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Abstract. In this paper, we consider a spatiotemporal Prey-Predator system with a diffusion term. Our main

objective is to characterize the two optimal controls that minimize the density of prey population also to minimize

the density of the predator population to reach the ecological balance in two imposed different regions ω1 and ω2 (it

is not excluded that ω1 = ω2). For that reason we prove the existence of a pair of control and provide a

characterization of optimal control in term of state and adjoint function. Finally, we present numerical simulation

to justify our main results and to support the theoretical conclusions.
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1. INTRODUCTION

Mathematical methods are frequently used in biology, specifically for the study of

complicated dynamic systems, such as the interaction of different animal species in the natural

environment. Alfred Lotka of the United States and Vito Volterra of Italy created a model to
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explain how predator populations and their prey interact under various conditions. The Lotka-

Volterra mathematical model (often called ”predator-prey”) is applicable to the description of

different processes in biology, ecology, medicine, social research, history, radiophysics, and

other sciences [1].

No animal species lives in complete isolation. Since all animals must eat to live, they must

interact, if not with other animals, at least with plants.

The proposed model we will build and then study considers the situation where one animal

population serves as food for another. The important point is that one species feeds on the

other and that both grow in accordance with a reasonable set of biological laws. [2]. Predator-

prey relationships are defined as interactions between two species where one is the hunted food

source for the other.

There are litteraly hundreds of examples of predator-prey relation, a few of them are the

lion-zebra, bear-salmon and fox-rabbit.

Predators and prey exist at even the simplest shapes on earth, they respond proactively to

each other.

The predator-prey relationship changes over time as many differents generations of each

species are interacting. At the meantime, they affect the future success and survival of the other.

The process of working out will select the adaptations of the population, when scientists

first began to study population dynamics or changes in a population infinitely, they observed

that the relationships between predators and prey are very tight and any flaw or disorder can

cause a lot of disturbance in the ecosystem [3, 4], and that because of the relationships between

predators and prey, these population fluctuations are linked. In this sense, since the traditional

and simplest model of the prey-predator interaction by Lotka and Volterra, a large number of

models have been developed to study prey-predator relationships and to model their interrelation

and competition [5, 6, 7, 8].

The structure of this work is the following; Section 2 is staunched to the basic mathematical

model and the associated optimal control problem. Section 3, we demonstrate the existence

of a global strong solution for our system. In Section 4, we prove the existence of an optimal

solution . Neccesary optimality conditions are comfirmed in Section 5. As application, the
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numerical results related to our control problem are given in Section 6. In the end, we conclude

the article in Section 7.

2. THE BASIC MATHEMATICAL MODEL

2.1. The model without controls. In this work, we propose an optimal control problem

which is based on a spatio-temporal prey-predator model. We provide an extension of these

models by adding the spatial behavior of the population. We write X(t,θ), Y (t,θ) to indicate

that the populations have spatial and temporal behavior for the prey population density and

predator population density, respectively. The time t belongs to a finite interval [0,T ], while θ

varies in a bounded domain Ω⊆R2. The population dynamics is given by the following system

(1)



∂X
∂t

= b+α∆X−βXY −µX

∂Y
∂t

= Λ+ γ∆Y +βXY −ϕY

(t,θ) ∈ Q = [0,T ]×Ω

with the homogenous Neumann boundary conditions

(2)
∂X
∂η

=
∂Y
∂η

= 0, (t,θ) ∈ Σ = [0,T ]×∂Ω

where
∂

∂η
is the outward normal derivative,b is the birth rate of the prey population, Λ is the

birth rate of the predator population, β is the coefficient of interaction between the prey and the

predators population, µ,ϕ are the natural death rate of the prey and the predator comumunity

respectively. αand γ are the self-diffusion coefficients for the prey and predator community.

