − 𝑐1𝛽1𝑝(𝑠1

− �̂�1) + 𝑐3𝑝(𝑟3 − 𝑑) −
𝑐3𝛼3𝑝𝑠2

𝛾 + 𝑝
− 𝑐3𝛽2𝑝𝑠1. 

 



13 

COMPETITIVE ECOLOGICAL SYSTEM IN A POLLUTED ENVIRONMENT 

By choosing the positive constants as: 𝑐1 = 𝑐2 = 1, 𝑐3 =
𝛽1�̂�1

𝑑−𝑟3
 , the following is obtained, 

𝑑𝑤6

𝑑𝑡
≤ − [√

𝑟1
𝑘

(𝑠1 − �̂�1) + √
𝑟2
𝑙

(𝑠2 − �̂�2)]

2

− 𝛽1𝑝𝑠1 −
𝛼3𝛽1�̂�1𝑝𝑠2

(𝑑 − 𝑟3)(𝛾 + 𝑝)
−

𝛽1𝛽2�̂�1𝑝𝑠1

𝑑 − 𝑟3
. 

Then, 
𝑑𝑤6

𝑑𝑡
< 0 under conditions (26)-(27). Hence, 𝑤6 is a Lyapunov function. Therefore, 𝐼7 is 

globally asymptotically stable in R+
3 .  

 

Theorem 7. Assume that  

 𝑟1 ≥ 𝑚𝑎𝑥. {
𝑘𝑙(𝛼1+𝛼2)2

𝑟2
,
(𝛽1+𝛽2)2

𝛼3𝑠2
∗ ,

𝑘𝛼3(𝛾+𝑝∗)

𝑠2
∗ }, (28) 

then 𝐼8 = (𝑠1
∗, 𝑠2

∗, 𝑝∗) is globally asymptotically stable in R+
3 . 

Proof: - Define 𝑤7  = (𝑠1 − 𝑠1
∗ − 𝑠1

∗ ln
𝑠1

𝑠1
∗) + (𝑠2 − 𝑠2

∗ − 𝑠2
∗ ln

𝑠2

𝑠2
∗)  + (𝑝 − 𝑝∗ − 𝑝∗ ln

𝑝

𝑝∗)  where 

𝑤7(𝑠1, 𝑠2, p) is a positive definite about 𝐼8. Thus, 

 
𝑑𝑤7

𝑑𝑡
= (𝑠1 − 𝑠1

∗) [−
𝑟1𝑠1

𝑘
−𝛼1𝑠2 − 𝛽1𝑝 +

𝑟1𝑠1
∗

𝑘
+𝛼1𝑠2

∗ + 𝛽1𝑝
∗] + (𝑠2 − 𝑠2

∗) [−
𝑟2𝑠2

𝑙
− 𝛼2𝑠1 +

𝑟2𝑠2
∗

𝑙
+

𝛼2𝑠1
∗] + (𝑝 − 𝑝∗) [−

𝛼3𝑠2

𝛾+𝑝
− 𝛽2𝑠1 +

𝛼3𝑙

𝛾+𝑝∗ + 𝛽2𝑠1
∗] 

Then,  

𝑑𝑤7

𝑑𝑡
= −

𝑟1(𝑠1 − 𝑠1
∗)2

𝑘
− (𝛼1 + 𝛼2)(𝑠1 − 𝑠1

∗) (𝑠2 − 𝑠2
∗) −

𝑟2(𝑠2 − 𝑠2
∗)2

𝑙
−  (𝛽1 + 𝛽2)(𝑠1 − 𝑠1

∗)(𝑝

− 𝑝∗ + 𝛼3𝑠2
∗(𝑝 − 𝑝∗)2 − 𝛽2(𝑝 − 𝑝∗)(𝑠1 − 𝑠1

∗) + 𝛼3(𝛾 + 𝑝∗)(𝑠2 − 𝑠2
∗)(𝑝 − 𝑝∗) 

i.e., 

𝑑𝑤7

𝑑𝑡
= [−

𝑟1(𝑠1 − 𝑠1
∗)2

2𝑘
− (𝛼1 + 𝛼2)(𝑠1 − 𝑠1

∗) (𝑠2 − 𝑠2
∗) −

𝑟2(𝑠2 − 𝑠2
∗)2

2𝑙
]

− [
𝑟1(𝑠1 − 𝑠1

∗)2

2𝑘
+ (𝛽1 + 𝛽2)(𝑠1 − 𝑠1

∗)(𝑝 − 𝑝∗) +
𝛼3𝑠2

∗(𝑝 − 𝑝∗)2

2
]

− [
𝑟2(𝑠2 − 𝑠2

∗)2

2𝑙
+ 𝛼3(𝛾 + 𝑝∗)(𝑠2 − 𝑠2

∗)(𝑝 − 𝑝∗) +
𝛼3𝑠2

∗(𝑝 − 𝑝∗)2

2
]. 

Therefore, the following is obtained 
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𝑑𝑤7

𝑑𝑡
≤ − [√

𝑟1
2𝑘

(𝑠1 − 𝑠1
∗)2 + √

𝑟2
2𝑙

(𝑠2 − 𝑠2
∗)]

2

− [√
𝑟1
2𝑘

(𝑠1 − 𝑠1
∗) + √

𝛼3𝑠2
∗

2
(𝑝 − 𝑝∗) −]

2

− [√
𝑟2
2𝑙

(𝑠2 − 𝑠2
∗) + √

𝛼3𝑠2
∗

2
(𝑝 − 𝑝∗)]

2

. 

Then, 
𝑑𝑤7

𝑑𝑡
< 0  under condition (28). Hence, 𝑤7  is a Lyapunov function. Therefore, 𝐼8  is 

globally asymptotically stable in 𝑅+
3 .  

 

7. THE PERSISTENCE 

Persistence signifies a global property in a dynamic system. Biologically, it means the survival of 

all system populations in future times. While mathematically implies that strictly positive solutions 

do not have an omega limit set on the boundary of the non-negative cone. In contrast, the system 

populations threaten extinction if one loses persistence. 

The average Lyapunov function method is used to explore the system's (1) persistence. But first, 

the boundary planes' global behaviour needs to be studied. Clearly, system (1) has the following 

two sub-systems 

1. The sub-system in 𝑠1𝑠2-plane 

 
ℎ1 = 𝑠1 [𝑟1 (1 −

𝑠1

𝑘
) − 𝛼1𝑠2]

ℎ2 = 𝑠2 [𝑟2 (1 −
𝑠2

𝑙
) − 𝛼2𝑠1]

 

 

(29) 

2. In 𝑠2𝑝-plane 

 
ℎ3 = 𝑠2 [𝑟2(1 −

𝑠2

𝑙
)]

ℎ4 = 𝑝 [𝑟3 − 𝑑 −
𝛼3𝑠2

𝛾 + 𝑝
]
 

 

 

(30) 

Both sub-systems have strictly positive equilibria in the positive quadrant of the 𝑠1𝑠2-plane and 

𝑠2𝑝 - plane, which is illustrated by a projection of the boundary planar steady states (𝑠1, 𝑠2) and 

(𝑠2, p) of (29) and (30). 
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Now, define the function H(𝑠1, 𝑠2) =
1

𝑠1𝑠2
 , which is 𝐶1(𝑅+

2)  in 𝑅+(𝑠1,𝑠2)
2 = {(𝑠1, 𝑠2), 𝑠1 >

0, 𝑠2 > 0, }, thus Δ(𝑠1, 𝑠2) =
∂

∂𝑠1
(Hℎ1) +

∂

∂𝑠2
(Hℎ2) =

−𝑟1

𝑘𝑠2
−

𝑠2

𝑙𝑠1
< 0. This means Δ(𝑠1, 𝑠2) does 

not change sign and is not identically zero. 

