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Abstract. In this study, we provide a discrete mathematical SEIR model that depicts the evolution of an infectious

disease while introducing the novel idea of taking regional infection spread into account. To reduce the disease’s

ability to spread among people and places, we suggest three control measures. The optimal controls are defined

using the Pontryagin maximum principle, and the optimality system is solved using an iterative method. Finally,

MATLAB-based numerical simulations are performed to check the results of the theoretical analysis.
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1. INTRODUCTION

Infectious diseases existed in the Stone Age, during the time of hunters and gatherers. Yet,

the transition to a sedentary lifestyle has given rise not only to socio-economic progress [1], but

also created an ideal environment for the development of epidemics. Researchers suggest that

it was then that malaria, leprosy, tuberculosis, smallpox, diphtheria, measles, plagues and flu
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appeared [2]. And the more civilization developed, the larger cities became and the closer trade

relations between different countries became, the closer the threat of a pandemic approached

humanity [3]. An epidemic is considered to occur when a contagious disease affects one country

or region [4], while in a pandemic, the disease crosses borders and affects many countries or

regions [5]. In the history of mankind, epidemics and pandemics covered many countries,

claimed thousands to millions of lives, and involved a large number of patients who needed

care and treatment.

Historical studies have been provided plenty of spatio-geographical epidemic spread. Ac-

cording to researchers, there have been six pandemics in the last two centuries. In 1918-1919

occurred the infamous Spanish flu measuring 21 millions of deaths worldwide [6]. In 1957-

1958 the Asian flu pandemic which appeared within a short space of time in widely separated

countries, and claimed about 2 million lives [7]. In 2009 WHO declared a pandemic of H1N1

influenza (swine flu) that spread fast around the world, asserted the lives of about 450 thousand

people [8]. In 2002-200”, 8,5 thousand people were infected with SARS across the continents

[9]. Over decades, HIV steadily expanded across Africa and later into other parts of the world.

However, it is known that the virus has existed in the US since at least the mid to late 1970s

[10]. The recent virus Covid-19 known as severe acute respiratory syndrome–coronavirus is

a new instance of pandemics that have the ability to spread through continents, the pandemic

was reported firstly in Wuhan, China, then the outbreak increased greatly and moved to other

Chinese cities and multiple countries, moving to other continents [11, 12]. In Europe, France

was reported as the first official case of the virus, followed by Germany and Finland, in a short

period of time all 27 countries of the European Union were affected [13]. Observations state

that more than 4 millions of people were infected in more than 200 countries. This epidemic

can cause serious respiratory symptoms and severe diseases such as organ failure and death

[14, 15].
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Therefore, epidemiological modeling is globally used for detailing the process of epidemic

dissemination and providing further apprehension of numerical mechanisms of disease trans-

mission and spread [16]. Thus, the latter came with the need for evaluating intervention strate-

gies for newly emerging and re-emerging pathogens. Mathematical modeling describes a math-

ematical framework utilizing variables and their interrelationships in order to emphasize certain

phenomena or predict future events [17].. This methodology, is used as a tool in scientific disci-

plines, yet, it doesn’t compete with other subjects, physics, or biology; it is used systematically

in all spheres of creative activity. Fundamentally, many epidemiological models are recognized

to control the development of infectious diseases such as SARS, HIV, Ebola, Influenza, Tu-

berculosis, Cholera, Measles and others [18, 19][20, 21]. Beside the discrete-time SIR model

presented in various geographical regions, to control the spatio-temporal propagation of an epi-

demic. In contrast to prior models that have primarily concentrated on the optimization of one

single region, the multi-regional discrete-time SIR model focuses on the intervention of numer-

ous regions. [22].

Epidemiology, due to some combination of circumstances, has become very popular over the

past years. Many people have become interested in modeling epidemics, and more and more

people are already aware of mathematical and epidemiological models [23]. SEIR model is

considered as a modification of SIR. It represents a whole class of models, which are called

“compartment epidemiological models”. These models assume that each individual in a popu-

lation can be in one of several states and move from one state to another over time, and are based

on the creation of differential equations describing the dependence of the number of infected

individuals on time [24, 25].