The inital distribution of the two popoulations is supposed to be

(3) X (0,θ) = X0 ∈ L2(Ω) and Y (0,θ) = Y0 ∈ L2(Ω)

2.2. The model with controls. As a strategy of control, we adopt a regional

treatment program, so into the model (1), we include two controls u(.)χ(.) and

v(.)χ(.) where u(.)and v(.) ∈ L2(0,T ;R)and χω is the characteristic function of ω. The control

uχω1represents the control measure to hold the ecological equilibruim per unit of time and space

while the controle vχω2represents also the control measure to keep the ecological equilibruim
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per time and space. The two controls represent the effect of the measurement and the treatment

applied to the prey and predator population who act in the subdomains ω1,ω2⊂Ω. The dynamic

of the regional controlled system is given by

(4)



∂X
∂t

= b+α∆X−βXY −µX−uχω1X

∂Y
∂t

= Λ+ γ∆Y +βXY −ϕY − vχω2Y

(t,θ) ∈ Q = [0,T ]×Ω

(5)
∂X
∂η

=
∂Y
∂η

= 0, (t,θ) ∈ Σ = [0,T ]×∂Ω

(6) X (0,θ) = X0 ∈ L2(Ω) and Y (0,θ) = Y0 ∈ L2(Ω)

Our goal is to minimize the density of the prey population in region ω1, and to minimize also

the density of the predators in region ω2. Mathematically, the problem is equivalent to minimize

the objective functional

(7)

J(u,v) = ‖X−R‖2
L2([0,T ]×ω1)

+‖Y −S‖2
L2([0,T ]×ω2)

+(
p
2
‖u‖2

L2([0,T ]×ω1)
+

q
2
‖v‖2

L2([0,T ]×ω2)
)

where Sand R are two constant functions that represent the ecological average of preys and

predators respectively in regions ω1 and ω2, besides pand q are the positive weights associated

with the two controls. Our objective is to find minimal control variables u and v in order to

minimize the objective functional defined in (7) by reaching the equilibruim balance in both

regions. Uad is the control set defined by

(8) Uad =
{
(uχω1 ,vχω2) ∈ (L2 ([0,T ]×L2(Ω)

)
)2; 0≤ u≤ 1and 0≤ v≤ 1

}
• W 1,2 ([0,T ] ;H (Ω)) the space of all absolutely continuous functions f : [0,T ] 7−→H (Ω)

having the property that
∂ f
∂t
∈W 1,2 ([0,T ] ;H (Ω)) where H(Ω) =

(
L2 (Ω)

)2

• L(T,Ω) = L2 (0,T ;H2(Ω)
)
∩L∞

(
0,T ;H1 (Ω)

)
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3. EXISTENCE OF GLOBAL SOLUTION

We study in this section the existence of a (global) strong solution, of system (4-6). As this

model describes the population for biological reasons, the populations X and Y should remain

nonnegative and bounded.

Let c=(c1,c2)= (X ,Y ) the solution of the system (4-6) with c0 =(X0,Y0)=
(
c0

1,c
0
2
)

. Denote

by A the linear operator defined as follow

(9)
A : D(A)⊂ H(Ω)−→ H(Ω)

Ac = (α∆c1,γ∆c2) ∈ D(A) ,∀c ∈ D(A)

(10) D(A) =
{

c ∈
(
H2 (Ω)

)2
,
∂c1

∂η
=

∂c2

∂η
= 0,a.e∂Ω

}
Theorem 1. Let Ω be a bounded domain from R2, with the boundary of class C2+α,α > 0. As

the rates b,Λ,µ,ϕ,β > 0, (u,v) ∈ Uad, c0 ∈ D(A) and c0
i ≥ 0 on Ω (for i = 1,2), the system

(4–6) has a unique (global) strong solution c ∈W 1,2 ([0,T ] ;H (Ω)) such that

c1,c2 ∈ L(T,Ω)∩L∞ (Q)

in addition, there exists Γ > 0 independent of (u,v) (and of the corresponding solution c ) such

that for a t ∈ [0,T ]

(11)
∥∥∥∥∂ci

∂t

∥∥∥∥
L2(Q)

+‖ci‖L2(0,T,H2(Ω)) +‖ci‖H1(Ω)+‖ci‖L∞(Q) ≤ Γ, for i = 1,2

Proof. For the proof of the existence of a (global) strong solution for system (4-6), let

