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Abstract. In this research, we propose a delayed vaccination model with the application for predicting the evo-

lution of infectious cases related to COVID-19 disease. The main purpose of this paper is to show the existence

of Hopf bifurcation that can explain the multiple waves that the world witnessed this recent times. Therefore, it

can be used the length between the doses for the vaccine that considered for different vaccines and its effect on

the evolution of the infectious cases. It has been shown that the investigated model can undergo Hopf bifurcation

in presence of delay time lags to the vaccine against a COVID-19, and can lead to the persistence of the disease.

The obtained mathematical findings are checked using graphical representations with proper interpretations on the

manner of controlling the outbreak of COVID-19 disease.
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1. INTRODUCTION

The American Johns Hopkins University reported that the total number of coronavirus infec-

tions in the world has risen to more than 254.3 million, and the total deaths to more than 5.1

million. According to the university’s data, the total number of cases of coronavirus in the world

reached 254,317,843, and the total number of deaths was 5,114,140. The United States topped

the list of countries in terms of the number of deaths due to the virus with 765,762 deaths, and

the total number of infections in it reached 47,308,698.

The U.S. Food and Drug Administration (FDA) has granted emergency use approval for

some COVID-19 vaccines in the United States and worldwide. The FDA has agreed to use the

Pfizer-Bioentech vaccine to prevent COVID-19 in people aged more above16. Lately, the FDE

has issued an emergency use authorization for the Pfizer-BioEntech vaccine for COVID-19 that

aged between 5 and 15.

Vaccination can prevent infected individuals to develop sever symptoms developing that can

lead to death. In addition, the immunity acquired from the COVID-19 vaccine may be better

than the immunity acquired when infected with COVID-19.

Indeed, persons that received vaccination can return to their activities without any fear of the

dangers of being infected from COVID-19, and without using protection materials (masks as

an example). The recent use of different vaccines is the reason behind returning to our natural

lifestyle without feat from the outcome of not wearing masks and the fear of being infected.

Therefore, vaccination helped us in facing the pandemic. Experts suggest an additional dose of

the COVID-19 vaccine for individuals fully vaccinated who may not have had a strong enough

immune response.

Numerous mathematical models have been used to predict the outbreak of COVID 19 disease,

with different approaches. For example, in [13, 16], the authors considered an age-structured

model for modeling the spread of COVID-19 disease. In [12] the authors considered a system

of ODEs that considers the asymptomatic and symptomatic individuals and its effects of the

spread of COVID-19 in the north African countries. Different other approaches have been used

in the past two years to predict the effectiveness of measured considered by governments, such

as the papers [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19]. Due to the large number of
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vaccines used by different countries in the past year, the effect of a vaccination strategy on the

evolution of infectious cases is mandatory to determine the effectiveness of the disease. In this

regard, we investigate a vaccination mathematical model for COVID-19 disease that studies its

evolution in our community. Our starting point is the model considered by Naji and Mohsen in

[1], which is formulated as:

dS
dt

= Λ+(1− p)A− βSI
N
− (µ +ψ)S+θV,

dV
dt

= ψS− σβV I
N
− (µ +θ)V,

dI
dt

= pA+
βSI
N

+
σβV I

N
− (µ +α)I,(1)

dR
dt

= αI−µR.

Here, S(t),V (t), I(t) and R(t) represent to the susceptible, vaccination, infected and recovery

respectively. They studied and discussed the stability analysis of the model (1) without delay. In

this work, we modify this model and study the delayed effect of taking the vaccination against

a COVID-19 pandemic. Indeed, the vaccine will take some time until becomes effective. This

conduct can be obtained by changing the term ψS(t) by ψS(t− τ). This assumption is put due

to the vaccination policy for different vaccines, where most of them must take more than a dose

to get full immunity to the disease. Based on this consideration and motivated by the work

above, we incorporate the vaccine delay into the model (1) and study the following delayed

system:

dS
dt

= Λ+(1− p)A− βSI
N
−µS−ψS(t− τ)+θV,

dV
dt

= ψS(t− τ)− σβV I
N
− (µ +θ)V,

dI
dt

= pA+
βSI
N

+
σβV I

N
− (µ +α)I,

dR
dt

= αI−µR.(2)
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With the initial conditions

S(0)> 0, V (υ)> 0, f or υ ∈ [−τ,0], I(0)≥ 0, R(0)≥ 0.