Therefore, the (29) has no periodic dynamics in 𝑅+(𝑠1,𝑠2)
2 . Then the strictly positive equilibrium 

point is globally asymptotically stable whenever it exists. Using the same strategy, it is concluded 

that (30) has no periodic dynamics in 𝑅+(𝑠2,𝑝)
2 .  

 

Theorem 8. Assume that (29) and (30) have no periodic dynamics, then system (1) is uniformly 

persistent if  

 𝑙 < 𝑚𝑖𝑛. {
𝑟1−𝛽1𝑝

𝛼1
,
(𝑟3−𝑑)𝛾

𝛼3
}, (31) 

 𝑘 < 𝑚𝑖𝑛. {
𝑟2

𝛼2
,
(𝑟3−𝑑)

𝛽2
}, (32) 

 �̂�1 < 𝑚𝑖𝑛. {
(𝑟1−𝛼1�̂�2)𝑘

𝑟1
,
𝑟2𝑙−𝑟2�̂�2

𝑙𝛼2
,
𝑟3𝛾−𝑑𝛾−𝛼3�̂�2

𝛾𝛽2
}. (33) 

Proof. Define ∅(𝑠1, 𝑠2, 𝑝) = 𝑠1
𝑎𝑠2

𝑏𝑝𝑐 , where 𝑎, 𝑏  and 𝑐  are positive constants. Clearly 

∅(𝑠1, 𝑠2, p) > 0  for all (𝑠1, 𝑠2, p) ∈ 𝑅+
3   and ∅(𝑠1, 𝑠2, p) → 0  when one of the variables 𝑠1, 𝑠2 

or 𝑝 approaches zero. 

Consequently, 

𝛿(𝑠1, 𝑠2, p) =
∅′(𝑠1,𝑠2,p)

∅(𝑠1,𝑠2,p)
= 𝑠1 [𝑟1 (1 −

𝑠1

𝑘
) − 𝛼1𝑠2] + 𝑠2 [𝑟2(1 −

𝑠2

𝑙
) − 𝛼2𝑠1] + 𝑝 [𝑟3 − 𝑑 −

𝛼3𝑠2

𝛾+𝑝
]. 

Now, the only possible omega limit sets of the system (1) on the boundary of 𝑠1𝑠2𝑝−plane is the 

equilibrium points 𝐼2, 𝐼3, 𝐼5 and 𝐼7. Thus,  

𝛿(𝐼2) = a[𝑟1 − 𝛼1𝑙] + c [𝑟3 − 𝑑 −
𝛼3𝑙

𝛾
] > 0 under condition (31). 

𝛿(𝐼3) = 𝑏[𝑟2 − 𝛼2𝑘] + c[𝑟3 − 𝑑 − 𝛽2𝑘] > 0 under condition (32). 

𝛿(𝐼5) = 𝑎[𝑟1 − 𝛼1𝑙 − 𝛽1�̌�] + c [𝑟3 − 𝑑 −
𝛼3𝑙

𝛾+𝑝
] > 0 under condition (31). 

𝛿(𝐼7) = a [𝑟1 −
𝑟1�̂�1

𝑘
− 𝛼1�̂�2] + b [𝑟2 −

𝑟2�̂�2

𝑙
− 𝛼2�̂�1] + c [𝑟3 − 𝑑 −

𝛼3�̂�2

𝛾
− 𝛽2�̂�1] > 0 under 

condition (33). Hence system (1) is uniformly persistent. 
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8. LOCAL BIFURCATION 

This section uses Sotomayor's theorem to study the local bifurcation conditions near the steady 

states. 

Now, the Jacobian matrix of system (1) at each of the equilibrium points is given by: 

𝐽 =

[
 
 
 
 
 𝑟1 −

2𝑟1𝑠1

𝑘
− 𝛼1𝑠2 − 𝛽1𝑝 −𝛼1𝑠1 −𝛽1𝑠1

−𝛼2𝑠2 𝑟2 −
2𝑟2𝑠2

𝑙
− 𝛼2𝑠1 0

−𝛽2𝑝 −
𝛼3𝑝

𝛾 + 𝑝
𝑟3 − 𝑑 −

𝛾𝛼3𝑠2

(𝛾 + 𝑝)2
− 𝛽2𝑠1]

 
 
 
 
 

 

For nonzero vector 𝑋 = (𝑥1, 𝑥2, 𝑥3)
𝑇: 

 

𝐷2𝐹(𝑥, 𝑥) =

[
 
 
 
 
 
 

−2𝑟1𝑥1
2

𝑘
− 2𝛼1𝑥1𝑥2 − 2𝛽1𝑥1𝑥3

−2𝛼2𝑥1𝑥2 −
2𝑟2𝑥2

2

𝑙

−2𝛽2𝑥1𝑥3 −
2𝛾𝛼3𝑥2𝑥3

(𝛾 + 𝑝)2
−

2𝛾𝛼3𝑠2𝑥3
2

(𝛾 + 𝑝)3 ]
 
 
 
 
 
 

, 

 

 

 

(34) 

 

The following theorems determine the saddle-node bifurcation of the system (1) at the equilibrium 

point 𝐼2 . 

 

Theorem 9. For the 𝑟2
∗ = 𝛼2𝑘 , system (1), at the equilibrium point 𝐼2  has a saddle-node 

bifurcation if 

 𝑙𝑟1𝛼2 ≠ 𝑘𝛼1𝑟2
∗. (35) 

Proof: - According to 𝐽(𝐼2), given by (10), system (1), at the equilibrium point 𝐼2, has a zero 

eigenvalue, say 𝜆22, at 𝑟2
∗  = 𝛼2𝑘  , and the Jacobian matrix  𝐽∗(𝐼2) = 𝐽(𝐼2, 𝑟2

∗), becomes: 

𝐽∗(𝐼2) = [
−𝑟1 −𝛼1𝑘 −𝛽1𝑘
0 0 0
0 0 𝑟3 − 𝑑 − 𝛽2𝑘

] 

Now, let 𝑋[2] = (𝑥1
[2]

, 𝑥2
[2]

, 𝑥3
[2]

)
𝑇

 be the eigenvector corresponding to the eigenvalue 𝜆22 = 0. 

Thus (𝐽∗(𝐼2) − 𝜆22𝐼)𝑋
[2] = 0, which gives: 

𝑥2
[2]

=
−𝛼1𝑘𝑥1

[2]

𝑟1
, 𝑥3

[2]
= 0   and 𝑥1

[2]
  represents any nonzero real number. That means 𝑋[2] =
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(𝑥1
[2]

, 𝑥2
[2]

, 0)
𝑇

. 