The SEIR model devises the population into four classes S-Susceptible (class consists of

people who does not receive any infection yet, thus the possibility to get infected is strong

when making contact with other members of the population), this model takes into account the

incubation period (E-exposed, individuals get sick, but are not contagious and will eventually

become completely ill), I-Infected (individuals who have the virus and the capacity to spread it

to other), R-Recovered (with immunity those users who were released from the disease, either

because of immunity or because of death) [26, 27]. In such model, infection of susceptible
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individuals occurs in the same way as in the SIR model, but such individuals do not fall into

group I, but into group E. And from E, with a certain probability (the number is the inverse of

the incubation period), the transition occurs already in I. During the latency period E, the node

is considered infected, hence does not spread the virus. After some time, it becomes capable

of infecting other hosts I and then becomes R [28]. The model behaves radically differently

depending on the indicator representing the average number of people that one infected person

manages to infect during the time until he himself recovers. If this indicator number is less

than one, the epidemic subsides; if the indicator is greater than one, a significant part of the

population becomes infected. The value of the indicator depends on the characteristics of the

virus, the proportion of the population that has received immunity (as a result of vaccination

or a past illness), as well as measures to suppress the epidemic (various forms of quarantine)

[29, 25]. Modeling shows how fast the epidemic widespread, how many people will be infected,

and patients in critical condition. The latter indicator can be compared with the capacity of the

medical system and determine whether it is able to cope with the influx of patients in need of

specialized care: in the case of COVID-19 for instance, this is resuscitation, artificial ventilation,

etc [30].

The combination of various scientifically based methods of epidemic control measures in-

sures the prevention of development of infectious diseases among the most vulnerable groups

of the population, reduce the overall incidence in many countries, and even eliminate individual

diseases. In case of the COVID-19 epidemic spread, quarantine measures have been imple-

mented around the world beside other control strategies as vaccination, and non-pharmaceutical

interventions such as social distancing, public education, and staging of medical equipment.

Chinazzi et al proved that travel restrictions introduced in China 2020 slowed rates of epidemic

dissemination by 3 to 5 days. However, the most remarkable effect was on the international

scale [31]. In [32] a deterministic SEIR model was developed to evaluate the impact of inter-

national air travel restrictions in the influenza pandemic. Other models have shown the role of

Travel restrictions in decreasing the influx of new infected cases [33][34]. Brownstein, et al.

[35] have organized supporting evidence, revealing that the grounding of airliners in the US

after September 11/2001 retarded epidemic dynamics during the period of 2001 to 2002 season
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by nearly 2 weeks.This control strategy’s primary goal is to stop the spread of the infectious dis-

ease until specific medical and other control strategies can be created and implemented. Some

control systems can be found in the following references [36, 37, 38].

The remaining parts of the paper are arranged as follows. In Section 2, we provide the

discrete-time mathematical model SEIRZSZIZR that depicts the evolution of a contagious virus

and accounts for its spread among people and geographic regions. In addition, we provide a nu-

merical simulation without control to our model. The optimal control problem of the considered

model is studied in Section 3. Results and discussion are provided to ensure the effectiveness

of the control strategies in Section 4. To conclude our paper, a conclusion is given in Section 5.

2. PRESENTATION OF THE MODEL

We consider a simple SEIR model [39], with the innovation of taking into account the evolu-

tion of regions. The considered model is divided in two parts. The first part SEIR describes the

evolution of individuals during an infectious disease, where S represents the number of suscep-

tible, E the exposed individuals (Individuals get sick, but are not contagious and will eventually

become completely ill), I the infected, and R the recovered. The second part Z represents the

different types of regions, ZS represents the number of susceptible regions, where there are only

susceptible individuals, after visiting an infected person, a susceptible region is likely to be in-

fected, which we will note ZI , the last compartment ZR designates the infected regions, which

are recovered. We obtain the following two models: 1 for the evolution of individuals, and 2 for

the evolution of regions.

(1)



Si+1 = Λ+Si +−α SiIi−µ Si

Ei+1 = Ei +α SiIi− (µ +δ )Ei

Ii+1 = Ii +δEi− (µ +d) Ii− rIi

Ri+1 = −µ Ri + rIi +Ri

(2)


ZS

i+1 = ZS
i −βZS

i Ii +θZR
i

ZI
i+1 = ZI

i +βZS
i Ii− γZI

i

ZR
i+1 = ZR

i + γZI
i −θZR

i
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with initial conditions S0 ≥ 0,E0, I0 ≥ 0,R0 ≥ 0,ZS
0 ≥ 0,ZI

0 ≥ 0 and ZR
0 ≥ 0 and where i ∈

{0,1, ...,N−1}.