(12)


f1 (c(t)) = b+−βc1c2−µc1−uχω1c1

f2 (c(t)) = Λ+βc1c2−ϕc2− vχω2c2

The nonlinear term in (12) and we consider the function f (c(t)) = ( f1 (c(t)) , f2 (c(t)), then we

can be rewritten the system (4-6) in the space H(Ω) under the form
∂c
∂t

= Ac+ f (c(t)) , t ∈ [0,T ]

c(0) = c0

As the operator A defined in (9-10) is dissipating and self-adjoint and generates a C0-semigroup

of contractions on H (Ω) see ([9, 10]), since |ci| ≤ N f or i = 1,2 where N is a constant, that
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represents the total population , thus function f = ( f1, f2) becomes Lipschitz continuous in

c = (c1,c2) uniformly with respect to t ∈ [0,T ], problem (4-6) admits a unique strong solution

c = (c1,c2) ∈W 1,2 ([0,T ] ;H(Ω)) See [11, 12], with c1,c2 ∈ L2 (0,T ;H2(Ω)
)
.

In order to prove that c ∈ L∞ (Q), we put M = max
{
‖ fi‖L∞(Q) ,

∥∥c0
i

∥∥
L∞(Ω)

f or i = 1,2
}

, it is

obvious to see that the function V1 (t,θ) = c1−Mt−
∥∥c0

1

∥∥
L∞(Ω)

satisfies the system

∂V1

∂t
(t,θ) = α4V1 + f1(t,c(t))−M t ∈ [0,T ](13)

V1 (0,θ) = c0
1−
∥∥c0

1
∥∥

L∞(Ω)

the solution of this system can be written as

V1 (t) = S (t)(c0
1−‖c1‖L∞(Ω))+

ˆ t

0
S (t− s)( f1 (c(s))−M)ds,

with {S (t) , t ≥ 0} is the C0-semi-group generated by the operator Ā : D(B)⊂ L2 (Ω)−→ L2 (Ω)

where Āu = λ∆c1 and D
(
Ā
)
=

{
c1 ∈ H2 (Ω) ,

∂c1

∂η
= 0,a.e∂Ω

}
. Since c0

1−
∥∥c0

1

∥∥
L∞(Ω)

≤ 0 and

f1 (c(s))−M ≤ 0, it follows that V1 (t,θ)≤ 0,∀(t,θ) ∈ Q .

According to the same manner we can prove that the function V2 (t,θ) = c1+Mt+
∥∥c0

1

∥∥
L∞(Ω)

is nonnegative. Then |c1(t,θ)| ≤Mt +
∥∥c0

1

∥∥
L∞(Ω)

∀(t,θ) ∈ Q and analogously

(14) |c2(t,θ)| ≤Mt +
∥∥c0

2
∥∥

L∞(Ω)
∀(t,θ) ∈ Q

Thus, we have proved that ci ∈ L∞(Ω) ∀(t,θ) ∈ Q for i = 1,2.

By the first equation of (4) one obtains

´ t
0

´
Ω

∣∣∣∂c1
∂t

∣∣∣2 dsdθ+α2 ´ t
0

´
Ω
|4c1|2 dsdθ−2α

´ t
0

´
Ω

∂c1
∂t 4c1dsdθ

=
´ t

0

´
Ω
(b−βc1c2−µc1−uχω1(θ)c1)

2 dsdθ

Using the regularity of c1 and the Greens formula, we can write

2α
´ t

0

´
Ω

∂c1
∂t 4c1dsdθ = α

´
Ω
|∇c1|2 dθ−α

´
Ω

∣∣∇c0
1

∣∣2 dθ

Then

´ t
0

´
Ω

∣∣∣∂c1
∂t

∣∣∣2 dsdθ+α2 ´ t
0

´
Ω
|4c1|2 dsdθ+α

´
Ω
|∇c1|2 dθ−α

´
Ω

∣∣∇c0
1

∣∣2 dθ

=
´ t

0

´
Ω
(b−βc1c2−µc1−uχω1(θ)c1)

2 dsdθ
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Since c0
i ∈ H2(Ω) and ‖ci‖L∞(Q)for i = 1,2 are bounded independently of v and u, we submit

that c1 ∈ L∞
(
0,T,H1 (Ω)

)
and the first inequality in (14) holds for i = 1. The remaining cases

can be treated similarly.