Let 𝑌[2] = (𝑦1
[2]

, 𝑦2
[2]

, 𝑦3
[2]

)
𝑇

   be an eigenvector associated with the eigenvalue 𝜆22  of the 

matrix 𝐽2
∗𝑇. Then (𝐽2

∗𝑇 − 𝜆22𝐼)𝑌
[2] = 0. By solving this equation for 𝑌[2], 𝑌[2] = (0, 𝑦2

[2]
, 0)

𝑇

is 

obtained, where y2
[2]

 is any nonzero real number. 

Now, to check that the conditions of Sotomayor's theorem for saddle-node bifurcation are satisfied, 

the following is measured: 

𝜕𝐹

𝜕𝑟2
= 𝐹𝑟2

(𝑆, 𝑟2) = (
𝜕𝑓1
𝜕𝑟2

,
𝜕𝑓2
𝜕𝑟2

,
𝜕𝑓3
𝜕𝑟2

)
𝑇

= (0,1 −
𝑠2

𝑙
, 0)

𝑇

. 

So, 𝐹𝑟2 = (𝐼2, 𝑟2
∗) = (0,1,0)𝑇 and hence (𝑌[2])

𝑇
𝐹𝑟2

(𝐼2, 𝑟2
∗) = 𝑦2

[2]
≠ 0. 

Therefore, the first condition of the saddle-node bifurcation is met whilst transcortical, and 

pitchfork bifurcation cannot occur. 

Subsequently,  

𝐷2𝐹𝑟2
(𝐼2, 𝑟2

∗)(𝑥[2], 𝑥[2])  = (
−2𝑟1 [𝑥1

[2]
]
2

𝑘
− 2𝛼1𝑥1

[2]
𝑥2

[2]
, −2𝛼2𝑥1

[2]
𝑥2

[2]
−

2𝑟2
∗ [𝑥2

[2]
]
2

𝑙
, 0)

𝑇

, 

hence, it is obtained that: 

(𝑌[2])
𝑇
[𝐷2𝐹𝑟2

(𝐼2, 𝑟2
∗)(𝑋[2], 𝑋[2])] = −2𝑦2

[2]
𝑥1

[2]
𝑥2

[2]
[𝛼2 −

𝑘𝛼1𝑟2
∗

𝑙𝑟1
] ≠ 0 under condition (35). This 

means the second condition of saddle-node bifurcation is satisfied. Thus, according to Sotomayor's 

theorem, system (1) has saddle-node bifurcation at 𝐼2 with the parameter 𝑟2
∗ = 𝛼2𝑘. 

 

Theorem 10. For 𝛼1
∗ =

𝑟1

𝑙
 , system (1), at the equilibrium point 𝐼3 has a saddle-node bifurcation 

if 

 𝑟1𝑟2 ≠ 𝑘𝑙𝛼1
∗𝛼2. (36) 

Proof: - According to 𝐽(𝐼3), given by (12), system (1), at 𝐼3 , has a zero eigenvalue, say 𝜆31, 

when  𝛼1
∗ =

𝑟1

𝑙
 , and the Jacobian matrix  𝐽∗(𝐼3) = 𝐽(𝐼3, 𝛼1

∗), becomes: 
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𝐽∗(𝐼3) = [

0 0 0
−𝛼2𝑙 −𝑟2 0

0 0 𝑟3 − 𝑑 −
𝛼3𝑙

𝛾

] 

Now, let 𝑋[3] = (𝑥1
[3]

, 𝑥2
[3]

, 𝑥3
[3]

)
𝑇

 be the eigenvector corresponding to the eigenvalue 𝜆31 = 0. 

Thus (𝐽∗(𝐼3) − 𝜆31𝐼)𝑋
[3] = 0, which implies: 𝑥2

[3]
=

−𝛼2𝑙𝑥1
[3]

𝑟2
, 𝑥3

[3]
= 0  and 𝑥1

[3]
 represents any 

nonzero real number. That means 𝑋[3] = (𝑥1
[3]

, 𝑥2
[3]

, 0)
𝑇

. 

Let 𝑌[3] = (𝑦1
[3]

, 𝑦2
[3]

, 𝑦3
[3]

)
𝑇

 be an eigenvector associated with the eigenvalue 𝜆31 of the matrix 

𝐽∗(𝐼3) . Then (𝐽3
∗𝑇 − 𝜆31𝐼)𝑌

[3] = 0 . By solving this equation for 𝑌[3] , 𝑌[3] = (𝑦1
[3]

, 0,0)
𝑇

 is 

obtained, where 𝑦1
[3]

 is any nonzero real number. 

Now, to check that the conditions of Sotomayor's theorem for saddle-node bifurcation are satisfied, 

the following is measured: 

𝜕𝐹

𝜕𝛼1
= 𝐹𝛼1

(𝑆, 𝛼1) = (
𝜕𝑓1
𝜕𝛼1

,
𝜕𝑓2
𝜕𝛼1

,
𝜕𝑓3
𝜕𝛼1

)
𝑇

= (−𝑠2, 0,0)𝑇 . 

So, 𝐹𝛼1
= (𝐼3, 𝛼1

∗) = (−𝑙, 0,0)𝑇and hence (𝑌[3])
𝑇
𝐹𝛼1

(𝐼3, 𝛼1
∗) = −𝑙𝑦1

[3]
≠ 0. 

Therefore, the first condition of the saddle-node bifurcation is met whilst transcortical, and 

pitchfork bifurcation cannot occur. 

Subsequently,  

 𝐷2𝐹𝛼1
(𝐼3, 𝛼1

∗)(𝑥[3], 𝑥[3]) = (
−2𝑟1[𝑥1

[3]
]
2

𝑘
− 2𝛼1

∗𝑥1
[3]

𝑥2
[3]

, −2𝛼2𝑥1
[3]

𝑥2
[3]

−
2𝑟2[𝑥2

[3]
]
2

𝑙
, 0)

𝑇

. 

Hence, (𝑌[3])
𝑇
[𝐷2𝐹𝛼1

(𝐼3, 𝛼1
∗)(𝑋[3], 𝑋[3])] = (𝑦1

[3]
, 0,0) (

−2𝑟1[𝑥1
[3]

]
2

𝑘
− 2𝛼1

∗𝑥1
[3]

𝑥2
[3]

, 0,0)

𝑇

=

−2𝑦1
[3]

[𝑥1
[3]

]
2

[
𝑟1

𝑘
−

𝑙𝛼1
∗𝛼2

𝑟2
] ≠ 0 under condition (36). This means the second condition of saddle-

node bifurcation is satisfied. Thus, according to Sotomayor's theorem, system (1) has saddle-node 

bifurcation at 𝐼3 with the parameter 𝛼1
∗ =

𝑟1

𝑙
. 
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Theorem 11. For  𝑟1
∗ = 𝛼1𝑘 + 𝛽1�̌� , system (1), at the equilibrium point 𝐼5 has a saddle-node 

bifurcation if 

 
𝑟1

∗𝑥1
[5]

+ 𝑘𝛼1𝑥2
[5]

+ 𝑘𝛽1𝑥3
[5]

≠ 0, 
(37) 

where 𝑥𝑖
[5]

, 𝑖 = 1,2,3 are given in the proof. 