Parameters description can be found in Table 1.

Parameter Physical interpretation

Λ The incidence of susceptible

α The rate of people who were infected by

contact with infected.

β The rate of regions which become in-

fected since infected people.

δ The rate of individual exposures will have

symptoms and become infected.

θ The rate of convertion from recovered re-

gions to susceptible regions.

µ The natural death rate.

d Mortality since the virus

r The rate of individuals who were recov-

ered from the disease.

TABLE 1. List of all parameters of systems (1) and (2)

2.1. Simulation without control. In this section, we are interested in giving a simulation of

the people and regions infected and recovered in 50 weeks.

Through Figures 1, 3, 2 and 4, we see a significant increase in the number of infected people

and infected regions, and a slight increase in the number of those recovered, which will make

us propose three control strategies in the next section.
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FIGURE 1. Infected individuals without controls
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FIGURE 2. Recovered individuals without controls
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FIGURE 3. Infected regions without without controls
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FIGURE 4. Recovered regions without controls
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3. THE OPTIMAL CONTROL PROBLEM

3.1. Presentation of the controls. The discrete-time controlled systems associated with (1)

and (2) are given as follows

(3)



Si+1 = Λ+Si +−α SiIi−µ Si− viSi

Ei+1 = Ei +α SiIi− (µ +δ )Ei

Ii+1 = Ii +δEi− (µ +d) Ii− rIi−uiJi

Ri+1 = −µ Ri + rIi +uiIi + viSi +Ri

(4)


Zs

i+1 = Zs
i −βwiZS

i Ii +θZR
i

Zi
i+1 = ZI

i +βwiZS
i Ii− γZI

i

ZR
i+1 = ZR

i + γZI
i −θZR

i

with initial conditions S0 ≥ 0, I0 ≥ 0,R0 ≥ 0,ZS
0 ≥ 0,ZI

0 ≥ 0 and ZR
0 ≥ 0 and where i ∈

{0,1, ...,N−1}.

The control strategy u represents treatment and medical care for infected people. The control

strategy v represents vaccination of susceptible individuals and thus protects them from the

virus. The control strategy w represents the blocking of travel where we block the meeting

between susceptible and infected individuals and the visit of infected individuals to susceptible

areas.

3.2. Objective functional. The goal is to minimize the objective function J (u,v,w) defined

by

(5) J (u,v,w) = (xIN− yRN + zZI
N)+

N−1

∑
i=0

(
xIi− yRi + zZI

i +
A
2
(ui)

2 +
B
2
(vi)

2 +
C
2
(wi)

2
)

where A > 0, B > 0,C > 0, x > 0, y > 0, z > 0 are the weight constants of controls, u =

(u0, ...,uN−1) ,v = (v0, ...,vN−1) and w = (w0, ...,wN−1), and N is the final time of our strat-

egy of control. Our objectives are to reduce the number of infected people and infected areas,

reduce the cost of applying controls, and increase the number of removed. To put it another
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way, we’re looking for optimal controls u∗, v∗ and w∗ such that

(6) J (u∗,v∗,w∗) = min{J (u,v,w)/u ∈U, v ∈V, w ∈W}

where U , V and W are the control sets defined by

(7) U = {u/umin ≤ ui ≤ umax, i = 0, ...,N−1}

(8) V = {v/vmin ≤ vi ≤ vmax, i = 0, ...,N−1}

(9) W = {w/wmin ≤ wi ≤ wmax, i = 0, ...,N−1}

such that 0 < umin < umax < 1, 0 < vmin < vmax < 1 and 0 < wmin < wmax < 1.

3.3. Sufficient conditions. In this paragraph we present the theorem that ensures the exis-

tence of an optimal control.

Theorem 3.1. There exists an optimal control (u∗,v∗,w∗) ∈U×V ×W such that

J (u∗,v∗,w∗) = min{J (u,v,w)/u ∈U, v ∈V, w ∈W}

subject to the controlled systems (3) , (4) and initial conditions.