Let show the positiveness of c1 and c2, first we show the positiveness of c2, we set c2 =

c+2 − c−2 with

c+2 (t,θ) = sup{c2 (t,θ) ,0} and c−2 (t,θ) = in f {c2 (t,θ) ,0}

One multiplies the second equation of the system (4) by c−2 integrates over Ω, we have

−1
2

d
dt

(ˆ
Ω

(
c−2
)2
(t,θ)dθ

)
=

ˆ
Ω

∣∣γ∇c−2 (t,θ)
∣∣2 dθ+ϕ

ˆ
Ω

(
c−2
)2
(t,θ)dθ+

ˆ
Ω

Λ
(
c−2
)
(t,θ)dθ

−β

ˆ
Ω

c1
(
c−2
)2
(t,θ)dθ+

ˆ
Ω

χω2v
(
c−2
)2
(t,θ)dθ

As c1 ≤ N then −βc1 ≥ −βN , we have −1
2

d
dt

(´
Ω

(
c−2
)2
(t,θ)dθ

)
≥ −β

´
Ω

N
(
c−2
)2
(t,θ)dθ.

Gronwall’s inequality leads to

ˆ
Ω

(
c−2
)2
(t,θ)dθ≤ etβN

ˆ
Ω

(
c−2
)2
(0,θ)dθ

Then

c−2 = 0

One deduces that c2 (t,θ)≥ 0, ∀(t,θ) ∈ Q. In addition, we consider the system

(15)
∂c1

∂t
= α∆c1 +b−βc1c2−µc1−uχω1(θ)c1

where

F (c1,c2) = b−βc1c2−µc1−uχω1(θ)c1

It is obvious to see that the function F is continuously differentiable satisfying F (0,c2) = b for

all c1,c2 ≥ 0. Since initial data of system (4-6) are nonnegative, we deduce the positivity of c1

and c2 [13]. One deduces that c1 (t,θ)≥ 0 and c2 (t,θ)≥ 0∀(t,θ) ∈ Q. �
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4. THE EXISTENCE OF THE OPTIMAL SOLUTION

In this section, we will prove the existence of an optimal control for problem (4-6) subject to

reaction diffusion system and (u,v) ∈Uad . The main result of this section is the following.

Theorem 2. Under the conditions of theorem (1) the optimal control problem (4-6) admits an

optimal solution (c∗,u∗,v∗).

Proof. Let

(16) J∗ = inf{J (c,u,v)}

where (u,v) ∈Uad and c is the solution of (4-6).

Obviously J∗is finite. Therefore there exists a sequence(cn,un,vn) with (un,vn) ∈Uad , cn =(
cn

1,c
n
2
)
∈W 1,2 ([0,T ] ;H(Ω)) , such that

(17)


∂cn

1
∂t

= b+α∆cn
1−βcn

1cn
2−µcn

1−unχω1cn
1

∂cn
2

∂t
= Λ+ γ∆cn

2 +βcn
1cn

2−ϕcn
2− vnχω2cn

2

(t,θ) ∈ Q = [0,T ]×Ω

∂cn
1

∂η
=

∂cn
2

∂η
= 0 (t,θ) ∈ Σ(18)

cn
i (0,θ) = c0

i , f or.i = 1,2 θ ∈Ω(19)

and

(20) J∗ ≤ J (cn,(un,vn))≤ J∗+
1
n

(∀n≥ 1)

Since H1 (Ω) is compactly embedded in L2 (Ω), we infer that cn
1 (t) is compact in L2 (Ω).

Show that
{

cn
1 (t) ,n≥ 1

}
is equicontinuous in C

(
[0,T ] : L2 (Ω)

)
. As

∂cn
1

∂t
is bounded in L2 (Q),

i = 1,2, this implies that for all s, t ∈ [0,T ]

(21)
∣∣∣∣ˆ

Ω

(cn
1)

2 (t,θ)dθ−
ˆ

Ω

(cn
1)

2 (s,θ)dθ

∣∣∣∣≤ K |t− s|

for any s, t ∈ [0,T ]. The Ascoli-Arzela Theorem (See [14]) implies that cn
1 is compact in

C
(
[0,T ] : L2 (Ω)

)
. We conclude that there exist a subsquence denoted again cn

1 such that

cn
1 −→ c∗1 in L2 (Ω), uniformly with respect to t.

