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Abstract: COVID-19 pandemic is still a great challenge for several research fields. A mathematical model is one of 

the main epidemiology research contributions, which is able to study the pattern of disease spread and its long-term 

behavior. Many researchers have done this research with their interventions and mathematical approach methods, 

such as model analysis, use of optimal control theory, data used and numerical methods for solving the model. In 

this paper, we normalize the basic SIR epidemiological model and estimate the parameters involved based on the 

COVID-19 data in Indonesia, especially for West Java. The optimal control theory is applied to know the disease 

behavior by considering vaccination and its cost to prevent the spread of the disease. To see the disease behavior 

through graphical simulation, the Runge-Kutta Fehlberg method is used for solving the model numerically. The 

result shows that the spread of COVID-19 can be prevented and controlled due to vaccination. 
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1. INTRODUCTION 

Coronavirus is a virus that causes symptoms ranging from the common cold to more severe 

symptoms. In December 2019, a new type of Coronavirus (2019-nCoV) was discovered in China. 

This virus causes the emergence of a new, different disease, namely COVID-19, which has 

different symptoms and severity from previously identified coronavirus types such as 

SARS-CoV and MERS-CoV [1]. The Indonesian government announced the first case of 

Covid-19 in Indonesia on 6 March 2020. The virus was transmitted during a visit of Japanese 

citizens living in Malaysia [2]. Since its initial appearance in Indonesia, the development of 

COVID-19 cases has continued to increase. It was recorded that until April 4, 2022, there were 

6,039,873 people who were confirmed positive for COVID-19 in Indonesia [3]. According to 

Worldometer, Indonesia is ranked to 18th in the world and 7th in Asia for positive cases of 

COVID-19 [4]. West Java is one of the central-activity provinces in Indonesia. Based on the 

population census conducted in 2020, West Java was the province with the largest population in 

Indonesia, which was 49,935,858 people [5]. As the province with the largest population, West 

Java is one of the provinces with a relatively large percentage of the total number of COVID-19 

cases in Indonesia. It was recorded that until April 4, 2022, there were 1,104,074 people who 

were confirmed positive for COVID-19 in West Java [3]. 

Many articles study an epidemiology model to interpret how the COVID-19 spreads with a 

variety of interventions in an effort to control the disease. Libotte et al. [6] built a SIR epidemic 

model with treatment solved by optimal control, and used Runge Kutta Fehlberg. There are some 

authors who built epidemic models by considering the latent period of COVID-19 infection with 

various interventions [7, 8, 9, 10]. Other research estimates parameter values by using real data 

of COVID-19 cases from some nations to gain a more accurate simulation [6, 11, 12, 13]. 

Mungkasi et al. [14] showed two epidemic models and solved the problem numerically with 
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successive approximation, variations iteration, and multistage-analytical method. Marinca et al. 

[15] used the optimal auxiliary functions method to solve the optimal control problem of the 

epidemic model. Afrah et al. [16] built a complex model to interpret how COVID-19 spread and 

solved the problem numerically through the fourth-order Runge-Kutta method, but not written 

explicitly. Inayaturohmat et al. [17] developed a model in the presence of waning immunity, and 

then Inayaturohmat et al. [18] used optimal control of treatment to suppress the spread of 

COVID-19. Over reading the literature, we conclude that none research explicitly shows the 

numerical solutions through some approach. 

Based on the literature review, it is known that many researchers have built various models, 

such as SIR, SEIR, and SIR-type, considering some interventions as an effort to control the 

spread of the disease. There is much research about estimating parameters for the model to gain a 

more accurate prediction for any scenarios. Numerical methods are used to solve this problem 

which include such as fourth-order Runge-Kutta method, Runge-Kutta Fehlberg, successive 

approximation, variations iteration, and multistage-analytical method. But no one shows the 

procedure to get the numerical solution explicitly written. The whole paper only shows how to 

build the model, estimate its parameters, and serve the graphic of predictions resulted from 

numerical approaches. 

In this paper, we used the SIR model to represent the epidemic phenomenon in West Java, 

Indonesia. We estimated the parameters using data from the website 

https://pikobar.jabarprov.go.id/. We normalized the model to simplify the graphical 

interpretation and numerical solution obtained. The numerical solution is solved by using the 

Runge-Kutta Fehlberg method. Then, we used optimal control theory to suppress the spreading 

of COVID-19 by considering vaccination and solving it through the forward-backward sweep 

method. Finally, we compared the behavior of the disease spread system in conditions with and 

without vaccination controls. 
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2. MATERIALS AND METHODS 

 In this section, the materials such as model formulation and the data of COVID-19 cases in 

West Java province are written. The Runge-Kutta Fehlberg numerical method and optimal 

control theory are explained as a method of solving the problem. 

