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modified quasi Lindley (NB-MQL) distribution. Parameters of the distribution and its regression coefficient are 

estimated using a Bayesian approach. The NB-MQL linear regression model is applied with an actual dataset with the 
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the factors influencing the number of patients with respiratory disease and long-term effects of lung cancer better than 

the NB and Poisson regression models. 
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1. INTRODUCTION 

The general linear model (GLM) is a tool used by researchers in many fields to analyze data such 

as regression analysis, independent t-test, analysis of variance, analysis of covariance, etc. It often 

refers to linear regression models for continuous response variables that define continuous and/or 

categorical predictors. Although it is widely used, there are some limitations that make the GLM 

inflexible; for example, the dependent variable must be continuous or only quantitative. The strict 

preliminary assumption on discrepancies is normally distributed, and each observation is 

independent of the others. The GLM was developed to be more flexible and offer better coverage 

in the form of generalized linear models (GLMs). The vital GLMs include the logistic regression 

model, the Poisson regression model, and the negative binomial (NB) regression model. The NB 

model was developed to overcome the constraints of the problematic distribution for count data 

with overdispersion [5,8,14,15]. Although the NB distribution is proper for count data when there 

is an overdispersion problem, the NB distribution is appropriate for count data, presenting 

overdispersion without necessarily being heavy-tailed; heavy-tailed distributions have a tendency 

toward overdispersion [23]. There may be a very high probability that no events of interest will 

occur in some situations, resulting in a higher frequency of zero values. When the value of zero is 

high, the frequency will cause the problem of overdispersion to become more severe. Therefore, 

the Poisson and NB distributions are not suitable for such data. Subsequently, new distributions 

were developed to provide more flexibility and coverage because flexibility and coverage issues 

could reflect the effectiveness of the development, reduce existing constraints, or create new 

approaches that are more flexible or more comprehensive and relevant to different contexts. One 

of the most widely used distribution developments was mixed NB distributions. Many mixed NB 

distributions are introduced, such as the NB-Lindley [26], NB-generalized exponential [4], NB-

gamma [11], NB-Sushila [26], and NB-generalized Lindley [2]. Mixed NB distributions are 

applied to the statistical model events for count data in real life, such as actuarial and insurance 

models [3,11,26], medical or industrial models [3], or the fields of ecology and biodiversity [20].  

In the past, the solution of GLMs in a regression framework was usually used by maximizing the 
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nonlinear log-likelihood. The Newton-Raphson method can be applied to iteratively find the 

maximum likelihood (ML) [15]. The ML method is limited because it only provides a point 

estimate that is not robust. In some situations, such as if the data are small or when the dispersion 

parameter is much larger than the mean, this method fails to converge. Moreover, the ML method 

does not consider the prior information, which may be helpful in the case of missing observations. 

One solution that solves such problems is the Bayesian method. Parameter estimation by the 

Bayesian approach is done by posterior processing distribution, which multiplies the prior 

distribution with the likelihood. Moreover, Bayesian inference can account for prior expert 

knowledge on variables of interest, especially in a small sample size. It provides a sample of 

estimators, which may be helpful for the uncertainty analysis [7]. In addition, the advantage of the 

Bayesian method in practice is its flexibility and coverage, as it can solve complex problems 

[10,25].  

This study first proposed a new mixture NB distribution to be a flexible alternative for 

analyzing heavy-tailed count data with overdispersion. We will apply the GLMs framework with 

actual datasets of two response variables; i.e., the number of patients with respiratory disease and 

long-term effects of lung cancer. The data were collected from 77 provinces of Thailand in 2021 

[1]. Finally, the conclusion is presented.   

 

2. PRELIMINARIES 

In this section, we introduce the Poisson, NB, and modified quasi-Lindley (MQL) distributions. In 

addition, the generalized linear regression model and criteria for model evaluation are provided. 

2.1 The Poisson distribution 

Let Y  be a random variable distributed as the Poisson distribution with a parameter 

0,   denoted by Y ~ Pois( ) , then its probability mass function (pmf) is 

1

exp( )
( ) ;

!

y

g y
y

 −
= 0,1,2,....y =                        (1) 

 The mean and variance of the Poisson distribution are  . 
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2.2 The NB distribution 

Let Y  be a random variable distributed as the NB distribution [13] with parameters 

0r   and 0 1,p   denoted by Y ~ NB( , ).r p  Its pmf is  

2

1
( ) (1 ) ;

     

r y
y r

g y p p
y

+ − 
= − 
 

0,1,2,...y = .                   (2) 

Its mean and variance are (1 )r p p−  and 2(1 )r p p−  respectively. 