Proof: - According to the Jacobian matrix (𝐽(𝐼5), given by (15), system (1), at the equilibrium 

point 𝐼5, has a zero eigenvalue, say 𝜆51 at   𝑟1
∗ = 𝛼1𝑙 + 𝛽1�̌�, and the Jacobian matrix    

𝐽∗(𝐼5) = 𝐽(𝐼5, 𝑟1
∗), becomes: 

𝐽∗(𝐼5) =

[
 
 
 

0 0 0
−𝛼2𝑙 −𝑟2 0

−𝛽2�̌�
𝛼3�̌�

𝛾 + �̌�
𝑟3 − 𝑑 −

𝛼3𝛾𝑙

(𝛾 + �̌�)2]
 
 
 
 

Now, let 𝑋[5] = (𝑥1
[5]

, 𝑥2
[5]

, 𝑥3
[5]

)
𝑇

 be the eigenvector corresponding to the eigenvalue 𝜆51 = 0. 

Thus  (𝐽∗(𝐼5) − 𝜆51𝐼)𝑋
[5] = 0, which gives: 

𝑥2
[5]

=
−𝛼2𝑙𝑥1

[5]

𝑟2
, 𝑥3

[5]
=

(𝛾+𝑝)[𝑟2𝛽2𝑝(𝛾+𝑝)−𝛼2𝛼3𝑙𝑝]𝑥1
[5]

𝑟2((𝑟3−𝑑)(𝛾+𝑝)−𝛼3𝛾𝑙)
  and  𝑥1

[5]
 represents any nonzero real number 

and (𝑟3 − 𝑑)(𝛾 + �̌�) − 𝛼3𝛾𝑙 ≠ 0.  

Let 𝑌[5] = (𝑦1
[5]

, 𝑦2
[5]

, 𝑦3
[5]

)
𝑇

    be an eigenvector associated with the eigenvalue 𝜆51  of the 

matrix 𝐽3
∗𝑇. Then (𝐽5

∗𝑇 − 𝜆51𝐼)𝑌
[5] = 0. By solving this equation for 𝑌[5], 𝑌[5] = (𝑦1

[5]
, 0,0)

𝑇

is 

obtained, where 𝑦1
[5]

 is any nonzero real number. 

Now, to check that the conditions of Sotomayor's theorem for saddle-node bifurcation are satisfied, 

the following is considered: 

𝜕𝐹

𝜕𝑟1
= 𝐹𝑟1

(𝑆, 𝑟1) = (
𝜕𝑓1
𝜕𝑟1

,
𝜕𝑓2
𝜕𝑟1

,
𝜕𝑓3
𝜕𝑟1

)
𝑇

= (1 −
𝑠1

𝑘
, 0,0)

𝑇

. 

So, 𝐹𝑟1 = (𝐼5, 𝑟1
∗) = (1,0,0)𝑇and hence (𝑌[5])

𝑇
𝐹𝑟1

(𝐼5, 𝑟1
∗) = 𝑦1

[5]
≠ 0. 

Therefore, the first condition of the saddle-node bifurcation is met whilst transcortical, and 

pitchfork bifurcation cannot occur. 

Subsequently,  
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𝐷2𝐹𝑟1
(𝐼5, 𝑟1

∗)(𝑥[5], 𝑥[5])  

= (
−2𝑟1

∗ [𝑥1
[5]

]
2

𝑘
− 2𝛼1𝑥1

[5]
𝑥2

[5]
− 2𝛽1𝑥1

[5]
𝑥3

[5]
, −2𝛼2𝑥1

[5]
𝑥2

[5]

−
2𝑟2 [𝑥2

[5]
]
2

𝑙
, −2𝛽2𝑥1

[5]
𝑥3

[5]
−

2𝛾𝛼3𝑥2𝑥3

(𝛾 + �̌�)2
−

2𝛾𝛼3𝑠2𝑥3
2

(𝛾 + �̌�)3
)

𝑇

, 

hence, it is obtained that: 

(𝑌[5])
𝑇
[𝐷2𝐹𝑟1

(𝐼5, 𝑟1
∗)(𝑋[5], 𝑋[5])]

= (𝑦1
[5]

, 0,0)(
−2𝑟1

∗ [𝑥1
[5]

]
2

𝑘
− 2𝛼1𝑥1

[5]
𝑥2

[5]
− 2𝛽1𝑥1

[5]
𝑥3

[5]
, −2𝛼2𝑥1

[5]
𝑥2

[5]

−
2𝑟2 [𝑥2

[5]
]
2

𝑙
, −2𝛽2𝑥1

[5]
𝑥3

[5]
−

2𝛾𝛼3𝑥2𝑥3

(𝛾 + �̌�)2
−

2𝛾𝛼3𝑠2𝑥3
2

(𝛾 + �̌�)3
)

𝑇

. 

i.e.,  

(𝑌[5])
𝑇
[𝐷2𝐹𝑟1

(𝐼5, 𝑟1
∗)(𝑋[5], 𝑋[5])] = −2𝑦1

[5]
𝑥1

[5]
[
𝑟1

∗𝑥1
[5]

𝑘
+ 𝛼1𝑥2

[5]
+ 𝛽1𝑥3

[5]
] ≠ 0  under condition 

(37). This means the second condition of saddle-node bifurcation is satisfied. Thus, according to 

Sotomayor's theorem, system (1) has saddle-node bifurcation at 𝐼5 with the parameter 𝑟1
∗. 

 

Theorem 12. For 𝑟3
∗ = 𝑑 +

𝛼3�̂�2

𝛾
− 𝛽2�̂�1, system (1), at the equilibrium point 𝐼7 has a saddle-node 

bifurcation if 

 𝛽2𝑥1
[7]

+
𝛼3𝑥2

[7]

𝛾
+

𝛼3�̂�2𝑥3
[7]

𝛾2
≠ 0, 

(38) 

where 𝑥𝑖
[7]

, 𝑖 = 1,2,3 is given in the proof. 

Proof: According to the Jacobian matrix 𝐽(𝐼7), given by (19), system (1), at the equilibrium point 

𝐼7, has a zero eigenvalue, say 𝜆73 at  𝑟3
∗ = 𝑑 +

𝛼3�̂�2

𝛾
+ 𝛽2�̂�1, and the Jacobian matrix  𝐽∗(𝐼7) =

𝐽(𝐼7, 𝑟3
∗), becomes: 
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 𝐽∗(𝐼7) =

[
 
 
 
 
−𝑟1�̂�1

𝑘
−𝛼1�̂�1 −𝛽1�̂�1

−𝛼2�̂�2

−𝑟2�̂�2

𝑙
0

0 0 0 ]
 
 
 
 

 

Now, let 𝑋[7] = (𝑥1
[7]

, 𝑥2
[7]

, 𝑥3
[7]

)
𝑇

 be the eigenvector corresponding to the eigenvalue 𝜆73 = 0. 

Thus  (𝐽∗(𝐼7) − 𝜆73𝐼)𝑋
[7] = 0, which gives: 

𝑥1
[7]

=
−𝑟2𝑥2

[7]

𝑙𝛼2
= 𝑥3

[7]
=

𝑟1𝑟2−𝑘𝑙𝛼1𝛼2

𝑘𝑙𝛼2𝛽1
   and 𝑥2

[7]
  represents any nonzero real number and 𝑟1𝑟2 −

𝑘𝑙𝛼1𝛼2 ≠ 0. 