Proof. Since the parameters of the system are bounded and there are a finite number of time

steps, that is S, E, I, R, ZS, ZI and ZR are uniformly bounded for all (u,v,w) in the control set

U ×V ×W , thus J (u,v,w) is also bounded for all (u,v,w) ∈U ×V ×W . Which implies that

inf(u,v,w)∈U×V×W J (u,v,w) is finite, and there exists a sequence (un,vn,wn) ∈U ×V ×W such

that

lim
n→+∞

J (un,vn,wn) = inf
(u,v,w)∈U×V ×W

J (u,v,w)

and corresponding sequences of states In, Sn, Rn and ZSn,ZIn,ZRn. Since there is a finite number

of uniformly bounded sequences, there exists (u∗,v∗,w∗) ∈U ×V ×W and S∗, E∗, I∗ R∗ and

ZS∗,ZI∗,ZR∗ such that, on a sequence,

(un,vn,wn)→ (u∗,v∗,w∗)

Sn→ S∗

En→ E∗
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In→ I∗

Rn→ R∗

ZSn→ ZS∗

ZIn→ ZI∗

ZRn→ ZR∗.

Finally, due to the finite dimensional structure of the systems (3), (4) and the objective function

J (u,v,w), (u∗,v∗,w∗) is an optimal control with corresponding states I∗, S∗, R∗,ZS∗,ZI∗ and ZR∗.

Which complete the proof �

3.4. Necessary conditions. By using a discrete version of the Pontryagin’s maximum princi-

ple [40], we extract the necessary conditions for our optimal controls. For this goal, we define

the Hamiltonian as

Hi = xIi− yRi + zZI
i +

1
2

Aui
2 +

1
2

Bvi
2 +

1
2

Cwi
2 +λ

i+1
1 (−α SiIi−µ Si− viSi +Λ+Si)

+λ
i+1
2 (α SiIi− (µ +δ )Ei +Ei)+λ

i+1
3 (Ii +Eiδ − (µ +d) Ii− rIi−uiIi)

+λ
i+1
4 (−µ Ri + rIi +uiIi + viSi +Ri)+λ

i+1
5

(
−β wiZS

iIi +θ ZR
i +ZS

i
)

+λ
i+1
6

(
β wiZS

iIi− γ ZI
i +ZI

i
)
+λ

i+1
7
(
γ ZI

i−θ ZR
i +ZR

i
)

Theorem 3.2. Considering the optimal controls u∗, v∗, w∗ and solutions S∗, E∗ I∗, R∗,

ZS
i
∗,ZI

i
∗ and ZR

i
∗, there exists λ i

k, i = 1...N, k = 1,2, · · · ,7 the adjoint variables satisfying the

following equations

∆λ
i
1 = −

[
λ

i+1
1 (−α Ii−µ− vi +1)+λ

i+1
2 α Ii + viλ

i+1
4
]

∆λ
i
2 = −

[
λ

i+1
2 (−µ−δ +1)+λ

i+1
3 δ

]
∆λ

i
3 = −

[
x−α Siλ

i+1
1 +α Siλ

i+1
2 +λ

i+1
3 (−d− r−µ−ui +1)

+ λ
i+1
4 (r+ui)−β ZS

iλ
i+1
5 +β ZS

iλ
i+1
6 wi

]
∆λ

i
4 = −

[
−y+λ

i+1
4 (−µ +1)

]
∆λ

i
5 = −

[
λ

i+1
5 (−β Ii +1)+λ

i+1
6 β Iiwi

]
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∆λ
i
6 = −

[
z+λ

i+1
6 (−γ +1)+ γ λ

i+1
7
]

∆λ
i
7 = −

[
λ

i+1
5 θ +λ

i+1
7 (−θ +1)

]
where λ N

1 = 0,λ N
2 = 0,λ N

3 = x,λ N
4 = −y,λ N

5 = 0,λ N
6 = z,λ N

7 = 0 are the transversality con-

ditions. In addition u∗ =
(
u∗0, ...,u

∗
N−1
)
, v∗ =

(
v∗0, ...,v

∗
N−1
)

and w∗ =
(
w∗0, ...,w

∗
N−1
)

are given

by

u∗i = min

{
max

{
umin,

Ii
(
λ

i+1
3 −λ

i+1
4
)