Analogously cn
i −→ c∗i in L2 (Ω), i = 2 uniformly with respect to t.
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The boundedness of ∆cn
i in L2 (Q) implies its weak convergence in L2 (Q) on a subsequence

denoted again4cn
i then for all distribution ψ

ˆ
Q

ψ∆cn
i =

ˆ
Q

cn
i4ψ→

ˆ
Q

c∗i4ψ =

ˆ
Q

ψ∆c∗i

Which implies that ∆cn
i ⇀ ∆c∗i in L2 (Q) for i = 1,2 . Here and everywhere below the sign ⇀

denotes the weak convergence in the specified space. Estimates lead to

∂cn
i

∂t
⇀

∂c∗i
∂t

in L2 (Q) , i = 1,2

cn
i ⇀ c∗i in L2 (0,T : H2 (Ω)

)
, i = 1,2

cn
i ⇀ c∗i in L∞

(
0,T : H1 (Ω)

)
, i = 1,2

Writing cn
1cn

2− c∗1c∗2 =
(
cn

1− c∗1
)

cn
2 + c∗1

(
cn

2− c∗2
)

and making use of the convergences cn
i

−→ c∗i in L2 (Q), i= 1,2 and of the boundedness of c∗1, cn
2 in L∞ (Q), one arrives at cn

1cn
2 7→ c∗1c∗2in

L2 (Q). We also have vn ⇀ v∗ and un ⇀ u∗in L2 (Q) on a subsequence denoted again vn and un.

Since Uad is a closed and convex set in L2 (Q), it is weakly closed, so (u∗,v∗)∈Uad and as above

unχω1(θ)c
n
1→ χω1 (θ)u∗c∗1 in L2 ([0,T ]×ω1) also vnχω2(θ)c

n
2→ v∗χω2(θ)c

∗
2in L2 ([0,T ]×ω2).

Now, we may pass to the limit in L2 (Q) as n→ ∞ in (17-19) to deduce that (c∗,(u∗,v∗)) is an

optimal solution. �

5. NECESSARY OPTIMALITY CONDITIONS

In this section, we establish the optimality condition corresponding to problem (1) and we

investigate a caracterization of optimal control [15, 16].

Theorem 3. The mapping c : Uad → W 1,2 ([0,T ] ,H(Ω)) with ci ∈ L(T,Ω) is Gateaux

differentiable with respect to w∗ =

 u∗

v∗

. For w =

 u

v

 ∈Uad , c′ (w)w∗ =C is the unique

solution in W 1,2 ([0,T ] ,H(Ω)) with Ci ∈ L(T,Ω) of the problem

(22)


∂C
∂t

= AC+ JC+Gw sur Q

C (0,θ) = 0
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with

J =

 −βc∗2−µ−u∗χω1(θ) −βc∗1

βc∗2 −βc∗1−ϕ− v∗χω2 (θ)

 ,G =

 −c∗1χω1(θ) 0

0 −c∗2χω2 (θ)


Proof. In order to establish the result of this theorem, let (c∗,w∗) be an optimal pair and

wε = w∗+ εw (ε > 0) ∈ L2 (Q). Denote by cε =
(
cε

1,c
ε
2
)

and c∗ = (c∗1,c
∗
2) the solution of (4-6)

corresponding to wε and w∗, respectively. Put cε
i = c∗i + εCε for i = 1,2

Subtracting system (4-6) corresponding c∗ from the system corresponding to cε we get

(23)
∂Cn

1
∂t

= α∆Cn
1 +(−βc∗2−µ−u∗χω1(θ))C

n
1 +(−βc∗1)C

n
2−u∗χω1(θ)c

∗
1

∂Cn
2

∂t
= γ∆Cn

2 +(βc∗2)C
n
1− (−βc∗1−ϕ− v∗χω2 (θ))C

n
2− v∗χω2 (θ)c∗2

(t,θ)∈Q= [0,T ]×Ω

(24)
∂Cε

1
∂η

=
∂Cε

2
∂η

= 0 (t,θ) ∈ Σ = [0,T ]×∂Ω

(25) Cε
i (0,θ) = 0 θ ∈Ω, f or i = 1,2

Now, we show that Cε
i are bounded in L2 (Q) uniformly with respect to ε and that cε

i in L2 (Q).