Let 𝑌[7] = (𝑦1
[7]

, 𝑦2
[7]

, 𝑦3
[7]

)
𝑇

    be an eigenvector associated with the eigenvalue 𝜆73  of the 

matrix 𝐽7
∗𝑇. Then (𝐽7

∗𝑇 − 𝜆73𝐼)𝑌
[7] = 0. By solving this equation for 𝑌[7], 𝑌[7] = (0,0, 𝑦3

[7]
)
𝑇

 is 

obtained, where 𝑦3
[7]

 is any nonzero real number. 

Now, to check that the conditions of Sotomayor's theorem for saddle-node bifurcation are satisfied, 

the following is considered: 

𝜕𝐹

𝜕𝑟3
= 𝐹𝑟3

(𝑆, 𝑟3) = (
𝜕𝑓1
𝜕𝑟3

,
𝜕𝑓2
𝜕𝑟3

,
𝜕𝑓3
𝜕𝑟3

)
𝑇

= (0,0,1)𝑇 . 

So, 𝐹𝑟3 = (𝐼7, 𝑟3
∗) = (0,0,1)𝑇and hence (𝑌[7])

𝑇
𝐹𝑟3

(𝐼7, 𝑟3
∗) = 𝑦3

[7]
≠ 0 

Therefore, the first condition of the saddle-node bifurcation is met whilst transcortical, and 

pitchfork bifurcation cannot occur. 

Subsequently,  

𝐷2𝐹𝑟3
(𝐼7, 𝑟3

∗)(𝑥[7], 𝑥[7])  

= (
−2𝑟1 [𝑥1

[7]
]
2

𝑘
− 2𝛼1𝑥1

[7]
𝑥2

[7]
− 2𝛽1𝑥1

[7]
𝑥3

[7]
, −2𝛼2𝑥1

[7]
𝑥2

[7]

−
2𝑟2 [𝑥2

[7]
]
2

𝑙
, −2𝛽2𝑥1

[7]
𝑥3

[7]
−

2𝛼3𝑥2𝑥3

𝛾
−

2𝛼3𝑠2𝑥3
2

𝛾2
)

𝑇

 



22 

SAJA DAWUD, SHIREEN JAWAD 

hence, it is obtained that: 

(𝑌[7])
𝑇
[𝐷2𝐹𝑟3

(𝐼7, 𝑟3
∗)(𝑋[7], 𝑋[7])]

= (0,0, 𝑦3
[7]

)(
−2𝑟1 [𝑥1

[7]
]
2

𝑘
− 2𝛼1𝑥1

[7]
𝑥2

[7]
− 2𝛽1𝑥1

[7]
𝑥3

[7]
, −2𝛼2𝑥1

[7]
𝑥2

[7]

−
2𝑟2 [𝑥2

[7]
]
2

𝑙
, −2𝛽2𝑥1

[7]
𝑥3

[7]
−

2𝛼3𝑥2
[7]

𝑥3
[7]

𝛾
−

2𝛼3𝑠2 [𝑥3
[7]

]
2

𝛾2
)

𝑇

. 

i.e., 

(𝑌[7])
𝑇
[𝐷2𝐹𝑟3

(𝐼7, 𝑟3
∗)(𝑋[7], 𝑋[7])] = −2𝑥3

[7]
𝑦3

[7]
[𝛽2𝑥1

[7]
+

𝛼3𝑥2
[7]

𝛾
+

𝛼3�̂�2𝑥3
[7]

𝛾2
] ≠ 0. 

This means the second condition of saddle-node bifurcation is satisfied under condition (38). Thus, 

according to Sotomayor's theorem, system (1) has saddle-node bifurcation at 𝐼7  with the 

parameter 𝑟3
∗. 

 

Theorem 13. If the parameter 𝑟2 passes through 𝑟2
∗ =

𝑙(𝑚1𝑚2+(𝑎11𝑎33)𝑚3)

𝑠2𝑎33𝐴1
, where 𝑟2

∗ > 0. Then 

system (1), at the equilibrium point 𝐼8 has  

1) a saddle-node bifurcation provided that 

 𝑙 ≠ 𝑠2
∗, (39) 

 (𝑌[8])
𝑇
[𝐷2𝐹𝑟2

(𝐼8, 𝑟2
∗)(𝑋[8], 𝑋[8])] ≠ 0. (40) 

2) a transcritical bifurcation if condition (39) is violated while condition (40) is satisfied. 

3) a pitchfork bifurcation if conditions (39)-(40) are violated with the following state is 

satisfied 

 (𝑌[8])
𝑇
[𝐷3𝐹𝑟2

(𝐼8, 𝑟2
∗)(𝑋[8], 𝑋[8])] ≠ 0. (41) 

 

where the formula of 𝑌[8] and 𝑋[8] are given in following the proof. 
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Proof: According to the Jacobian matrix 𝐽(𝐼8), given by (23), system (1), at the equilibrium point 

𝐼8, has a zero eigenvalue, say  𝜆83 at 𝑟2
∗ =

𝑙(𝑚1𝑚2+(𝑎11𝑎33)𝑚3)

𝑠2𝑎33𝐴1
, and the Jacobian matrix  𝐽∗(𝐼8) =

𝐽(𝐼8, 𝑟2
∗), becomes: 

𝐽∗(𝐼8) =

[
 
 
 
 

−𝑟1𝑠∗
1

𝑘
−𝛼1𝑠1

∗ −𝛽1𝑠1
∗

−𝛼2𝑠2
∗ −𝑟2𝑠2

∗

𝑙
0

−𝛽2𝑝
∗ −𝛼3𝑝∗

𝛾+𝑝∗ 𝑟3 − 𝑑 −
𝛾𝛼3𝑠2

∗

(𝛾+𝑝∗)2
− 𝛽2𝑠1

∗
]
 
 
 
 

. 

Now, let 𝑋[8] = (𝑥1
[8]

, 𝑥2
[8]

, 𝑥3
[8]

)
𝑇

 be the eigenvector corresponding to the eigenvalue say 𝜆83 =

0. Thus  (𝐽∗(𝐼8) − 𝜆83𝐼)𝑋
[8] = 0, which gives: 

𝑥1
[8]

=
−𝑟2

∗𝑥2
[8]

𝑙𝛼2
= 𝑥3

[8]
=

(𝑟1𝑟2
∗−𝑘𝑙𝛼1𝛼2)𝑥2

[8]

𝑘𝑙𝛼2𝛽1
   and 𝑥2

[8]
  represents any nonzero real number. That 

means 

𝑋[8] = (𝑥1
[8]

, 𝑥2
[8]

, 𝑥3
[8]

)
𝑇

. 

Let 𝑌[8] = (𝑦1
[8]

, 𝑦2
[8]

, 𝑦3
[8]

)
𝑇

 be an eigenvector associated with the eigenvalue 𝜆83 of the matrix 

𝐽8
∗𝑇. Then (𝐽8

∗𝑇 − 𝜆83𝐼)𝑌
[8] = 0. By solving this equation for 𝑌[8], 𝑌[8] = (𝑦1

[8]
, 𝑦2

[8]
, 𝑦3

[8]
)
𝑇

 is 

obtained, where 𝑦2
[8]

=
−𝑦1

[8]
𝑠1
∗𝑙(𝛼1𝑞1(𝛾+𝑝∗)+𝛼3𝛽1𝑝∗)

𝑟2𝑠2
∗𝑞1(𝛾+𝑝∗)

, 𝑦3
[8]

=
𝛽1𝑠1

∗𝑦1
[8]

𝑞1
   where 𝑦1

[8]
  is any nonzero 

real number and 𝑞1 = 𝑟3 − 𝑑 −
𝛾𝛼3𝑠2

∗

(𝛾+𝑝∗)2
− 𝛽2𝑠1

∗ ≠ 0. 