2.3 The MQL distribution 

In 2022, Tharshan and Wijekoon proposed the MQL distribution, which is derived as a 

finite mixture of the exponential (Exp) and gamma (Gam) distributions with the mixing proportion 

3 3( 1)m c c= + . Its probability density function (pdf) is obtained by 

1 2( ) ( ; ) (1 ) ( ; , )h mh b m h a b  = + − ,                        (3) 

where 0,   for 0,a   and 3 1c  −  are shape parameters, 0b   is a scale parameter, and 

1( ; )h b  and  
2( ; , )h a b  are the pdf of the Exp and Gam distributions, respectively [22]. Finally, 

the pdf of the MQL distribution is 

3 1

3

( ) ( )
( ) ,

( 1) ( )

b abe c a b
h

c a

 


− −  + =
+ 

                         (4) 

where (.)  is a complete gamma function. Its moment generating function (mgf) is 

3 1 1

3

( )
( )

( 1)( )

a a

a

b c b t b
M t

c b t


− − − + =
+ −

.                           (5) 

2.4 The generalized linear regression model 

Linear regression is a statistical method used to create a linear model, in which the 

model describes the relationship between a response variable 
iY   w i t h  t h e  number of 

observations ,n  and a set of independent variables 
1 2( , ,..., )i i ikX X X  for 1,2,3,...,i n=  and 

k  is the number of independent variables in the model. When we consider the response variable 
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that is a positive integer, the expected count response 
i , is also non-negative. The log- link 

maps 
i  to the whole real line. Thus, the link function is the logarithm of the mean that is log i  

that relates 
i  to the linear predictors. On the regression model, the log-linearity for the mean 

is commonly used as a link function 

1 2 1 3 2 1log ...i i i k ikX X X     += + + + +                     (6) 

From the above equation, the covariates can be linked to the mean of 
iY  by the means of 

the log-link function, given by 

1 2 1 3 2 1exp( ... ) exp( ),T

iX βi i i k ikX X X     += + + + + =           (7) 

where 
1 2(1, , ,..., )i i ikx x x=T

iX  is a vector of length ( 1)k +  where the i th row of ( 1)n k +  

matrix X  and 
1 2 1( , ,..., )T

k   +=β  is a ( 1) 1k +   unknown vector of the regression 

coefficients. 

2.5 Criteria for model evaluation 

In the model comparison, three criteria are considered:  (i) The deviance is ( ) =D  

[ 2log ( | )]− yL ; where ( | )L y  is the likelihood function, the conditional joint pdf of the 

observations is given unknown parameters. (ii) The DIC is regarded as a generalization of Akaike's 

information criterion and the Bayesian information criterion, and is often and widely used as a 

goodness- of- fit measure when we use the Bayesian approach.  The DIC is defined as 

( ) DDIC D p=  + , for ( ) E[ 2log ( | )]D L = − y  and Var[ ( )] / 2Dp D=  , where the first term 

is the posterior mean of the deviance, and the second term is an alternative measure of the elective 

number of parameters [16]. The DIC is beneficial to Bayesian model comparison problems where 

the posterior distributions have been obtained by MCMC simulations [16,19]. Therefore, deviance 

and DIC are statistics to compare the models. The model which has the smallest value of deviance, 

DIC, and 
Dp  is the best model. 
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3. MAIN RESULTS 

In this paper, a new mixed NB distribution and its properties are proposed. Next, the proposed 

distribution is used to build the GLMs in the form of the regression analysis in cases of dependent 

variables for count data with overdispersion. The estimation of the model parameters with a 

Bayesian approach to derive the model for real data is provided. 

3.1 A new mixed NB distribution 

A new mixed NB distribution is obtained by mixing the NB and MQL distributions as 

follows. 

Definition 1: Let Y  be a random variable distributed as the NB distribution with parameters 

r  and p e −=  where   is distributed as an MQL distribution with parameters ,a  b  and c , 

i.e., Y ~ NB( , )r e−  and  ~ MQL( , , ).a b c  Then Y  is a random variable distributed as a negative 

binomial-modified quasi Lindley (NB-MQL) distribution with parameters ,r  ,a  b  and c , 

denoted by Y ~ NB-MQL( , , , ),r a b c  

Theorem 1: Let Y ~ NB-MQL( , , , ),r a b c  then its pmf is 

3 1 1

3
0

1 [ ( ) ]
( ) ( 1)

     ( 1)( )

a ay
j

a
j

y r y b c b r j b
f y

y j c b r j

− −

=

+ −    + + +
= −   

+ + +   
                   (8) 

where 0,1,2, ,y =  0,r  0,a  0b   and 3 1c  −  

Proof: Let Y ~ NB( , )r p  and  ~ MQL( , , )a b c , if |Y   ~ NB( , )r p e −=  with the pmf as (2), 

we have the pmf of |Y   as follows: 

( )
1

( | ) 1
     

y
r

y r
f y e e

y

  − −
+ − 

= − 
 

( )

0

1
( 1) ,

     

y
r j r j

j

y r y
e e

y j

 − − +

=

+ −   
= −   
   

  

where  ~ MQL( , , )a b c  with the pdf in (4), then the pmf of Y  can be obtained by  
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3

0

( ) ( | ) ( )d


= f y f y g    

 

3 1

( )

3
0 0

( ) ( )1
( 1) d

     ( 1) ( )

b ay
j r j

j

be c a by r y
e

y j c a








− −

− +

=

   ++ −      = −   
+       

    

 

3 1 1

3
0

( )1
( 1)

     ( 1)( )

a ay
j

a
j

b c b r j by r y

y j c b r j

− −

=

 + + ++ −     = −   
+ + +   

 .  