A

}
,umax

}
i = 0, ...,N−1

v∗i = min

{
max

{
vmin,

Si
(
λ

i+1
1 −λ

i+1
4
)

B

}
,vmax

}
i = 0, ...,N−1

w∗i = min

{
max

{
β IiZS

i
(
λ

i+1
5 −λ

i+1
6

)
C

}
,wmax

}
i = 0, ...,N−1

Proof. Using the discrete version of the Pontryagin’s maximum principle [40], we obtain the

following adjoint equations:

∆λ
i
1 = −∂H

∂Si

= −
[
λ

i+1
1 (−α Ii−µ− vi +1)+λ

i+1
2 α Ii + viλ

i+1
4
]

∆λ
i
2 = −∂H

∂Ei

= −
[
λ

i+1
2 (−µ−δ +1)+λ

i+1
3 δ

]
∆λ

i
3 = −∂H

∂ Ii

= −
[
x−α Siλ

i+1
1 +α Siλ

i+1
2 +λ

i+1
3 (−d− r−µ−ui +1)

+λ
i+1
4 (r+ui)−β ZS

iλ
i+1
5 +βwiZS

i λ
i+1
6

]
∆λ

i
4 = −∂H

∂Ri

= −
[
−y+λ

i+1
4 (−µ +1)

]
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∆λ
i
5 = −∂H

∂ZI
i

= −
[
λ

i+1
5 (−β Ii +1)+λ

i+1
6 β Iiwi

]
∆λ

i
6 = −∂H

∂ZI
i

= −
[
z+λ

i+1
6 (−γ +1)+ γ λ

i+1
7
]

∆λ
i
7 = −∂H

∂ZR
i
=

= −
[
λ

i+1
5 θ +λ

i+1
7 (−θ +1)

]
with λ N

3 = x,λ N
4 =−y,λ N

6 = z . To get the optimality conditions, we consider the variation with

respect to controls (ui, vi, wi) and set it to zero

∂Hi

∂ui
= Aui− Iiλ

i+1
3 +λ

i+1
4 Ii = 0

∂Hi

∂vi
= Bvi−Siλ

i+1
1 +λ

i+1
4 Si = 0

∂Hi

∂wi
=−λ

i+1
5 ZS

iIiβ +λ
i+1
6 ZS

iIiβ +Cwi = 0

Then we obtain the optimal control

ui =
Ii
(
λ

i+1
3 −λ

i+1
4
)

A

vi =
Si
(
λ

i+1
1 −λ

i+1
4
)

B

wi =
β IiZS

i
(
λ

i+1
5 −λ

i+1
6

)
C

By the bounds in U , V and W of the controls in the definitions (7),(8) and (9), it is easy to obtain

u∗i , v∗i and w∗i in the following form

u∗i = min

{
max

{
umin,

Ii
(
λ

i+1
3 −λ

i+1
4
)

A

}
,umax

}
i = 0, ...,N−1

v∗i = min

{
max

{
vmin,

Si
(
λ

i+1
1 −λ

i+1
4
)

B

}
,vmax

}
i = 0, ...,N−1
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w∗i = min

{
max

{
β IiZS

i
(
λ

i+1
5 −λ

i+1
6

)
C

}
,wmax

}
i = 0, ...,N−1

�

4. RESULTS AND DISCUSSION

4.1. Numerical simulation. The optimal control problem involving the two systems 3 and 4

and the objective function mathcalJ(u,v,w) will be numerically solved in this section. We write

the code in MATLAB ( See algorithm 1) and we simulate our results. The FBSM method-like

discrete iterative discrete method is used to solve the optimality systems and converges after

a proper test. The adjoint system is then solved backward in time due to the transversality

conditions after the state system is first solved with the initial assumption forward in time.

The state and co-state values obtained in the preceding steps are then used to update the optimal

control values. The final step is to carry out the preceding actions up until the tolerance standard

is reached.
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Algorithm 1 Determination of states of the controlled system and controls u,v and w.
REQUIRE: S0, E0, I0,R0, Zs

0, ZI
0, ZR

0 , N, u(0) = v(0) = w(0) = 0, ζ1,N = 0, ζ2,N = 0, ζ3,N = xR, ζ4,N =−y,

ζ5,N = αZ , ζ6,N = z,ζ7,N = 0.