Now, to confirm whether the conditions of Sotomayor's theorem for saddle-node bifurcation are 

satisfied, the following is considered:  

Now, consider: 

𝜕𝐹

𝜕𝑟2
= 𝐷𝐹𝑟2

(𝑆, 𝑟2) = (
𝜕𝑓1
𝜕𝑟3

,
𝜕𝑓2
𝜕𝑟3

,
𝜕𝑓3
𝜕𝑟3

)
𝑇

= (0,1 −
𝑠2

𝑙
, 0)

𝑇

. 

So, 𝐹𝑟2 = (𝐼8, 𝑟2
∗) = (0,1 −

𝑠2
∗

𝑙
, 0)

𝑇

 and hence (𝑌[8])
𝑇
𝐹𝑟2

(𝐼8, 𝑟2
∗) = 𝑦2

[8]
[1 −

𝑠2
∗

𝑙
] ≠ 0  under 

condition (39). Therefore, transcortical bifurcation cannot occur whilst the first condition of the 

saddle-node bifurcation is met. Now, 
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𝐷2𝐹𝑟2
(𝐼8, 𝑟2

∗)(𝑥[8], 𝑥[8])  

= (
−2𝑟1 [𝑥1

[8]
]
2

𝑘
− 2𝛼1𝑥1

[8]
𝑥2

[8]
− 2𝛽1𝑥1

[8]
𝑥3

[8]
, −2𝛼2𝑥1

[8]
𝑥2

[8]
2𝑟2

∗ [𝑥2
[8]

]
2

𝑙
,

−2𝛽2𝑥1
[8]

𝑥3
[8]

−
2𝛾𝛼3𝑥2

[8]
𝑥3

[8]

(𝛾 + 𝑝∗)2
−

2𝛾𝛼3𝑠2
∗ [𝑥3

[8]
]
2

(𝛾 + 𝑝∗)3
)

𝑇

. 

Hence, it is obtained that: 

(𝑌[8])
𝑇
[𝐷2𝐹𝑟2

(𝐼8, 𝑟2
∗)(𝑋[8], 𝑋[8])]

= (𝑦1
[8]

, 𝑦2
[8]

, 𝑦3
[8]

)(
−2𝑟1 [𝑥1

[8]
]
2

𝑘
− 2𝛼1𝑥1

[8]
𝑥2

[8]
− 2𝛽1𝑥1

[8]
𝑥3

[8]
,

−2𝛼2𝑥1
[8]

𝑥2
[8]

−
2𝑟2

∗ [𝑥2
[8]

]
2

𝑙
, −2𝛽2𝑥1

[8]
𝑥3

[8]
−

2𝛾𝛼3𝑥2
[8]

𝑥3
[8]

(𝛾 + 𝑝∗)2
−

2𝛾𝛼3𝑠2
∗ [𝑥3

[8]
]
2

(𝛾 + 𝑝∗)3
)

𝑇

 

i.e., 

(𝑌[8])
𝑇
[𝐷2𝐹𝑟2

(𝐼8, 𝑟2
∗)(𝑋[8], 𝑋[8])] =

−2𝑟1𝑦1
[8]

[𝑥1
[8]

]
2

𝑘
− 2𝛼1𝑦1

[8]
𝑥1

[8]
𝑥2

[8]
− 2𝛽1𝑦1

[8]
𝑥1

[8]
𝑥3

[8]
 −

2𝛼2𝑦2
[8]

𝑥1
[8]

𝑥2
[8]

−
2𝑟2

∗𝑦2
[8]

[𝑥2
[8]

]
2

𝑙
− 2𝛽2𝑦3

[8]
𝑥1

[8]
𝑥3

[8]
−

2𝛾𝛼3𝑥2
[8]

𝑥3
[8]

𝑦3
[8]

(𝛾+𝑝∗)2
−

2𝛾𝛼3𝑠2
∗𝑦3

[8]
[𝑥3

[8]
]
2

(𝛾+𝑝∗)3
≠ 0 under 

condition (40). This means the second condition of saddle-node bifurcation is satisfied. 

Moreover, if condition (39) is not satisfied, then the following is obtained:  

(𝑌[8])
𝑇
𝐹𝑟2

(𝐼8, 𝑟2
∗) = 𝑦2

[8]
[1 −

𝑠2
∗

𝑙
] = 0. 

So, according to Sotomayor's theorem, saddle-node bifurcation cannot occur while the first 

condition of transcritical bifurcation is satisfied.  

Now,  

𝐷𝐹𝑟2
(𝑆, 𝑟2) = [

0 0 0

0
−1

𝑙
0

0 0 0

] 
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where, 𝐷𝐹𝑟2
(𝑆, 𝑟2)  represents the derivative of 𝐹𝑟2

(𝑆, 𝑟2)  with respect to 𝑆 = (𝑠1, 𝑠2, 𝑝)𝑇  . 

Furthermore, it is observed that: 

𝐷𝐹𝑟2
(𝐼8, 𝑟2

∗)𝑋[8] = [

0 0 0

0
−1

𝑙
0

0 0 0

] [

𝑥1
[8]

𝑥2
[8]

𝑥3
[8]

] = [

0

−𝑥2
[8]

𝑙
0

] 

 

(𝑌[8])
𝑇
𝐷𝐹𝑟2

(𝐼8, 𝑟2
∗)𝑋[8] = (𝑦1

[8]
, 𝑦2

[8]
, 𝑦3

[8]
)(0,

−𝑥2
[8]

𝑙
, 0)

𝑇

=
−𝑦2

[8]
𝑥2

[8]

𝑙
≠ 0 

Hence, according to condition (40): 

(𝑌[8])
𝑇
[𝐷2𝐹𝑟2

(𝐼8, 𝑟2
∗)(𝑋[8], 𝑋[8])] ≠ 0 

This means the required conditions to have transcritical bifurcation are satisfied.  

Finally, if conditions (39)-(40) are not satisfied, then the following is obtained: 

(𝑌[8])
𝑇
𝐹𝑟2

(𝐼8, 𝑟2
∗) = 𝑦2

[8]
[1 −

𝑠2
∗

𝑙
] = 0 and (𝑌[8])

𝑇
[𝐷2𝐹𝑟2

(𝐼8, 𝑟2
∗)(𝑋[8], 𝑋[8])] = 0. So, according 

to Sotomayor's theorem, the first and second conditions of pitchfork bifurcation are satisfied.  

Now,  

𝐷3𝐹(𝑋, 𝑋) =

[
 
 
 
 

0
0

2𝛾𝛼3𝑥2
[8]

[𝑥3
[8]

]
2

(𝛾 + 𝑝)3
+

6𝛾𝛼3𝑠2 [𝑥3
[8]

]
3

(𝛾 + 𝑝)4 ]
 
 
 
 

. 

