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Abstract: In this article, image classification of maize stalk rots diseases was carried out. The experiment used primary 

data taken from maize plantations in Bangkalan, Madura. The data consists of three classes: healthy, anthracnose, and 

gibberella. For deep learning experiments, we augmented the primary data. The total data was 2,211 images. An 

investigation is composed of three sections. First, we used five different Convolutional Neural Network (CNN) 

architectures, and second, the best CNN will be modified. Finally, it performed varied layer types from the second 

section. The parameters used were epoch 10, learning rate 3.10e-4, and minibatch-size 64. The distribution of training, 

validation, and testing data were 40:40:20. The result shows the best performance for the first section is ResNet18. 

Next step, we modify ResNet18 into six different architectures. From the second section, the best results were 

ResNet18 and modified-ResNet, but modified-ResNet has less number of parameters. The third section’s results 

showed accuracy, precision, and recall were 99.55%, 99.53%, and 99.73%, respectively. The modified-ResNet 

architecture is suitable for classifying maize stalk rots diseases. 
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1. INTRODUCTION 

Computer vision research in agriculture has been used widely. Computer vision in agriculture is 

an alternative to taking expert knowledge for various purposes such as planting [1]–[3], harvesting 

[4]–[6], advanced analysis of weather conditions [7], [8], weeding, and plant health detection and 

monitoring [9]–[11]. Computer vision has three steps: preprocessing, feature extraction, and 

classification. The first two critical steps are crucial for processing data. Preprocessing aims to 

ensure good image quality before data analysis is carried out. Feature extraction is tasked with 

being able to find essential features in the experimental data. Feature extraction can be of two types: 

manual and automatic. Manual feature extraction usually uses conventional machine learning, 

while automatic feature extraction uses deep learning. In conventional machine learning, feature 

extraction is obtained from color, shape, and texture features with various derived sub-features 

[12]–[15]. It is indeed troublesome to determine the most appropriate features. Sometimes, some 

studies use feature selection to get the best features [16], [17]. Currently, the existence of deep 

learning has extensive applications, including in agriculture.  

We used a Convolutional Neural Network (CNN), one of the popular deep learning. An application 

of CNN in agriculture is the classification of maize diseases. Identification can be made through 

leaves, cobs, stalk rots, and roots. Previous studies have carried out many maize diseases but were 

limited to leaf diseases. Research by Hu et al. uses transfer learning with fine-tuning GoogleNet. 

The dataset comes from Plantvillage with 4,354 images with four classes of maize leaves and is 

divided into 70% for training and 30% for testing. The results showed accuracy, precision, and 

recall were 98.15%, 98.05%, and 98.02%, respectively [18]. 

Another study used a local dataset from Tanzania, consisting of two classes, infected and non-
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infected. The number of training data is 7,896, validation data is 1,692, and testing data is 1,692. 

This research uses sir Thomas corner detection in preprocessing. The CNN architecture consists 

of VGG16, VGG19, InceptionV3, and MobileResnetV2. The results showed the accuracy of 

99.92%, 99.67%, 100%, and 100% respectively [19]. 

Subsequent research uses data from plantvillages with a limited number of 100 per class. 

Distribution of training and testing data 70:30. Test using fine-tuning VGG16. The final result 

showed an accuracy of 89% [20]. The study used two CNN: VGG and ResNet. The experiment 

uses 10,000 images with three classes. The percentage of training and testing data is 85:15. The 

results showed an accuracy of 98.83% [21]. 

In addition to classifying diseases on maize cobs, few references have been produced, studying the 

classification of eight classes, including maize leaf and cobs. The dataset consists of 3,852 images. 

The results showed 95.86% accuracy, 97.63% precision, and 83.45% recall [22]. Another research 

is using CNN two path way. The dataset has 17,502 images. The results showed an accuracy of 

97.23% [23]. 

This study discusses the classification of diseases that attack maize stalk. Research on maize stalk 

has never been done before. It is also vital for detecting diseases other than leaves. Conditions of 

maize stalks have a more severe risk than other diseases because the stalk rots are the central part 

that can support the leaves and leaves midrib. So this problem will cause the plant collapse and 

reduce the number of maize kernels [24]. 

The experiment classified maize stalk into three classes: healthy, gibberella, and anthracnose. 

Disease classification in maize stalk using a variety of CNN architecture. It is to find out the best 

CNN architecture. This article has the following composition: section 1 is the introduction. Section 

2 is a method, novelty, and dataset (primary and augmentation data). Section 3 discusses the results 

and discussing them. In the end, section 4 is the conclusions and suggestions for further research. 
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2. PRELIMINARIES 

2.1 Overview 

This research applies novelties including: 

(i) The maize stalk data obtained primarily from maize fields in Bangkalan, Madura. 