The shape of the pmf for the NB-MQL distribution is provided in Figure 1. Some basic 

properties of the NB-MQL distribution are obtained from the factorial moment as follows. 

Theorem 2: Let Y ~ NB-MQL( , , , ),r a b c  then its jth factorial moment is 

3 1 1

[ ] 3
0

( )( )
( 1)

( ) ( 1)( )

a aj
l

j a
l

b c b j l bjr j

lr c b j l


− −

=

 − + +  +   = − 
 + − + 

                   (9) 

where 1,2,3, ,j = 0,r  0,a  0b   and 3 1c  − . 

Proof: The jth factorial moment of Y  is  

[ ]( ; , )j y r p  E[ ( 1) ( 1)]Y Y Y j= − − +  
( ) (1 )

( )

j

j

r j p

r p

 + −
=


 

where 1,2,3,j = . For ,p e −=  we can write it as follows [12], 

[ ]( ; , )j y r e  − ( ) (1 )
E

( )

j

j

r j e

r e



 

−

−

  + −
=  

 
( )

( )
E 1

( )

jr j
e

r





 +
= −


 

Using a binomial expansion in the term ( 1) ,je −  we can write the above equation as 

[ ]( ; , )j y r e  − ( )( )

0

( )
( 1) E

( )

j
l j l

l

r j
e

r





−

=

 +
= −


 ( )

0

( )
( 1)

( )

j
l

l

jr j
M j l

lr


=

  +
= − − 

  
 . 

If |X  ~ NB( , )r e−  and ~ MQL( , , )a b c  when substituting the mgf of   as in (5) with 

( )t j l= −  into 
[ ](.),j  we have the jth factorial moment of Y  as in (9). 

3.2 The NB-MQL regression model 

In this paper, the regression model for a response variable distributed as the NB-MQL 

distribution is constructed. From the pmf in (2), we can parameterize p  in terms of r  as 
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/ ( )ip r r= +  for 
i  as the mean response variable while r  is the reciprocal (or inverse of a 

dispersion parameter : 1/ r  = ). The traditional NB distribution [5] can be rewritten to show 

its pmf as follows: 

1
( ; , )

     

ir y

i i
i i

i i i

y r r
f y r

y r r




 

+ −     
=     

+ +    
                    (10) 

for 0,1,2,...,iy =  0i   and 0r   . Then the mean and variance of 
iY  are E( )i iY =  and 

2Var( )i i iY r= +   respectively.            

  

  

Figure 1. The pmf plots of the NB-MQL distribution with some specified parameter values. 
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The framework of the GLMs can be shown for deriving the NB-MQL model by 

considering the mixture between the NB and MQL distributions: 

0

( ; ) NB( ; , )MQL( ; , , )d ,i i if y y r a b c


=    θ                 (11) 

where ( , , , , )θ T

i r a b c= and the mean response 
i  is a similar parameter to a label in (10), and 

  is distributed as the MQL distribution with the pdf in (4). The pmf of the NB-MQL 

distribution becomes: 

3 1 1

3

0

( )1
( ; ) d

     ( 1)( )

− −   + + ++ −        =       + + + + +      
θ

ir y a a

i i
i a

i i i

b c b r j by r r
f y

y r r c b r j




 
.  (12) 

 Suppose that the count response variable 
iY  and T

iX  are a set of covariates. The 

conditional distribution of | T

iXiY  can be written in the linear regression model as the 

following: 

 

3 1 1

3

0

( )1
( | ) d

     ( 1)( )

− −   + + + + −     =        + + ++ +      


x β

x β x β
x

iT
i

T T
i i

yr a a

iT

i i a

i

b c b r j by r r e
f y

y c b r je r e r




 
  (13) 

For 1 2( , ,..., )T

ny y y=y  is a ( 1)n  vector of the response variables which are n 

independent realizations of the NB- MQL model and ( , , , , )T Tr a b c=Ω β  is a vector of the 

regression parameters. Thus, the likelihood function of Ω   is 

3 1 1

3
1 0

( )1
( | , ) d

     ( 1)( )

− −

=

  + + + + −       =         + + ++ +      
 

x β

x β x β
y x

iT
i

T T
i i

yr a an
i

a
i i

b c b r j by r r e
L

y c b r je r e r




 
. (14) 

If exp( )x βT

i i = , the mean and variance of the response have been calculated using the 

conditional expectation as follows: 