Hence, according to condition (41): 

(𝑌[8])
𝑇
[𝐷3𝐹𝑟2

(𝐼8, 𝑟2
∗)(𝑋[8], 𝑋[8])]  = (𝑦1

[8]
, 𝑦2

[8]
, 𝑦3

[8]
) [0,0,

2𝛾𝛼3𝑥2
[8]

[𝑥3
[8]

]
2

(𝛾 + 𝑝∗)3
+

6𝛾𝛼3𝑠2 [𝑥3
[8]

]
3

(𝛾 + 𝑝∗)4
]

𝑇

=
2𝛾𝛼3𝑥2

[8]
𝑦3

[8]
[𝑥3

[8]
]
2

(𝛾 + 𝑝∗)2
[

1

(𝛾 + 𝑝∗)
−

3𝑠2
∗(𝑟1𝑟2

∗ − 𝑘𝑙𝛼1𝛼2)

𝑘𝑙𝛼2𝛽1(𝛾 + 𝑝∗)2
] ≠ 0 

This means system (1) has pitchfork bifurcation at 𝐼8 with the parameter 𝑟2
∗. 

  

Theorem 14. Assume that the following conditions are satisfied 
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 𝑚𝑎𝑥. {
𝑚2+𝑚3

𝑏22
,
−𝑏13𝑏31𝑏22

𝑚2
} < 𝑏33 < −(𝑏11 + 𝑏22), (42) 

 𝐴3
′ (𝑟1

∗) ≠ (𝐴1
′ (𝑟1

∗)𝐴2(𝑟1
∗) + 𝐴1(𝑟1

∗)𝐴2
′ (𝑟1

∗)), (43) 

 𝑟1
∗ > 0, (44) 

where Ai's are the coefficients of the characteristic equation given in Eq. (24), and the formula of 

𝑟1
∗ is shown in the following proof. Then, system (1) has a Hopf bifurcation at 𝑟1 = 𝑟1

∗ for 𝐼8. 

Proof: - Consider the characteristic equation which gives in (24) at 𝐼8 . Now, to verify the 

conditions for a Hopf bifurcation to occur, we need to find a parameter such that Δ = 𝐴1𝐴2 −

𝐴3 = 0 is satisfied. It is observed that Δ = 0 gives: 

 

 𝑟1
∗ =

−𝑘(𝑚1𝑚2+(𝑏11+𝑏11)𝑚3+𝑏22𝑏33𝐴1)

𝑏22𝑏33𝑠1
∗ .  

Clearly, 𝑟1
∗ > 0  provided that the condition (44) holds. Now, at 𝑟1 = 𝑟1

∗  the characteristic 

equation given by Eq. (24) can be written as 

 

 (𝜆 + 𝐴1)(𝜆
2 + 𝐴2) = 0, (45) 

which has three roots 

𝜆1 = −𝐴1, 𝜆2,3 = ±𝑖√𝐴2.  

Clearly, at 𝑟1 = 𝑟1
∗ there are two purely imaginary eigenvalues 𝜆2 and 𝜆3 and one eigenvalue 

𝜆1 which have negative real parts. Now for all values of  𝑟1 in the neighbourhood of 𝑟1
∗, the 

roots in general, have the following forms: 

 

𝜆1 = −𝐴1, 𝜆2,3 = 𝛿1(𝑟1) ± 𝑖𝛿2(𝑟1). 

Clearly, 𝑅𝑒( 𝜆2,3)|𝑟1=𝑟1
∗ = 𝛿1(𝑟1

∗) = 0 means the first condition for Hopf bifurcation is satisfied 

at 𝑟1 = 𝑟1
∗. Now to verify the transversality condition, we substitute 𝛿1(𝑟1) ± 𝑖𝛿2(𝑟1) into Eq. 

(45), and then calculate its derivative with respect to the bifurcation parameter 𝑟1
∗, 𝛩(𝑟1

∗)𝜓(𝑟1
∗) +

𝛤(𝑟1
∗)𝜙(𝑟1

∗) ≠ 0, where the form of 𝛩(𝑟1
∗), 𝜓(𝑟1

∗), 𝛤(𝑟1
∗) and 𝜙(𝑟1

∗) are 

𝜓(𝑟1) = 3𝛿1
2(𝑟1) + 2𝐴1(𝑟1)𝛿1(𝑟1) + 𝐴2(𝑟1) − 3𝛿2

2(𝑟1), 



27 

COMPETITIVE ECOLOGICAL SYSTEM IN A POLLUTED ENVIRONMENT 

𝜙(𝑟1) = 6𝛿1(𝑟1)𝛿2(𝑟1) + 2𝐴1(𝑟1)𝛿2(𝑟1), 

𝛩(𝑟1) = 𝛿1
2(𝑟1)𝐴1 

′(𝑟1) + 𝐴2 
′(𝑟1)𝛿1(𝑟1) + 𝐴3 

′(𝑟1) − 𝐴1 
′(𝑟1)𝛿2

2(𝑟1), 

𝛤(𝑟1) = 2𝛿1(𝑟1)𝛿2(𝑟1)𝐴1
′ (𝑟𝑔) + 𝐴2

′ (𝑟1)𝛿2(𝑟1). 

Note that for 𝑟1 = 𝑟1
∗ , we have 𝛿1 = 0  and 𝛿2 = √𝐴2 , substitution into Eq. (45) gives the 

following simplifications: 

𝜓(𝑟1
∗) = −2𝐴2(𝑟1

∗),

𝜙(𝑟1
∗) = 2𝐴1(𝑟1

∗)√𝐴2(𝑟1
∗),

𝛩(𝑟1
∗) = 𝐴3

′ (𝑟1
∗) − 𝐴1

′ (𝑟1
∗)𝐴2(𝑟1

∗),

𝛤(𝑟1
∗) = 𝐴2

′ (𝑟1
∗)√𝐴2(𝑟1

∗),

 

where, 

 𝐴1
′ (𝑟1

∗) =
𝑠1
∗

𝑘
, 

𝐴2
′ (𝑟1

∗) =
−𝑠1

∗

𝑘
(𝑎22 + 𝑎33), 

𝐴3
′ (𝑟1

∗) =
𝑠1

∗𝑎33
2

𝑘
. 

 

Hence, condition (43) gives   

𝛩(𝑟1
∗)𝜓(𝑟1

∗) + 𝛤(𝑟1
∗)𝜙(𝑟1

∗) = −2𝐴2(𝑟1
∗)[𝐴3

′ (𝑟1
∗) − (𝐴1

′ (𝑟1
∗)𝐴2(𝑟1

∗) + 𝐴1(𝑟1
∗)𝐴2

′ (𝑟1
∗))] ≠ 0. 

This means that Hopf bifurcation has occurred. 

 

9. NUMERICAL ANALYSIS 

Numerical simulations of the system (1) are obtained to demonstrate the analytical results of our 

study. The dynamics of the model (1) are carried out through the help of MATLAB. Then, the time 

series and phases diagram of the solutions of system (1) are drawn for the following set of 

parameters:  

 𝑟1 = 65, 𝑟2 = 20, 𝑟3 = 10, 𝑘 = 4, 𝑙 = 5, , 𝛼1 = 0.025, 𝛼2 = 0.6, 𝛽1 =

0.03, 𝛽2 = 0.005, 𝛼3 = 0.05, 𝑑 = 1, 𝛾 = 0.05. 