(ii) An augmented data with ten different techniques of augmentation. It produces 2,010 new 

images. The primary data only 201, so there are total 2,211 images. 

(iii) Feature extraction and classification performed with CNN. We select the CNN architecture 

with the best accuracy. Furthermore, modifications to the best accuracy architecture. Simple 

changes are made, especially in the network's number of layers and kernels. 

(iv) For comparison, we tested scenarios for varied types of CNN layers such as the effect of 

global average pooling, batch-normalization, Rectified Linear Unit (ReLU), leaky ReLU, 

and dropout. 

 

2.2 Data collection 

The image of the maize stalk was obtained through a photo with a mobile phone. We took 

photographs in sunny. The background is coated using white cardboard. The maize plants selected 

for the dataset were fifthy days old. 

The dataset consists of three classes: healthy, anthracnose, and gibberela. Anthracnose is caused 

by the fungus Colletotrichum sp. [25]. While gibberella is caused by the fungus Gibberella zeae 

[26]. Each class has 67 images, so a total of 201 images of maize stalk rots. The sample of the 

primary data is shown in Figure 1. 

 

Figure 1. Maize Stalk Rots (top to bottom: anthracnose, gibberella, dan healthy) 
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2.3 Data Augmentation  

The amount of data per class was 67. It is not feasible for deep learning classification processes. 

For this reason, data augmentation is needed, which aims to modify or manipulate training data so 

that the number of data increases. Before data augmentation, we perform manual labeling by 

Bangkalan Agriculture Services. 

Data size as an input of each CNN architecture is different. For Resnet, VGG, and Googlenet uses 

224×224 pixels, while Alexnet uses 227×227 pixels. In this study, we carry out ten augmentation 

techniques: horizontal flip, vertical flip, rotate right, rotate left, auto-adjust colors, and gamma 

correction with values of 2,3,4,5 and 6. So the total data used is 2,211 images, consisting of 737 

appeareances for each class. 

 

2.4 The testing scenario 

The experiment scenario consists of three steps: 

(i) Maize stalk image classification using CNN alexnet [27], VGG [28], resNet [29], googlenet 

[30]. Classification using the existing CNN architecture. Input size 224×224 from CNN, 

including Googlenet, VGG16, and ResNet. While alexnet uses Alexnet 227×227 [31]. The 

parameter set is epoch 10, learning rate 3.10e-4, and minibatch-size 64. 

(ii) Classification of maize stalk rots images using the best CNN modification from scenario 1. 

Perform conversion by changing the number of filter sizes and the number of layers. 

(iii) Experiment using various epochs, learning rates, and minibatch sizes and studying the effect 

of layers on CNN architecture result from test scenario 2. 

 

2.5   Maize Talk Rots Classification 

This section describes the stages of the maize stalk roots classification as follows: 

(i) Input data; the image adjusts to the size of each CNN architecture. Perform ten augmentation 

models as described in section 3.3. The total number of original and augmented data is 2,211 

images.  
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(ii) Split training, validation, and testing 40:40:20. So the complete data for training is 884, 

validation also 884, while the total data for testing is 443 images. It is randomly choosing data 

for training and testing. The result of training and validation becomes the model. 

(iii) We do testing data with the model of CNN from training and validation data. In the testing, 

do cross-validation between training and validation. Cross-validation aims to get the best 

model of the network used. We used 5-fold cross-validation. Figure 2 shows the proposed 

maize stalk rots classification. 

 

Figure 2. Block diagram of proposed maize stalk rots 

The CNN architecture used for this research consists of AlexNet, VGG16, Googlenet, Resnet50, 

and ResNet18. The test results are performance measures of the five CNN architectures. 

Performance measures involve accuracy, precision, and recall. 

 

3. MAIN RESULTS 

The maize stalk rots is run using Google Collab with specifications processor Core i7-7700, GTX 

1060 6 Gb D5 amp, Solid State Drive 60 Gb. The experiment used tensorflow, keras, opencv, 

numpy and matplotlib in the phyton library. 

3.1. Maize stalk rots classification using CNN 

The first experiment carried out image classification of maize stalk rots disease using AlexNet, 

VGG16, GoogleNet, ResNet50, and ResNet18 architectures. Parameter used in the experiment are 
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epoch 10, learning rate 3× 10e-4, Stochastic Gradient Descent with Momentum (SGDM). The 

results of the first experiment are shown in Figure 3.  

 

  

(a) (b) 

Figure 3 (a). Performences measure and (b) Computation time of first experiment 

 

Figure 3 (a) shows the first experiment produces the best accuracy of 99.55%, precision of 99.53%, 

and recall of 99.73% using the ResNet18 architecture. While alexnet produced accuracy of 99.50%, 

precision of 99.53%, and recall of 99.53%. The computation time in figure 3b shows the fastest 

computation time by Alexnet at 70 sec. Meanwhile, ResNet18 needs 102 sec. 