E( | ) E( )xT

i i iY  =  and 2 2 21
Var( | ) E( | ) E( ) E ( | )T T T

i i i i i i i

r
Y Y Y

r
 

+ 
= + − 

 
x x x   (15) 

where E( )  and 2E( )  are the first second moments of the MQL distribution as follows: 

3

3
E( )

( 1)

c a

c b


+
=

+
 and 

3
2

3 2

2 ( 1)
E( )

( 1)

c a a

c b


+ +
=

+
.                 (16) 
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3.3 Bayesian inference for the NB-MQL regression model 

In this paper, the vector of unknown parameters Ω  can be customarily estimated using 

the Bayesian approach, which allows the consideration of prior information for parameter 

estimation. Numerous researchers have shown interest in the study of t h e  hierarchical Bayesian 

modeling approach relying on Markov Chain Monte Carlo (MCMC)  techniques as referred to 

[10]. In this article, we implement the Bayesian approach using the MCMC technique for the NB-

MQL regression model.  

As shown in the likelihood function of the NB-MQL regression model in (14), it is not a 

closed form. It can be executed using the representation of the hierarchical model implicit both 

in the integral and the definition of the MQL distribution. Since the MQL distribution is mixed 

between the Exp distribution with scale parameter b , denoted by Exp( )b , and the Gam 

distribution with shape parameter a  and scale parameter b , denoted by Gam( , )a b , therefore the 

pdf of the MQL distribution as in  (3) can be written as proposed by [22]. 

 ~
3

3 3

1
Exp( ) Gam( , )

1 1

c
b a b

c c
+

+ +
.                   (17) 

The NB-MQL distribution is conditional upon the unobserved site-specific frailty term  , 

which describes the additional heterogeneity [9]. Consequently, the hierarchical framework can be 

represented as: 

( ; , | ) NB( ; , );i i i if y r y r  =  exp( )T

i i= x β  and  ~ MQL( , , )a b c      (18) 

In Bayesian inference, the prior distribution plays a defining role in the estimation of the 

unknown parameters in any distribution.  In this study, all unknown parameters ,r  ,a  ,b  c  and 

  are considered.  Assuming the parameters of the NB- MQL regression model with parameters 

,r  a   and b  are distributed as the Gam distribution, 3c  is distributed as the uniform (U) 

distribution, and β  is distributed as the normal (N) distribution. They are mutually independently 

distributed in each parameter, and the joint prior distribution of all unknown parameters as follows: 
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r ~ Gam( , ),r r  a ~ Gam( , ),a a  b ~ Gam( , ),b b  c ~ U( , ),c c   and β ~ N( , )0 βb S , (19) 

where the positive real values of , , , , , , , ,r r a a b b c c        0b  and 
βS  are known or fixed. 

Suppose that 
0b  is a ( 1) 1k +   hyper- parameter vector and 

βS  is a ( 1) ( 1)k k+  +  known 

non-negative specific matrix. Each parameter is supposed to be independently distributed, and the 

joint prior distribution of all unknown parameters can be written as 

( ) ( ) ( ) ( ) ( ) ( )r a b c     =Ω β .                       (20) 

From the likelihood function in ( 15)  and the prior distribution in ( 19) , we derive the 

posterior distribution as follows: 

1

( | ) ( | , ) ( ) ( ) ( ) ( ) ( )
n

T

i i

i

f y r a b c     
=

  X x β               (21) 

For the NB- MQL model, the full conditional posterior distributions for each parameter of 

Ω  derived from (21) are obtained as:  

1

( | , , , , , ) ( | x , ) ( ),y x Ω
n

T

i i

i

r r a b c f y r 
=

  
1

( | , , , , , ) ( | x , ) ( ),y X Ω
n

T

i i

i

a r a b c f y a 
=

  

1

( | , , , , , ) ( | x , ) ( ),y x Ω
n

T

i i

i

b r a b c f y b 
=

  
1

( | , , , , , ) ( | x , ) ( ),y x Ω
n

T

i i

i

c r a b c f y c 
=

  

and 
1

( | , , , , , ) ( | x , ) ( )β y x β
n

T

i i

i

r a b c f y 
=

  . 

In this study, the model parameters Ω  can be estimated from the Bayesian method using 

the MCMC algorithm to produce the posterior inference for each parameter.  Based on these prior 

densities, we generated three parallel independent MCMC chains for 30,000 iterations in each 

parameter, discarding the first 15,000 iterations as a burn-in for computation.  In this paper, the 

expected posterior of the parameters is calculated using the jags function in the R2jags package of 

the R language [18, 21]. 
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Table 1. Summary of empirical data 

Variables Minimum Maximum Median Mean Variance Standard deviation 

Y1 19443  301,307  79,241   91,347.00  3.06x109   55,317.27  

Y2 210  13,617  1,118  2,109.00  6.07x106   2,463.74  

X1 8  32  16  17.12   40.51   6.36  

X2 21  76  66   64.65   68.99   8.31  

X3 14  97  29   30.73   200.25   14.15  

X4 1  17  6  6.01   14.22   3.77  

X5 0  9  2  2.55   5.12   2.26  

X6 162  837  271  309.50   14,454.60   120.23  

X7 191,049 5.53x106  676,105  859,422.00   5.20x1011   721,110.26  

X8 548  19,948  2,600   3,073.00  5,198,139.00   2,279.94  

X9 0  43.96  6.60  8.61   63.51   7.97  

 