And all the parameters meanings are similar in [1], and τ is the vaccination delay against

COVID-19 pandemic. In the next section, the conditions for local symbiotically stability is

discuss by Routh-Hurwtiz method under τ > 0. Also, By taking the vaccine delay τ as the

bifurcation parameter, the conditions for the occurrence of Hopf bifurcation are investigated in

Section 3. Further, some numerical results are confierd out for our analytic results in Section 4.

Finally, the paper ends with conclusion of the work.

2. STABILITY AND HOPF BIFURCATION ANALYSIS OF STEADY STATE POINTS

Based on the results in [1], we know the model (2) has two equilibrium points are namely

by disease free point E0 = (S0,V0,0) and endemic point E∗ = (S∗,V ∗, I∗), as well as, the E0 is

local stable without delay (τ = 0), under the R0 < 1. While, if R0 > 1 we know the E∗ became

stable without delay, for more detail see [1].

Here we will study the Hopf bifurcation occurrence when take (τ > 0) as the bifurcation pa-

rameter. Then, we can rewrite the jacobian matrix and the characteristic equation of model (2),

near E0 in below.

(3) J(E0) =


Q1−Q2e−λτ b12 b13

Q2e−λτ b22 b23

0 0 R0

 .

Such that

Q1 = −µ , Q2 = ψ , R0 =
β (S◦+σV◦)

N − (µ +α), b12 = θ , b13 =
−βS0

N , b22 = −(µ + θ), b23 =

−σβV0
N .

Clearly, the characteristic equation of (3) about E0 is given by

(4) λ
3 +M1λ

2 +M2λ +M3 +(N1λ
2 +N2λ +N3)e−λτ = 0
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here

M1 =−(Q1 +b22 +R0),

M2 = Q1(b22 +R0)+b22 +R0,

M3 =−Q1(R0b22),

N1 = Q2,

N2 =−Q2(b22 +b12 +R0),

N3 = Q2R0(b22 +b12).

Clearly, in case τ > 0 we have that the equation (4) has at least a pair of purely imaginary

roots represented by λ = iϖ in equation (4) and separating the real from imaginary parts, which

gives in below results

cc(N1ϖ
2−N3)Sinϖτ +N2ϖCosϖτ = ϖ

3−M2ϖ ,

(N3−N1ϖ
2)Cosϖτ +N2ϖSinϖτ = M1ϖ

2−M3.(5)

Now, if squaring equations (5) and adding them, we get

(6) ϖ
6 +h1ϖ

4 +h2ϖ
2 +h3 = 0,

where

h1 = Q2
1−Q2

2 +b2
22 +R2

0 ,

h2 = M2
2 −N2

2 −2M1M3 +2N1N3,

h3 = M2
3 −N2

3 .

Putting K = ϖ2, then equation (6) became

(7) K3 +h1K2 +h2K +h3 = 0.

According to Descartes rule of sign there is a unique positive root say ϖ◦ satisfying equation

(7). That is equation (6) has a positive root ϖ◦. Thus, equation (4) has at least a pair of purely

imaginary roots iϖ◦ corresponding to the time delay τ .
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Obviously, when substituting ϖ◦ in equation (5) and solving with simplified the result of

system for τ , we have

(8)

τ j =
1

ϖ◦
Cos−1 (N2−N1M1)ϖ

4
◦ +(M1N3 +M3N1−N2M2)ϖ

2
◦ −M3N3

N2
1 ϖ4
◦ +(N2

2 −2N1N3)ϖ2
◦ +N2

3
+

2 jπ
ϖ◦

, j = 0,1,2, ....

Next, we discuss the stability of the endemic equilibrium point of model (2). Then, we can

evaluating the jacobian matrix and the characteristic equation near E∗ in below.

(9) J(E∗) =


D1−D2e−λτ c12 c13

D2e−λτ c22 c23

c31 c32 c33

 .

Such that

D1 = −(β I∗
N + µ), D2 = ψ , c12 = θ , c13 = −βS∗

N , c22 = −σβ I∗
N − (µ + θ), c23 = −σβV ∗

N ,

c31 =
β I∗
N , c32 =

σβ I∗
N , c33 =

β (S∗+σV ∗)
N − (µ +α).