The results show that the dataset used does not require an intense deep network. ResNet18 has 18 

layers consisting of 17 convolutional layers and one fully connected layer. The characteristic of 

the ResNet architecture is to have a skip connection. It aims to avoid the inability of deeper layers 

to learn and even identity mappings, the type of skip connection used in addition [29]. The number 

of parameters contained in the Resnet architecture is much smaller than the parameters in the 

Alexnet, GoogleNet and VGG. The number of parameters on Resnet18, Resnet50, Googlenet, 

Alexnet, and VGG16 are 11, 23, 23, 62, and 138 million, respectively. The number of parameters 

affects the computation time apart layer arrangement [32]. Furthermore, the test results in the first 

scenario are used as a reference for making modifications to the ResNet architecture. 

 

3.2 Classification of Maize Stalk Rots Disease using modified-Resnet 

3.2.1 Experiments using different filter dimensions and an amount of convolutional layers 

The second experiment was conducted using a modified Residual Network (m-ResNet) 

architecture. The architecture of ResNet shows the difference in the size of the filter dimensions 
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and the number of convolutional layers used.  Table 1 shows the differences in the architectural 

structure of ResNet18 and m-ResNet. 

Table 1. Comparison of ResNet18, 1st, 2nd, and 3rd m-ResNet Architecture 

Layer 

name 

ResNet18[33] 1st m-ResNet 2nd m-ResNet 3rd m-ResNet  

conv1 7×7, 64 stride 2 7×7, 64 stride 2 7×7, 64 stride 2 7×7, 64 stride 2 

pool1 3×3 maxpool stride 

2 

3×3 maxpool stride 

2 

3×3 maxpool stride 

2 

3×3 maxpool stride 

2 

conv2_x 
[
3 3 64
3 3 64

] × 2 [
3 3 48
3 3 64

] × 2 [
3 3 48
3 3 64

] × 2 [
3 3 48
3 3 64

] × 2 

conv3_x 
[
3 3 128
3 3 128

] × 2 [
3 3 96
3 3 128

] × 2 [
3 3 96
3 3 128

] × 2 [
3 3 96
3 3 128

] × 2 

conv4_x 
[
3 3 256
3 3 256

] × 2 [
3 3 256
3 3 256

] × 2 [
3 3 128
3 3 256

] × 2 [
3 3 96
3 3 128

] × 2 

conv5_x 
[
3 3 512
3 3 512

] × 2 [
3 3 512
3 3 512

] × 2 [
3 3 256
3 3 512

] × 2 [
3 3 128
3 3 256

] × 2 

avg_pool 7 × 7, avg_pool, 

stride 1 

7×7, avg_pool, 

stride 1 

7×7, avg_pool, 

stride 1 

7×7, avg_pool, 

stride 1 

fcl 4×1, 512, stride 2 4×1, 512, stride 2 4×1, 512, stride 2 4×1, 256, stride 2 

 

Table 2. Comparison of 4th, 5th, and 6th m-ResNet Architecture 

Layer 

name 

4th m-ResNet 5th m-ResNet 6th m-ResNet 

conv1 7×7, 64 stride 2 7×7, 64 stride 2 7×7, 64 stride 2 

pool1 3×3 maxpool stride 

2 

3×3 maxpool stride 

2 

3×3 maxpool stride 

2 

conv2_x 
[
3 3 48
3 3 64

] × 2 [
3 3 64
3 3 64

] × 2 [
3 3 64
3 3 64

] × 2 

conv3_x 
[
3 3 96
3 3 128

] × 2 [
3 3 128
3 3 128

] × 2 [
3 3 128
3 3 128

] × 2 

conv4_x 
[
3 3 96
3 3 128

] × 2 [
3 3 256
3 3 256

] × 1 
 

conv5_x 
[
3 3 128
3 3 256

] × 1 

avg_pool 7 × 7, avg_pool, 

stride 1 

7×7, avg_pool, 

stride 1 

7×7, avg_pool, 

stride 1 

fcl 4×1, 256, stride 2 4×1, 256, stride 2 4×1, 128, stride 2 
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The dimensions of the filter in the convolutional layer are different in each architecture. The 

difference is in the 2nd, 3rd, 4th, and 5th convolutional layers. Only modifications are made in the 1st 

to 3rd m-Resnet architecture on the number of filter dimensions. The 4th m-Resnet architecture 

eliminates the 5th convolutional layer. The 5th m-Resnet architecture consists of convolutional 

layers 1, 2, 3, and 4a. The 6th m-Resnet has convolutional layers 1, 2, and 3a. The comparison of 

filter dimensions on m-ResNet is shown in Table 2. 