3.4 Statistical modelling for empirical data 

3.4.1. Empirical data 

The data used in this study were the number of patients with respiratory disease in the 

dataset: 1) the number of patients with respiratory disease (Y1; unit: people), and 2) the number of 

patients with the long-term effects of lung cancer (Y2; unit: people). The data were collected from 

77 provinces of Thailand in 2021 (Air Quality and Noise Management Bureau Pollution Control 

Department, 2021). All independent variables are as follows: X1 is  the average of PM2.5 (µg/m³), 

X2 is the average of O3 (µg/m³), X3 is the average of PM10 (µg/m³), X4 is the average of SO2 (µg/m³), 

X5 is the average of NO2 (µg/m³), X6 is the average of CO (µg/m³), X7 is  the size of the population 

in each province at the midyear of 2021 (unit: people), X8 is the ratio of doctors to population, and 

X9 is  the ratio of poor people in each province (unit: percent). According to Figure 2(a) on the 

analysis results of the disease incidence rate per 1000 population, the province with the highest 

incidence rate of respiratory disease is Uthai Thani (175 people per 1000 population). The mean 
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and variance of Y1 are 91,347.00 and 3.06 x 109, respectively (see Table 1). At the same time, the 

province with the highest incidence rate of long-term effects of lung cancer is Lampang (9 people 

per 1000 population). The mean and variance of Y2 are 2,109.00 and 6.07 x 106, respectively (see 

Table 1). Since the variance of the two data sets is greater than the mean, these data sets have an 

overdispersion problem. Figure 3(a) and Figure 3(b) show histograms of the number of patients 

with respiratory disease and the number of patients with long-term effects of lung cancer from 77 

provinces in Thailand in 2021, respectively. 

 

 

             (a)                                 (b)                       

Figure 2. The incidence rate in each province of Thailand in 2021 of (a) respiratory disease and 

(b) long-term effect lung cancer. 
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                      (a)                                (b)                       

Figure 3. The observed frequency (provinces) of (a) Y1 and (b) Y2. 

 

3.4.2 Results of data analysis 

In this section, the results of the data analysis are an illustrative method of applying the 

GLMs framework to build the regression model derived for the NB-MQL distribution. The 

dependent variables of Y1 and Y2 are provided in an NB-MQL distribution. The regression 

coefficient was estimated by the Bayesian approach. The posterior means (estimates), standard 

error (s.e.), 95% credible intervals (Cr.I.) of each parameter, and statistics for comparing the 

model's performance (the deviance, DIC, and pD of the Poisson, NB and NB-MQL regression 

models of Y1 and Y2) are shown in Tables 2-3 respectively. In this study, the nine independent 

variables are standardized to standard scores.  

 When considering the performance of the models, the results indicate that the DIC and 
Dp  

values of the NB-MQL model are the smallest. Moreover, the density plots of the three MCMC 

chains with the MCMC plots package in R [6] from the NB-MQL regression model can be seen in 

Figure 3 and Figure 5. The results show that the density plots of all parameters in three parallel 

chains overlap well after the burn-in period. The trace plots of the NB-MQL regression model are 

displayed in Figure 4 and Figure 6. The trace plots show that graphs of the values of the simulated 

parameters against the drawn lines look almost vertical and dense. The motion of the trace plot 

reveals the characteristics of a converged manner, and the sequence seems stable. Therefore, it is 

confirmed from the results that the NB-MQL model can be fitted for this data set as well. 
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The results of the GLMs regression model for Y1 are shown in Table 3. The results of the 

estimated parameters ,  ,  r a b  and c  for the NB-MQL regression model are:  

5. 2,ˆ 75r =  ˆ 1.010a = , ˆ 1.038b = ,  and ˆ 9.708c = . 

From 
3

3
E( )

( 1)

c a

c b


+
=

+
, we have 

3

3

9.708 1.010

9.
3E( ) 0.96

( 1)708 1.038


+
= =

+
. According to Table 2, 

the number of patients with respiratory disease in Thailand  with the NB-MQL distribution can 

be represented as: 

1 2 3 4 5
ˆ exp{11.538 0.033 0.00 68 0.09.963 0 0.027 0.080Z Z Z Z Z = − − + + −  

                  6 7 8 90.033 0.543 0.050 . }052 .0Z Z Z Z+ + + +  

Where iZ  is standard normal score of a random variable iX  for 1,2,...,9i = . 