To this end, denote

Jε =

 −βcε
2−µ−u∗χω1(θ) −βcε

1

βcε
2 −βcε

1−ϕ− v∗χω2 (θ)


and G =

 −c∗1χω1(θ) 0

0 −c∗2χω2 (θ)


Then the system (23-25) can be written in the form

(26)

 ∂Cε

∂t = ACε + JεCε +Gw, on [0,T ]

Cε (0) = 0

We consider (S (t) , t ≥ 0) the semi-group generated by A, then the solution of system (26) is

given by

(27) Cε (t) =
ˆ t

0
S (t− s)Jε (s)Cε (s)ds+

ˆ t

0
S (t− s)(Gw)(s)ds,
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since the elements of the matrix Jε are bounded uniformly with respect to ε, the Gronwall’s

inequality we guide to

(28) ‖Cε
i ‖L2(Q) ≤ Γ

for some constant Γ > 0 (i = 1,2). Then

(29) ‖cε
i − c∗i ‖L2(Q) = ε‖Cε

i ‖L2(Q)

Thus, cε
i → c∗i in L2 (Q), i = 1,2. Let

J =

 −βc∗2−µ−u∗χω1(θ) −βc∗1

βc∗2 −βc∗1−ϕ− v∗χω2 (θ)


and G =

 −c∗1χω1(θ) 0

0 −c∗2χω2 (θ)


Then the system (23-25) can be written as

(30)

 ∂C
∂t = AC+ JC+Gwon [0,T ]

C(0) = 0

and its solution is given by

(31) C (t) =
ˆ t

0
S (t− s)J (s)C (s)ds+

ˆ t

0
S (t− s)(Gw)(s)ds,

By (27) and (31) one deduces that

(32) Cε (t)−C (t) =
ˆ t

0
S (t− s)Jε (s)(Cε−C)+C (s)(Jε (s)− J (s))ds.

Since all the elements of the matrix Jεtend to the corresponding elements of the matrix J in

L2 (Q), by using the Gronwall’s inequality, we derive that Thus Cε
i →C∗i in L2 (Q) as ε→ 0, for

i = 1,2. �

Let p = (p1, p2) the adjoint variable, we can write the dual system associated to our problem

(33)


−∂p

∂t
−Ap− J∗p = D∗Dc∗ t ∈ [0,T ]

p(T,θ) = 0
∂p
∂η

= 0



12 MAROUANE KARIM, SOUKAINA BEN RHILA, HAMZA BOUTAYEB, MOSTAFA RACHIK

wehre w∗ is the optimal control, c∗ = (c∗1,c
∗
2) is the optimal state and D is the matrix defined by

D =

 1 0

0 1

 and ρ = (p,q).

Lemma 4. Under hypotheses of (26-32), if (c∗,(u∗,v∗)) is an optimal pair, then the dual system

(33) admits a unique strong solution p ∈W 1,2 ([0,T ] ,H(Ω)) with pi = (p1, p2) ∈ L(T,Ω) for

i = 1,2.

Proof. The lemma can be proved by making the change of variable s = T − t and the change of

functions qi (s,θ) = pi (T − s,θ) = pi (t,θ) ,(t,θ) ∈ Q, i = 1,2. and applying the same method

like in the proof above. �

Now, we can find the first order necessary condition

Theorem 5. Let w∗be an optimal control of (23-25) and let c∗ ∈W 1,2 (0,T ;H(Ω)) with c∗i ∈

L(T,Ω) for i = 1,2 be the optimal state, that is c∗ is the solution to (1.2) with the control w∗.