2.1. SIR Model 

 We use a popular epidemic model that describes the transmission of COVID-19 in the 

human population. The population is divided into three groups, including the Susceptible group 

(𝑆), Infected group (𝐼), and Recovered group (𝑅). The amount of all groups at time t is given 

by: 

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) 

 The epidemic model is given by the following system of ordinary differential equations: 

𝑑𝑆

𝑑𝑡
= Λ𝑁(𝑡) − 𝛽𝑆(𝑡)

𝐼(𝑡)

𝑁(𝑡)
− 𝜇𝑆(𝑡)  

(1) 
𝑑𝐼

𝑑𝑡
= 𝛽𝑆(𝑡)

𝐼(𝑡)

𝑁(𝑡)
− 𝛼𝐼(𝑡) − 𝜇1𝐼(𝑡) − 𝜇𝐼(𝑡) 

𝑑𝑅

𝑑𝑡
= 𝛼𝐼(𝑡) − 𝜇𝑅(𝑡) 

According to (1), people who are in the susceptible group get infected by the virus when 

having contact with infected people. The death rate of the infected group is higher than the others 

because there is a death rate due to the disease (𝜇1). Therefore, we need to control the spread of 

the disease through the vaccination program for the susceptible group in order to prevent the 

disease infection. Hence, we modified (1) by adding a parameter representing an intervention 

such as vaccination. The modified model is represented by the diagram shown in Fig. 1. 

 

Figure 1. Transmission diagram of COVID-19 spreading 
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Then we write the modified model (2) and the description of each parameter in Table 1. 

𝑑𝑆

𝑑𝑡
= Λ𝑁(𝑡) − 𝛽𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡) − 𝛿𝑆(𝑡)  

(2) 
𝑑𝐼

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛼𝐼(𝑡) − 𝜇1𝐼(𝑡) − 𝜇𝐼(𝑡) 

𝑑𝑅

𝑑𝑡
= 𝛿𝑆(𝑡) + 𝛼𝐼(𝑡) − 𝜇𝑅(𝑡) 

Table 1. Parameters notation 

Notation Description 

Λ The natural birth rate 

𝛽 The infection rate 

𝜇 The natural death rate 

𝜇1 The death rate because of the disease 

𝛿 The vaccination rate 

𝛼 The recovered rate 

2.2. COVID-19 Data 

 The data used in this study is the daily confirmed data for COVID-19 in West Java from 

May 23, 2021, to July 21, 2021 (see Fig. 2), where in this period COVID-19 cases in West Java 

are experiencing a drastic increase, resulting in a pandemic. The data was obtained from the 

website https://pikobar.jabarprov.go.id/. The statistical description of the data can be seen in 

Table 2. 

 

Figure 2. Daily confirmed data for COVID-19 in West Java 
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Table 2. Statistical description 

Minimum Maximum Mean Median 

639 11,101 3,872 2,855 

Fig. 2 shows that the COVID-19 cases in West Java province fluctuated with a tendency to 

increase over time. Based on Table 2, the cases on the 54th day of observation reach the highest 

number of positive cases during the period of observation. Then, we obtained that the mean of 

this data is 3872, which represents the average number of positive cases per day. In addition, 

these minimum and median show the lowest number and median of positive cases per day, 

respectively. 

2.3. Runge-Kutta Fehlberg Method 

 The Runge-Kutta method is one of numerical methods used to solve a differential equation. 

Runge-Kutta method arose because of the weakness of the Taylor method, which is less efficient 

in solving differential equations. Moreover, Runge-Kutta Fehlberg uses error control, hence the 

step size is not fixed [19, 20]. Each step of the process calculates two approximate solutions of 

different order methods, which are then compared to generate a local error of the lower order. 

The local error is used to determine the step size. By controlling local errors, global errors will 

remain under control or sufficiently small. Therefore, the Runge-Kutta Fehlberg method is an 

alternative to the Taylor method and other iterative methods, such as successive approximation 

and variational iteration methods [14]. The general formula of the Runge-Kutta Fehlberg method, 

a pair of methods of orders 4 and 5, can be seen in the following equations. 

𝑦𝑛+1 = 𝑦𝑛 +
25

216
𝑘1 +

1408

2565
𝑘3 +

2197

4104
𝑘4 −

1

5
𝑘5 

𝑦𝑛+1
∗ = 𝑦𝑛 +

16

135
𝑘1 +

6656

12825
𝑘3 +

28561

56430
𝑘4 −

9

50
𝑘5 +

2

55
𝑘6 

(3) 

where 

𝑘1 = ℎ𝑓(𝑡𝑛, 𝑦𝑛) 

𝑘2 = ℎ𝑓 (𝑡𝑛 +
ℎ

4
, 𝑦𝑛 +

1

4
𝑘1) 

𝑘3 = ℎ𝑓 (𝑡𝑛 +
3ℎ

8
, 𝑦𝑛 +

3𝑘1

32
+

9𝑘2

32
) 
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𝑘4 = ℎ𝑓 (𝑡𝑛 +
12ℎ

13
, 𝑦𝑛 +

1932𝑘1

2197
−

7200𝑘2

2197
+

7296𝑘3

2197
) 