Clearly, the characteristic equation of (9) about E∗ is given by

(10) λ
3 + M̃1λ

2 + M̃2λ + M̃3 +(Ñ1λ
2 + Ñ2λ + Ñ3)e−λτ = 0

here

M̃1 =−(D1 + c22 + c33),

M̃2 = D1(c22 + c33)− c13c31 + c22c33− c23c32,

M̃3 = D1(c23c32− c22c33)− c12c23c31 + c22c13c31,

Ñ1 = D2,

Ñ2 =−D2(c22 + c33 + c12),

Ñ3 = D2(c33(c22 + c12)− c32(c13 + c23)).

Clearly, in case τ > 0 we have that the equation (10) has at least a pair of purely imaginary

roots represented by λ = iϖ̃ in equation (10) and separating the real from imaginary parts,

which gives in below results
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(11)
(Ñ1ϖ̃2− Ñ3)Sinϖ̃τ + Ñ2ϖ̃Cosϖ̃τ = ϖ̃3− M̃2ϖ̃ ,

(Ñ3− Ñ1ϖ̃2)Cosϖ̃τ + Ñ2ϖ̃Sinϖ̃τ = M̃1ϖ̃2− M̃3.

By squaring equations (11) and adding them, we get

(12) ϖ̃
6 + h̃1ϖ̃

4 + h̃2ϖ̃
2 + h̃3 = 0,

where

h̃1 = D2
1−D2

2 + c2
22 + c2

33 +2(c13c31 + c23c32),

h̃2 = M̃2
2 − Ñ2

2 −2(M̃1M̃3 + Ñ1Ñ3),

h̃3 = M̃2
3 − Ñ2

3 .

Putting κ = ϖ̃2 in equation (12) we get

(13) κ
3 + h̃1κ

2 + h̃2κ + h̃3 = 0.

Clearly, by help the Descartes rule of sign there is a unique positive root say ϖ̃◦ satisfying

equation (12). That is equation (11) has a positive root ϖ̃◦. Thus, equation (9) has at least a pair

of purely imaginary roots iϖ̃◦ corresponding to the time delay τ .

Obviously, when substituting ϖ̃◦ in equation (10) and solving with simplified the result of

system for τ , we have

(14)

τ j =
1

ϖ̃◦
Cos−1 (Ñ2− Ñ1M̃1)ϖ̃

4
◦ +(M̃1Ñ3 + M̃3Ñ1− Ñ2M̃2)ϖ̃

2
◦ − M̃3Ñ3

Ñ2
1 ϖ̃4
◦ +(Ñ2

2 −2Ñ1Ñ3)ϖ̃2
◦ + Ñ2

3
+

2 jπ
ϖ̃◦

, j = 0,1,2, ...

Hence, define that the value of time delay when j = 0, we have τ0 = min j≥0τ j, then λ (τ) =

γ(τ)+ iϖ̃(τ) be a root of equation (9), such that γ(τ0) = 0 and ϖ̃(τ0) = ϖ̃◦. Then we have the

following theorem.

Theorem The roots of the characteristic equation (9), satisfy the following transversality

condition hold

(15)
[

d(Reλ (τ))

dτ

]
τ=τ0

6= 0,
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under

(16) M̃2
2 − Ñ2

2 −2(M̃1M̃3 + Ñ1Ñ3)> 0.

Proof: By using λ (τ) in equation (9) and differentiating the result equation with respect to

τ , we get that

(17){
3λ

2 +2M̃1λ + M̃2 +(2Ñ1λ + Ñ2)e−λτ − τ(Ñ1λ
2 + Ñ2λ + Ñ3)e−λτ

} dλ

dτ
= λ (Ñ1λ

2 + Ñ2λ + Ñ3)e−λτ .

Thus

(18)
(

dλ

dτ

)−1

=
3λ 2 +2M̃1λ + M̃2

−λ (λ 3 + M̃1λ 2 + M̃2λ + M̃3)
+

2Ñ1λ + Ñ2

λ (Ñ1λ 2 + Ñ2λ + Ñ3)
− τ

λ
.

Since, λ = iϖ̃◦ at τ = τ0, then equation (18) can be rewrite in below

(19)
(

dλ

dτ

)−1

=
−3ϖ̃2

◦ +2M̃1iϖ̃◦+ M̃2

iϖ̃◦(iϖ̃3
◦ + M̃1ϖ̃2

◦ − M̃2iϖ̃◦− M̃3)
+

2Ñ1iϖ̃◦+ Ñ2

iϖ̃◦(Ñ2iϖ̃◦+ Ñ3− Ñ1ϖ̃2
◦ )
− τ0

iϖ̃◦
.