Table 2. Total of filter dimension 

Architecture ResNet18 1st 

m-ResNet 

2nd 

m-ResNet 

3rd 

m-ResNet 

4th 

m-ResNet 

5th 

m-ResNet 

6th 

m-ResNet 

filter 

dimension 

4,800 4,704 3,936 2,464 2,240 1,728 704 

 

After modifying the number of filter dimensions and the number of convolutional layers used, the 

m-Resnet architectures were tested. The results of scenario two are shown in Table 3. 

Table 3. Comparison of the results using m-ResNet 

Architecture Precision(%) Recall(%) Accuracy(%) Time 

ResNet18 99.53 99.73 99.55 2 min. 42 sec. 

1st m-ResNet 99.32 99.32 99.32 2 min. 32 sec. 

2nd m-ResNet 99.53 99.73 99.55 2 min. 25 sec. 

3rd m-ResNet 99.09 99.09 99.09 2 min. 03 sec. 

4th m-ResNet 98.87 98.87 98.87 2 min. 14 sec 

5th m-ResNet 99.53 99.57 99.50 1 min. 47 sec 

6th m-ResNet 94.24 94.24 94.24 1 min. 23 sec 

The second experiment results show the architecture with the best performance produced 

by ResNet18 and 2nd m-ResNet, accuracy up to 99.55%. Meanwhile, the computation time is lower 

for the 2nd m-ResNet architecture because of the fewer parameters that must update. A comparison 

of test results shows that the difference in accuracy is not up to 1%, except for the 6th m-Resnet 

architecture. 

3.3 The experiment by changing the parameter value and type of layer 

The third experiment is to set difference of learning rate and optimization of gradient 

descent. Next, the effect test is carried out Batch Normalization (BN), Global Average Pooling 

(GAP), ReLU, and Dropout (DO) layer. The third experiment were carried out with epochs one to 

ten on 2nd m-Resnet architecture. The result shows in figure 4.  
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(a)  (b)  

  

(c)  (d) 

 

 

(d)   

Figure 4. The result of third experiment. Accuracy based on difference value of (a) gradient 

descent, (b) learning rate, (c) Batch Normalization (BN) and Global Average Pooling (GAP), (d) 

Rectified Linear Unit (ReLU) and BN, (e) BN and Dropout (DO) 
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Figure 4 (a) shows the results of the comparison of accuracy using stochastic gradient descent with 

momentum (SGDM), Root Means Square Propagation (RMSProp), and Adaptive Moment 

Optimization (adam). The results show that using the SGDM method is better than the other two 

methods. Figure 4 (b) shows a comparison of accuracy using various learning rate values including 

3×10e-4, 3×10e-3, 3×10e-2, and 3×10e-1. Best accuracy using learning rate 3×10e-4. Figure 4 (c) 

shows the results of testing the effect of the BN and GAP layer. The combination is carried out 

with four types: BN and GAP, BN and without GAP, GAP and without BN, and without BN and 

GAP. The trial results show the highest accuracy using a combination of BN and GAP. 

Figure 4 (c) shows the experiment result for the ReLU and BN layers. The combination is carried 

out with four types: ReLU and BN, ReLU and without BN, Leaky ReLU and BN, and leaky ReLU 

without BN. The results show the highest accuracy using a combination of ReLU and BN and 

leaky ReLU without BN. The accuracy of each is the same, 99.55%. Figure 4 (d) shows the results 

of testing the effect of BN and DO layer. The combination is carried out with four types: BN and 

DO, BN and without DO, DO and without BN, and without BN and DO. The test results show the 

highest accuracy using a combination of BN and without DO. The experiment shows that layer 

type arrangement, gradient descent, and learning rate affects accuracy result. 

 

4. CONCLUSION 

A disease classification on maize stalk rots has been carried out. The primary data with three 

classes of maize stalk rots (healthy, gibberella, and anthracnose). We add the data with image 

augmentation. The total data experiment was 2,211. 

We carried out various scenarios, including the CNN architecture (ResNet18, ResNet50, VGG16, 

GoogleNet, and Alexnet). Next, we modify the ResNet18 architecture, which we identify as 1st to 

6th m-ResNet. The test results show the best performance using 2nd m-ResNet with an accuracy, 

precision, and recall are 99.55%, 99,53%, and 99.73% respectively. 

In addition, the various layer types were tested, including GAP, BN, dropout, and activation of 

LeakyReLU. The test results show that the effect of the dropout layer remains consistent even by 

removing BN on specific layers. The results achieved the same accuracy of 99.55% 



12 

W. SETIAWAN, Y. D. PRAMUDITA, R. RULANINGTYAS 

For further research, we will be classifying all parts of the maize plant (leaf, stalk rots, cobs, and 

kernel) diseases. The method can be combined with the characteristics of a particular CNN 

architecture. In addition, hyperparameter tuning is also required to determine the best parameters 

that can produce optimal performance. 
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