Then, there exists a unique solution p ∈W 1,2 (0,T,H(Ω)) of the linear problem

(34)


−∂p

∂t −Ap− J∗p = D∗Dc∗ t ∈ [0,T ]

p(T,θ) = 0
∂p
∂η

= 0

and

(35) u∗ = min
(

1,max
(

0,
c∗1χω1(θ)

p
p1

))
and v∗ = min

(
1,max

(
0,

c∗2χω2(θ)

q
p2

))
.

Proof. Suppose w∗ is an optimal control and c∗ = (c∗1,c
∗
2) = (c1,c2)(w∗) are the corresponding

state variables. Putting wε = w∗ + εh ∈ Uad ,h =

 h1

h2

∈ (L2(0,T ;L2(Ω)))2 and

corresponding state solution cε =
(
cε

1,c
ε
2
)
= (c1,c2)(wε).

Since the minimum of the objective functional is attained at w∗, we have
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J (w∗)(h) = limε→0
1
ε
(J (wε)− J (w∗))

= limε→0
1
ε
(

ˆ T

0

ˆ
ω1

(cε
1)

2− (c∗1)
2dθdt +

ˆ T

0

ˆ
ω2

(cε
2)

2− (c∗2)
2dθdt

+ p
ˆ T

0

ˆ
ω1

(uε)2− (u∗)2dθdt +q
ˆ T

0

ˆ
ω2

(vε)2− (v∗)2dθdt)

= limε→0(

ˆ T

0

ˆ
ω1

(
cε

1− c∗1
ε

)(cε
1 + c∗1)dθdt +

ˆ T

0

ˆ
ω2

(
cε

2− cε
2

ε
)(cε

2 + c∗2)dθdt

+ p
ˆ T

0

ˆ
ω1

(εh1)
2 +2h1u∗dθdt +q

ˆ T

0

ˆ
ω2

(εh2)
2 +2h2v∗dθdt)

as limε→0
cε

2−c∗2
ε

= limε→0
c(w∗+εh)−c∗2

ε
= c′(w∗)h, cε

2 −→ c∗2 inL2(Q)and cε
2,c
∗
2 ∈ L∞(Q).

Then we obtain

J (w∗)(h) = 2
´ T

0

´
Ω
(c∗1)c

′(w∗)hdθdt +2
´ T

0

´
Ω
(c∗2)c

′(w∗)hdθdt +2p
´ T

0

´
Ω

h1u∗dθdt

+2q
´ T

0

´
Ω

h2v∗dθdt = 2
´ T

0 〈Dc∗,DC〉H(Ω)+2ρ
´ T

0 〈w
∗,h〉(L2(Ω))2 dt

Since J is Gateaux differentiable at w∗ and Uad is convex, it is seen that J
′
(w∗)(z−w∗)≥ 0 for

all z ∈Uad

J
′
(w∗)(z−w∗) = 2

ˆ T

0
〈Dc∗,DC〉H(Ω)+2ρ

ˆ T

0
〈w∗,z−w∗〉L2(Ω) dt

We have
ˆ T

0
〈Dc∗,DC〉H(Ω) =

ˆ T

0
〈D∗Dc∗,C〉H(Ω) dt

=

ˆ T

0

〈
−∂p

∂t
−Ap− Jp,C

〉
H(Ω)

dt

=

ˆ T

0

〈
P,

∂C
∂t
−AC− JC

〉
H(Ω)

dt

=

ˆ T

0
〈P,G(z−w∗)〉H(Ω) dt

=

ˆ T

0
〈G∗P,(z−w∗)〉(L2(Ω))2 dt
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We deduce that J
′
(w∗)(z−w∗) ≥ 0 for all z ∈ Uad equivalent to´ T

0 〈G
∗P,(z−w∗)〉(L2(Ω))2 dt ≥ 0 for all z ∈ Uad . By standard arguments varying z, we

get

w∗ =−1
ρ

G∗P

Afterwards

u∗ =
c∗1χω1(θ)

ρ
p1 and v∗ =

c∗2χω2(θ)