As well as, if

(20) sgn
[

d(Reλ )

dτ

]
τ=τ0

= sgn

[
Re
(

dλ

dτ

)−1
]

λ=iϖ̃◦

.

Accordingly, from the fact

Re
[

3λ 2+2M̃1λ+M̃2
−λ (λ 3+M̃1λ 2+M̃2λ+M̃3)

]
= 2M̃1(M̃1ϖ̃2

◦−M̃3)−(M̃2−3ϖ̃2
◦ )(ϖ̃

2
◦−M̃2)

ϖ̃2
◦ (ϖ̃

2
◦−M̃2)2+(M̃1ϖ̃2

◦−M̃3)2 ,

Re
[

2Ñ1λ+Ñ2
λ (Ñ1λ 2+Ñ2λ+Ñ3)

]
=

2Ñ1(Ñ3−Ñ1ϖ̃2
◦ )−Ñ2

2
Ñ2

2 ϖ̃2
◦+(Ñ3−Ñ1ϖ̃2

◦ )
2 ,

Re
[

τ

λ

]
= Zero.

So, we can write it in the following

(21)
[

Re
(

dλ

dτ

)]−1

τ=τ0

=
2M̃1(M̃1ϖ̃2

◦ − M̃3)− (M̃2−3ϖ̃2
◦ )(ϖ̃

2
◦ − M̃2)

ϖ̃2
◦ (ϖ̃

2
◦ − M̃2)2 +(M̃1ϖ̃2

◦ − M̃3)2 +
2Ñ1(Ñ3− Ñ1ϖ̃2

◦ )− Ñ2
2

Ñ2
2 ϖ̃2
◦ +(Ñ3− Ñ1ϖ̃2

◦ )
2 .

It easy to see that, equation (21) dose not equal zero if and only if the condition (15) is hold.

Hence, the obtained result shows that the eigenvalue equation (9) crosses the imaginary axis

from left to right as τ passes through τ0. Then model (2) losses it is stability near E∗ and

undergoes the Hopf bifurcation when τ = τ0.
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3. NUMERICAL SIMULATION

In this section we check our computation, we perform some numerical simulations. We

choose a set of hypothetical parameters as follows

(22) Λ= 500, A= 25, ψ = 0.22, β = 0.1, µ = 0.1, p= 0.1, α = 0.2, θ = 0.05, σ = 0.1.

For the parameter, the trajectory of model (2) converges to the stable to E∗ at τ = 11 < τ0 =

14.3; converges to the periodic at τ = 14.3 = τ0 see Figures (1) and (2) respectively. Again

the trajectory of model (2) converges to increasing the periodic at τ = 15 > τ0, see Figure (3).

Now, if we take the values of β = 0.01, p = 0 and τ = 11, with keep the other parameters in

equation (22) we get the trajectory of model (2) converges to the stability to E0; a periodic at

τ = 14.3 = τ0 see Figures (4) and (5) respectively.
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FIGURE 1. The solution and the phase trajectories of the model (2) to E0 before

Hopf bifurcation occurs τ = 11.
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FIGURE 2. The solution and the phase trajectories of the model (2) to E0 after

Hopf bifurcation occurs τ = 14.3.
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FIGURE 3. The solution and the phase trajectories of the model (2) to E∗ before

Hopf bifurcation occurs τ = 11.
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FIGURE 4. The solution and the phase trajectories of the model (2) to E∗ after

Hopf bifurcation occurs τ = 14.3.
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4. CONCLUSION AND RESULTS

In this manuscript we discussed the impact of delay in vaccination on COVID-19 and proved

that large delay will leads the extinction of disease while for small delay the persistence ob-

served. For this The we provided the Hopf bifurcation analysis of the suggested model and

highlighted the importance of the vaccine against a COVID-19 virus spread. It has been shown

that the investigated model can undergo Hopf bifurcation in presence of delay time lags to

vaccine against a COVID-19, about for all the possible equilibrium points. The obtained theo-

retical results are checked using numerical simulations with a brief discussion on the biological

relevance.
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