 

(46) 

 

For different sets of initial values (3,5,1), (3,3,3) and (2.6,1,1), the system's (1) solution approaches 



28 

SAJA DAWUD, SHIREEN JAWAD 

asymptotically to the globally stable point 𝐼8 = (3.9,4.4,19.6) (see Figure 1).  

 

 

Figure 2 Phase diagram of system (1) with the data given by (46) with different initial values. 

 

Model (1) is now numerically resolved for the data in (46) to investigate the impact of altering one 

parameter at a time on system's (1) behaviour. For this purpose, Figure 2 depicts the dynamics of 

the two species with the set of data given by (46), with different values of 𝛽1. It illustrates the 

solution of system (1) settles down to 𝐼8 for different values of 𝛽1. 

 

Figure 3 Dynamics of system (1) with (a) time series with 𝛽1 = 0.9, system (1) converges to (2.9,4.5,19.3); (b) phase 

diagram of (a); (c) time series with 𝛽1 = 0.003, system (1) converges (3.9,4.4,20.8); (d) phase diagram of (c).  
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To numerically explore the effect of 𝛽2  the parameters in (46) remain the same except for 

changing 𝛽2. The solution of system (1) asymptotically approaches 𝐼8 for different values of 𝛽2. 

(See Figure 4). 

 

Figure 4 Dynamics of system (1) with (a) time series with 𝛽2 = 0.9, system (1) converges to (3.9, 4.4, 4.5); (b) phase 

diagram of (a); (c) time series with  𝛽2 = 0.00001, system (1) converges (3.9, 4.4,20.8); (d) phase diagram of (c). 

 

The same scenario can be detected with changing 𝛼1, 𝛼2  and 𝑑 , The solution of system (1) 

converges asymptotically to its interior point 𝐼8 for different values of them. (See Figures 5-8). 

 
Figure 5 Dynamics of system (1) with (a) time series with 𝛼1 = 0.9, system (1) converges to (3.7, 4.4, 20.4); (b) phase 

diagram of (a); (c) time series with  𝛼1 = 0.00006, system (1) converges (3.9, 4.4, 20.8); (d) phase diagram of (c). 
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Figure 6 Dynamics of system (1) with (a) time series with 𝛼2 = 0.9, system (1) converges to (3.9, 4.1, 23.6); (b) phase 

diagram of (a); (c) time series with  𝛼2 = 0.0002, system (1) converges (3.9,4.9, 15.9); (d) phase diagram of (c). 

 

 

Figure 7 Dynamics of system (1) with (a) time series with 𝑑 = 0.9, system (1) converges to (3.9, 4.4, 21.2); (b) phase 

diagram of (a); (c) time series with  𝑑 = 0.003, system (1) converges (3.9, 4.4,25.21); (d) phase diagram of (c). 

 

Now, Figure 8 explains system's (1) dynamics with the data given by (46), with different values of 

𝛼3. It illustrates the solution of system (1) stabilising at 𝐼8, when 𝛼3 > 0.11. While the solution 

of system (1) settles down to 𝐼7 in Int.𝑅+(𝑠1𝑠2)
2 , when 𝛼3 ≤ 0.11.  
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Figure 8 Dynamics of system (1) with (a) time series with 𝛼3 = 0.1, system (1) converges to (3.9, 4.4, 0.4); (b) phase 

diagram of (a); (c) time series with  𝛼3 = 0.11, system (1) converges (3.9, 4.4,0); (d) phase diagram of (c). 

 

Figure 9 illustrates the system (1) dynamics with (46) at various values of 𝑟1. It demonstrates that 

when 0.6 ≤ 𝑟1 ≤ 68.7 , the solution of system (1) approaches its positive balance point 𝐼8 . 

Furthermore, for 𝑟1 < 0.6  and 𝑟1 > 68.7 , the first species becomes zero and the solution 

approach asymptotically to 𝐼5 in Int.𝑅+(𝑠2𝑝)
2 . 

 

 
Figure 9 Dynamics of system (1) with (a) time series with 𝑟1 = 68.7, system (1) converges to (3.9, 4.4, 20.7); (b) 

phase diagram of (a); (c) time series with 𝑟1 = 68.8, system (1) converges (0, 11.2, 9.3); (d) phase diagram of (c). (e) 

time series with 𝑟1 = 0.6, system (1) converges (0.004, 4.9, 16); (f) phase diagram of (e). (g) time series with 𝑟1 =

0.59, system (1) converges (0, 5, 16); (h) phase diagram of (g). 
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Further, Figure 10 presents the effect of varying 𝑟2  on the dynamics of system (1). It shows the 

solution approaches 𝐼8 when 𝑟2 > 0.001. Furthermore, the first species losses persistence when 

𝑟2 ≤ 0.001 . For example, when 𝑟2 = 0.001  the solution, in this case, approaches to 𝐼5 =

(0, 0.8, 2165).  

 
Figure 10 Dynamics of system (1) with (a) time series with 𝑟2 = 0.01, system (1) converges to (0.01, 0.08, 2157); (b) 

phase diagram of (a); (c) time series with 𝑟2 = 0, 001, system (1) converges (0, 0.8, 2165.4); (d) phase diagram of 

(c). (e) time series with 𝑟2 = 70, system (1) converges (3.9, 4.8, 17.1); (f) phase diagram of (e). 

 

Finally, Figure 11 shows the impact of varying 𝑟3  on the system's (1) behaviour. Clearly, the 

solution of system (1) accesses its positive equilibrium point 𝐼8  when 𝑟3 > 4.9 . While the 

solution of system (1) settles down to 𝐼7 in Int.𝑅+(𝑠1𝑠2)
2 , when 𝑟3 ≤ 4.9.  

 
Figure 11 Dynamics of system (1) with (a) time series with 𝑟3 = 70, system (1) converges to (3.4, 4.4, 287.9); (b) 

phase diagram of (a); (c) time series with 𝑟3 = 5, system (1) converges (3.9, 4.4, 1.08); (d) phase diagram of (c). (e) 

time series with 𝑟3 = 4.9, system (1) converges (3.9, 4.4, 0); (f) phase diagram of (e). 
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10. CONCLUSION 

A two-competitive species model with pollution has been proposed and intensively studied. The 

type I functional response has been provided to describe the negative effects of the first species 

due to the toxins in the environment. The type II functional response has been supposed to 

represent the toxin's degradation due to the existence of the second species. The theoretical 

examination shows the existing conditions of the eight non-negative fixed points. Based on the 

Routh-Hurwitz stability criteria, the local stability of all steadiness points has been studied. 

The global dynamics of equilibria have been established by using the Lyapunov method. Further, 

the Sotomayor theorem has been applied to estimate the appearance of local bifurcation near the 

equilibrium points. Finally, a 3D phases diagram and time series have been utilised to confirm the 

analytical result. The result shows that system (1) movement always occurs around the interior 

steady state if the stability conditions are met. In contrast, a varying in the growth rates (𝑟1, 𝑟2, 𝑟3) 

and the uptake rate of toxicants by the second species will lead to the damage of some species. 
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