ρ
p2

As (u∗,v∗) ∈Uad, we have

u∗ = min
(

1,max
(

0,
c∗1χω1(θ)

p
p1

))
and v∗ = min

(
1,max

(
0,

c∗2χω2(θ)

q
p2

))
�

6. NUMERICAL SIMULATIONS

In this section, we present numerical results that show and reinforce the effectiveness of

our control strategy. This strategy is based on applying two control terms representing the

control measure to keep the ecological balance in time and space. We developed a code in

MATLABT M, and simulated our results using different data. Regarding the numerical method,

we give numerical simulations to our optimality system which is formulated by state equations

with initial conditions and boundary conditions (4-6). We apply the forward-backward sweep

method (FBSM) [17, 18] to solve our optimality system in an iterative process. The state

equations are solved using a direct method in time by employing Euler explicit method, in order

to discretize the second order derivatives4XT and4YT we use the second order Euler explicit

method, initial control variables are guessed in the beginning of the iterative method, next, the

adjoint equations are solved backward in time. Finally, the control variables are updated with

the existing state and the adjoint solutions. The iterative process is repeated until a tolerable

criterion is reached.

The numerical results are presented in the spatial space with two dimensions. The parameter

values using in this part of numerical simulations are cited in table 1. Without loss of generality,

we consider a 40km×30km rectangular grid denoted .
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Table 1. Parameter values of marines species

X0 b α β µ

ω1 800 0.02 0.6 0.024 0.001

Y0 Λ γ β ϕ

ω2 100 0.03 0.6 0.024 0.0015

For all the figures shown below, the red part of the colored bars holds a very large number

whereas the blue part holds the smaller numbers. As can be seen in the following figures,

this fish population ranges from 0 to 1000. To demonstrate the impact of our controls on the

sustainability of the prey and predator population, we deal with two cases: without and with

controls. We assume the same initial state in both cases to maintain the validity of the results.

The model we suggest is a spatio-temporal prey-predator model. In other words, to show the

efficiency of the suggested model and the influence on the prey and the predator in a certain

area, we will present a numerical simulation over a time period of t=250 days. From figure 1,

the case without control, we notice that the density of prey strongly reduces, which may lead to

their absence. Nevertheless, we observe that there is a large increase of predators during these

250 days, as can be seen in figure 2. The remarks noted during these simulations lead us to

think about the definition of suitable control strategies which take these remarks into account.

To prove and clarify the usefulness of the control strategy, we present a regional control

to conserve a particular region to attain ecological balance. We consider two treatment areas

as a rectangle ω1 = [20,30]× [0,15] at the border, and ω2 = [10,20]× [15,25] in the center.

This strategy involves the introduction of two controls reflecting the effect of the applied

measurement program on the prey and predator population.

Figures 3-5 show the situation with control. In this situation, we have controlled the operation

of prey-predators to sustain their existence. So, in this case, the only compulsion we have is

through predation on prey populations.

In this second case, we maximize the optimal controls related to the development of the genus

of the two marine species. Based on Figure 3, the prey density level lowers with a minimum

value, which can guarantee its abundance for a long period of time in the ωi, i = 1,2. This

minimal decrease is explained by the presence of predation. From figure 4, we illustrate that
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the optimal control value employed in this case is effective in guaranteeing the density over

time. Indeed,The density of predators is fairly high in Figures 4-5, as these populations are still

feeding on prey and their fishing is well controlled in the ωi, i = 1,2. In this research, we have

found that the optimal control values that ensure the durability of marine populations are equal

to 0.52 and 0.73.

FIGURE 1. Evolution of X without controls along time

FIGURE 2. Evolution of Y without controls along time.
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FIGURE 3. Evolution of X with control in region ω1and ω2.

FIGURE 4. Evolution of X with control in region ω1
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FIGURE 5. Evolution of Y with control in region ω2.

7. CONCLUSION

In this work, we are concerned with the regional side of optimal control, we studied a

distributed optimal control pair in the form of minimization of the population density of prey

and predators in two diverse regions. We show the existence of solutions to our state system as

well as the existence of an optimal control. For a certain functional objective, an optimal control

is described in terms of the related state and the associated function. A numerical simulation is

performed, showing that the two optimal controls are very effective in reducing the total number

of the prey population as well as the number of predators in order to reach an ecological balance.
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