For i = 1, ...,N−1

Si+1 = Λ+Si +−α SiIi−µ Si− viSi

Ei+1 = Ei +α SiIi− (µ +δ )Ei

Ii+1 = Ii +δEi− (µ +d) Ii− rIi−uiJi

Ri+1 = −µ Ri + rIi +uiIi + viSi +Ri

Zs
i+1 = Zs

i −βZS
i Ii +θZR

i

Zi
i+1 = ZI

i +βwiZS
i Ii− γZI

i

ZR
i+1 = ZR

i + γZI
i −θZR

i

λ
i
1 =

[
λ

i+1
1 (−α Ii−µ− vi +2)+λ

i+1
2 α Ii + viλ

i+1
4
]

λ
i
2 =

[
λ

i+1
2 (−µ−δ +2)+λ

i+1
3 δ

]
λ

i
3 =

[
x−α Siλ

i+1
1 +α Si +λ

i+1
2 λ

i+1
3 (−d− r−µ−ui +2) λ

i+1
4 (r+ui)−β ZS

iλ
i+1
5 +β ZS
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λ
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}
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ENDFOR

4.2. Simulation with and without the control u and discussions on the results.

Strategy one: We use only the optimal control u.
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Because of the risk of serious complications in people affected by the epidemic, we proposed

a strategy based on home treatment for infected people with minor complications and hospitali-

sation for serious complications. From the figures 5 and 6, we can see that this strategy slightly

reduces the number of infected patients and increases the number of recovered persons.
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FIGURE 5. Infected individuals without and with the control u
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FIGURE 6. Recovered individuals without and with the control u
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FIGURE 7. Infected regions without and with the control u
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FIGURE 8. Recovered regions without and with the control u

4.3. Simulation with and without the control v and discussions on the results.

Strategy two: We use only the optimal control v.

In this strategy we propose a strategy based on vaccination of the population and protect them
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from the virus. We can see from figures 9 and 10 that although this strategy increases the

number of recovering and decreases the number of infected, it is still insufficient for reducing

the number of infected areas. (see figure 11 ).
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FIGURE 9. Infected individuals without and with the control v
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FIGURE 10. Recovered individuals without and with the control v
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FIGURE 11. Infected regions without and with the control v
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FIGURE 12. Recovered regions without and with the control v

4.4. Simulation with and without the control w and discussions on the results.

Strategy three: We use only the optimal control w.
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The control strategy w represents movement blocking where we block the contact between

susceptible and infected individuals and the visit of infected individuals to susceptible re-

gions.This strategy proved to be effective in reducing the number of infected regions (see figure

15) the thing that is not obtained by the first two strategies
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FIGURE 13. Infected individuals without and with the control w
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FIGURE 14. Recovered individuals without and with the control w
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FIGURE 15. Infected regions without and with the control w
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FIGURE 16. Recovered regions without and with the control w

4.5. Simulation with and without the three controls and discussions on the results.

Strategy four : Applying all controls u,v and w.

The objective of this strategy is to combine the previous strategies simultaneously.Figures 17,
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18, and 19 show how this strategy decreased the number of infected people and the number of

infected areas while increasing the number of recovered people enough to stop the epidemic’s

spread. This resulted from our strategy’s effectiveness as well as our consideration of the (2)

systems, which chart the evolution of the areas.
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FIGURE 17. Infected individuals without and with the three controls
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FIGURE 18. Recovered individuals without and with the three controls
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FIGURE 19. Infected regions without and with the three controls
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FIGURE 20. Recovered regions without and with the three controls

5. CONCLUSION

The discrete mathematical model SEIR that this paper presents explains the development of

an infectious disease with the novel insight of examining the spread of the infection between
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regions. To prevent the disease from spreading between people and areas, we suggest three dif-

ferent control measures. The optimal controls are defined according to the Pontryagin maximum

principle, and an iterative approach is used to solve the optimality system. The effectiveness

of our control strategies is finally demonstrated through numerical simulations, which also take

the spread of the disease between regions into account.
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