 The result of the GLMs model for Y2 is shown in Table 3. The results of the estimated 

parameters of the NB-MQL distribution in the GLMs models are: 1. 5,ˆ 37r = ˆ 1.005a = , 

0. 9,ˆ 85b =  ˆ 4.642c = , and E( ) 1.164= . According to Table 3, the number of patients with long-

term effects of lung cancer in Thailand with the GLMs approach with the NB-MQL distribution 

can be represented as: 

1 2 3 4 5
ˆ exp{5.817 0.238 0.01 17 0.15.164 5 0.095 0.084Z Z Z Z Z += + − − −  

               6 7 8 90.342 0.504 0.203 . }075 .0Z Z Z Z+ + − +  
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Table 2. Parameter estimates and various statistics of fitting models for Y1. 

Parameters 

Poisson NB NB-MQL 

Mean 

(s.e.) 
95% CR.I 

Mean 

(s.e.) 
95% CR.I 

Mean 

(s.e.) 
95% CR.I 

Intercept (
1 ) 

11.436 

(0.000) 

(11.436, 

11.437) 

11.326 

(0.048) 

(11.231, 

11.423) 

11.538 

(0.216) 

(8.704, 

15.597) 

1Z  (
2 ) 

-0.023 

(0.001) 

(-0.025, 

-0.021) 

-0.030 

(0.106) 

(-0.237, 

-0.182) 

-0.033 

(0.012) 

(-0.238, 

0.177) 

2Z  (
3 ) 

-0.087 

(0.001) 

(-0.088, 

-0.086) 

-0.065 

(0.073) 

(-0.218, 

0.069) 

-0.068 

(0.008) 

(-0.222, 

0.071) 

3Z  (
4 ) 

0.060 

(0.001) 

(0.058, 

0.061) 

0.087 

(0.094) 

(-0.089, 

0.278) 

0.090 

(0.011) 

(-0.091, 

0.281) 

4Z  (
5 ) 

-0.026 

(0.001) 

(-0.028,-

0.025) 

0.023 

(0.085) 

(-0.138, 

0.195) 

0.027 

(0.010) 

(-0.137, 

0.192) 

5Z  (
6 ) 

-0.125 

(0.001) 

(-0.126,-

0.123) 

-0.076 

(0.081) 

(-0.238, 

0.084) 

-0.080 

(0.009) 

(-0.237, 

0.078) 

6Z  (
7 ) 

0.067 

(0.001) 

(0.066, 

0.068) 

0.031 

(0.073) 

(-0.019, 

0.172) 

0.033 

(0.008) 

(-0.110, 

0.176) 

7Z  (
8 ) 

0.274 

(0.000) 

(0.273, 

0.275) 

0.544 

(0.078) 

(0.388, 

0.702) 

0.543 

(0.009) 

(0.399, 

0.701) 

8Z  (
9 ) 

0.050 

(0.000) 

(0.050, 

0.051) 

0.022 

(0.054) 

(-0.079, 

0.137) 

0.021 

(0.006) 

(-0.074, 

0.132) 

9Z  (
10 ) 

0.052 

(0.000) 

(0.051, 

0.053) 

0.018 

(0.058) 

(-0.095, 

0.134) 

0.019 

(0.007) 

(-0.090, 

0.136) 

r - - 
5.762 

(0.949) 

(4.061, 

7.810 

5.752 

(0.949) 

(4.045, 

7.755) 

a - - - - 
1.010, 

(0.953) 

0.047, 

3.616) 

b - - - - 
1.038 

(1,091) 

0.057, 

3.997) 

c - - - - 
9.708 

(5.973) 

-0.196, 

19.407) 

Deviance 1.271x106 1,812.585 1,812.604 

DIC 1.456x106 1,829.7 1,828.3 

pD
 1.853x105 17.1 15.7 
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Table 3. Parameter estimates and various statistics of the fitting models for Y2. 

Parameters 

Poisson NB NB-MQL 

Mean 

(s.e.) 
95% CR.I 

Mean 

(s.e.) 
95% CR.I 

Mean 

(s.e.) 
95% CR.I 

Intercept (
1 ) 

6.563 

(0.007) 

(6.559, 

6.573) 

6.202 

(0.102) 

(6.010, 

6.402) 

5.817 

(1.450) 

(3.416, 

9.174) 

1Z  (
2 ) 

0.177 

(0.012) 

(0.169, 

0.201) 

0.231 

(0.274) 

(-0.325, 

0.749) 

0.238 

(0.270) 

(-0.295, 

0.782) 

2Z  (
3 ) 

0.076 

(0.009) 

(0.070, 

0.094) 

-0.017 

(0.191) 

(-0.412, 

0.333) 

-0.017 

(0.191) 

(-0.412, 

0.336) 

3Z  (
4 ) 

0.091 

(0.011) 

(0.084, 

0.112) 

0.163 

(0.247) 

(-0.278, 

0.700) 

0.155 

(0.243) 

(-0.290, 

0.656) 

4Z  (
5 ) 

0.010 

(0.010) 

(0.004, 

0.031) 

-0.099 

(0.180) 

(-0.425, 

0.290) 

-0.095 

(0.180) 

(-0.428, 

0.277) 

5Z  (
6 ) 

-0.030 

(0.010) 

(-0.037, -

0.011) 

-0.079 

(0.192) 

(-0.463, 

0.298) 

-0.084 

(0.193) 

(-0.460, 

0.300) 

6Z  (
7 ) 

0.259 

(0.007) 

(0.254, 

0.273) 

0.346 

(0.164) 

(0.020, 

0.665) 

0.342 

(0.164) 

(0.017, 

0.664) 

7Z  (
8 ) 

0.178 

(0.003) 

(0.176, 

0.184) 

0.503 

(0.150) 

(0.226, 

0.609) 

0.504 

(0.148) 

(0.231, 

0.798) 

8Z  (
9 ) 

-0.188 

(0.005) 

(-0.192, -

0.178) 

-0.201 

(0.091) 

(-0.367, 

-0.014) 

-0.203 

(0.089) 

(-0.367, 

-0.010) 

9Z  (
10 ) 

0.092 

(0.006) 

(0.087, 

0.103) 

0.077 

(0.119) 

(-0.144, 

0.316) 

0.075 

(0.119) 

(-0.154, 

0.311) 

r - -   
1.375 

(0.206) 

(0.992, 

1.811) 

a - - - - 
1.005 

(1.010) 

(0.033, 

3.751) 

b - - - - 
0.859 

(0.910) 

(0.044, 

3.353) 

c - - - - 
4.642 

(3.022) 

(-0.494, 

9.730) 

Deviance 32,302.4 1,105.9 1,105.8 

DIC 49,698.0 1,119.1 1,118.3 

pD
 17,395.6 13.1 12.5 
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Figure 4. Density plots of three MCMC chains for r,a,b, c , deviance and 1 2 10

T( , ,... )  =β   

from NB-MQL regression model for the first dataset. 
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Figure 5. Trace plots of three MCMC chains for r,a,b, c , deviance and 1 2 10

T( , ,... )  =β    

from the NB-MQL regression model for Y1. 
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Figure 6. Density plots of three MCMC chains for r,a,b, c  and 1 2 10

T( , ,... )  =β    

        from NB-MQL regression model for Y2. 
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Figure 7. Trace plots of the three MCMC chains for r, a, b, c, and 1 2 10

T( , ,... )  =β    

         from NB-MQL regression model the for Y2. 

 

3.5. CONCLUSION  

This study develops the new mixed NB distribution, which is called the NB-MQL distribution, 

and applies the newly created distribution with a GLMs framework for Y1 Y2, where the dependent 

variable is in the form of count data. In addition, Y1 and Y2  have overdispersion problems. The 

model efficacy study found that for Y1 and Y2 the Deviance, DIC, and pD values of the NB-MQL 

model were significantly lower than those of the Poisson model. But when comparing the NB-

MQL and NB models, the Deviance, DIC, and pD values of the NB-MQL model were lower than 

the NB model in all situations. Except in the case of Y1 being the dependent variable, the Deviance 

of the NB model is slightly lower than the NB-MQL model, at 0.001 %. According to the results, 
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the NB-MQL model seems to outperform other models. Therefore, the NB-MQL is an alternative 

in creating or developing a model related to an overdispersion count response variable and various 

covariates, and the model can be applied to accurate data in many fields. 

 

ACKNOWLEDGMENTS  

The authors gratefully acknowledge the participation of the Faculty of Science and Technology, 

RMUTT University. We are also thankful to those who could not be mentioned here for their 

kindness and encouragement. And finally, the authors would like to thank the anonymous 

reviewers for their comments and suggestions. 

 

CONFLICT OF INTERESTS 

The authors declare that there is no conflict of interests. 

 

REFERENCES 

[1] Air Quality and Noise Management Bureau Polluation Control Department, Air quality index (2021), 

http://air4thai.pcd.go.th/webV2/download.php. [Access 18 September 2021]. 

[2] S. Aryuyuen, Bayesian inference for the negative binomial-generalized Lindley regression model: properties and 

applications, Commun. Stat. – Theory Methods. (2001), 1-19. https:// doi:10.1080/03610926.2021.1995434. 

[3] S. Aryuyuen, The negative binomial-new generalized Lindley distribution for count data: properties and 

application, Pak. J. Stat. Oper. Res. 18 (2022), 167–177. https://doi.org/10.18187/pjsor.v18i1.2988. 

[4] S. Aryuyuen, W. Bodhisuwan, The negative binomial-generalized exponential (NB-GE) distribution, Appl. 

Math. Sci. 7 (2013), 1093-1105. 

[5] A.C. Cameron, P. Johansson, Count data regression using series expansions: with applications, J. Appl. Econ. 

12 (1997) 203–223. https://doi.org/10.1002/(sici)1099-1255(199705)12:3<203::aid-jae446>3.0.co;2-2. 

[6] S.M. Curtis, mcmcplots:  Create plots from MCMC output, R package version 0.4.3.(2018), https://CRAN.R-

project.org/package=mcmcplots. [Access 12 October 2021]. 

https://cran.r-project.org/package=mcmcplots
https://cran.r-project.org/package=mcmcplots


23 

A NEW MIXED NEGATIVE BINOMIAL REGRESSION MODEL 

[7] S. Fu, A hierarchical Bayesian approach to negative binomial regression, Methods Appl. Anal. 22 (2015) 409–

428. https://doi.org/10.4310/maa.2015.v22.n4.a4. 

[8] W. Gardner, E.P. Mulvey, E.C. Shaw, Regression analyses of counts and rates: Poisson, overdispersed Poisson, 

and negative binomial models, Psychol. Bull. 118 (1995), 392–404. 

https://doi.org/10.1037/0033-2909.118.3.392. 

[9] S.R. Geedipally, D. Lord, S.S. Dhavala, The negative binomial-Lindley generalized linear model: Characteristics 

and application using crash data, Accident Anal. Prevent. 45 (2012), 258–265. 

https://doi.org/10.1016/j.aap.2011.07.012. 

[10] A. Gelman, J.B. Carlin, H.S. Stern, et al. Bayesian data analysis, CRC Press, New York, (2013). 

[11] Y. Gençtürk, A. Yiğiter, Modelling claim number using a new mixture model: negative binomial gamma 

distribution, J. Stat. Comput. Simul. 86 (2015), 1829–1839. https://doi.org/10.1080/00949655.2015.1085987. 

[12] E. Gómez-Déniz, J.M. Sarabia, E. Calderín-Ojeda, Univariate and multivariate versions of the negative binomial-

inverse Gaussian distributions with applications, Insurance: Math. Econ. 42 (2008) 39–49. 

https://doi.org/10.1016/j.insmatheco.2006.12.001. 

[13] M. Greenwood, G.U. Yule, An inquiry into the nature of frequency distributions representative of multiple 

happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents, J. 

R. Stat. Soc. 83 (1920), 255-279. https://doi.org/10.2307/2341080. 

[14] H. He, W. Tang, W. Wang, et al. Structural zeroes and zero-inflated models, Shanghai Arch. Psychiatry, 26 

(2014), 236-242. https://doi.org/10.3969/j.issn.1002-0829.2014.04.008. 

[15] J.S. Long, Regression models for categorical and limited dependent variables, Advanced quantitative techniques 

in the social sciences series 7, Sage Publication, Thousand Oaks, CA, (1997). 

[16] D. Lunn, C. Jackson, N. Best, et al. The BUGS book. A practical introduction to Bayesian analysis, Chapman 

Hall, London. (2013). 

[17] J.A. Nelder, R.W.M. Wedderburn, Generalized linear models, J. R. Stat. Soc. Ser. A (General). 135 (1972), 370-

384. https://doi.org/10.2307/2344614.. 

[18] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, 

Vienna, Austria, (2022). https://www. Rproject.org/. [Access 12 January 2022]. 



24 

SIRINAPA ARYUYUEN, UNCHALEE TONGGUMNEAD 

[19] D.J. Spiegelhalter, N.G. Best, B.P. Carlin, et al. Bayesian measures of model complexity and fit, J. R. Stat. Soc. 

B. 64 (2002), 583–639. https://doi.org/10.1111/1467-9868.00353. 

[20] J. Stoklosa, R.V. Blakey, F.K.C. Hui, An overview of modern applications of negative binomial modelling in 

ecology and biodiversity, Diversity. 14 (2022), 320. https://doi.org/10.3390/d14050320. 

[21] Y.S. Su, M.  Yajima, M.Y.S Su, J.A.G.S System Requirements. Package `R2jags'; R package version 0.03-08, 

(2015), http://CRAN. R.project.org/package=R2jags. [Access 12 October 2021]. 

[22] R. Tharshan, P. Wijekoon, A modification of the quasi Lindley distribution, Open J. Stat. 11 (2021), 369-392. 

https://doi.org/10.4236/ojs.2021.113022. 

[23] Z. Wang, One mixed negative binomial distribution with application, J. Stat. Plan. Inference. 141 (2011), 1153–

1160. https://doi.org/10.1016/j.jspi.2010.09.020. 

[24] D. Yamrubboon, W. Bodhisuwan, C. Pudprommarat, et al. The negative binomial-Sushila distribution with 

application in count data analysis, Thailand Statistician, 15 (2011), 69-77. 

[25] D. Yamrubboon, A. Thongteeraparp, W. Bodhisuwan, et al. Bayesian inference for the negative binomial-Sushila 

linear model, Lobachevskii J. Math. 40 (2019), 42–54. https://doi.org/10.1134/s1995080219010141. 

[26] H. Zamani, N. Ismail, Negative binomial-Lindley distribution and its application, J. Math Stat. 6 (2010), 4-9. 

 