𝑘5 = ℎ𝑓 (𝑡𝑛 + ℎ, 𝑦𝑛 +
439𝑘1

216
− 8𝑘2 +

3680𝑘3

513
−

845𝑘4

4104
) 

𝑘6 = ℎ𝑓 (𝑡𝑛 +
ℎ

2
, 𝑦𝑛 −

8𝑘1

27
+ 2𝑘2 −

3544𝑘3

2565
+

1859𝑘4

4104
−

11𝑘5

40
) 

2.4. Optimal Control Theory 

Optimal control is a tool used to solve a problem with an objective function and obtain an 

optimal condition due to the cost of control action. The optimal control solution is obtained 

through the process by considering the constraints and terms [21]. The optimal control problem 

addresses the control variable 𝑢(𝑡) that affects the change from the initial state of the system 

𝑥0 at time 𝑡0 to the final state at time 𝑇. 

Generally, the optimal control problems in the time interval [𝑡0, 𝑇] can be formulated as 

follows. 

max
𝑢

[𝜙(𝑥(𝑇)) + ∫ 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡
𝑇

𝑡0

] 

(4) 
𝑠. 𝑡 𝑥′(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 

 𝑥(𝑡0) = 𝑥0 

where 𝜙(𝑥(𝑇)) is the optimum value of the function at the end of time, otherwise known as 

Payoff terms. 

2.4.1. Pontryagin Maximum Principle 

 The maximum principle is a condition so that the optimal control solution is obtained that 

suits the purpose. This principle refers to the determination of the extreme values of the 

Hamiltonian function (see (5)) so that the control value that optimizes the system is achievable. 

𝐻(𝑡, 𝑥, 𝑢, 𝜆) = 𝑓(𝑡, 𝑥, 𝑢) + 𝜆𝑇𝑔(𝑡, 𝑥, 𝑢)  
(5) 

 = integrand + adjoint*constraints 

Given 𝜆 that is Lagrange multipliers for the constraint 𝑥′(𝑡) = 𝑓(𝑥, 𝑢) and is defined as a 

function as follows. 

𝐿 = 𝐽 + ∫ 𝜆(𝑔(𝑥, 𝑢, 𝑡) − �̇�)𝑑𝑡
𝑇

𝑡0

 (6) 
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The necessary conditions to optimize 𝐿 are given as follows: 

a. Optimal condition 

𝜕𝐻

𝜕𝑢
= 0, 0 ≤ 𝑡 ≤ 𝑇 

b. Adjoint function 

𝜆′(𝑡) = −
𝜕𝐻

𝜕𝑥
, 0 ≤ 𝑡 ≤ 𝑇 

c. Transversal condition 

𝜆(𝑇) = 0 

And the sufficient conditions are given as follows: 

a. Minimum condition 

𝜕2𝐻

𝜕𝑢2
≥ 0 

b. Maximum condition 

𝜕2𝐻

𝜕𝑢2
≤ 0 

2.4.2. Forward-Backward Sweep Method 

 A rough outline of the Forward-Backward Sweep Method is given in the following figure. 

We notice that 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁+1) and 𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑁+1) are the vector approximations 

for the state and adjoint respectively. The algorithm that outlines the method is given as follows, 

 

Figure 3. Algorithm of the Forward-Backward Sweep Method 
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3. MAIN RESULTS 

 This section elaborates the results and discussion into four subsections, including parameter 

estimation, model normalization, optimal control problem, and simulation. The process to obtain 

the results is shown and explained based on the value or graphic produced by simulation. 

3.1. Parameter Estimation 

The parameters used in the model are obtained from the average of each corresponding data. 

The average of COVID-19 daily case infection data is used to find the infection rate. The average 

data on daily recovered from COVID-19 is used to find the recovery rate. Finally, the average 

data on COVID-19 daily death is used to find the death rate of COVID-19. The result of the 

parameters estimation and the initial value of the compartments can be seen in Table 3 and Table 

4, respectively. 

Table 3. Result of parameter estimation 

Parameters Value 

𝛽 0.075981685 

𝛼 0.044286322 

𝜇1 0.001173315 

Table 4. Initial value of the compartments 

Compartments Value 

𝑆(𝑡) 49,630,471 

𝐼(𝑡) 29,117 

𝑅(𝑡) 272,187 

The basic reproduction number of this model for the estimated parameter is represented as 

follows, 

ℜ0 =
𝛽

𝛼
=

0.075981685

0.044286322
= 1.71569192 

ℜ0 > 1 means that the disease will remain or spread in the population. 

3.2. Model Normalization 

 Normalization of the model is the process of converting the population size to be 

proportional over time. This proportion represents the composition of each group in a population, 
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ranging in the interval between zero and one [0,1] and the total population size is one. We 

normalize the model (2) through the following process. 

1) Given the total population as follows: 

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) 

Then we get 

𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
= (Λ − 𝜇)(𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)) − 𝜇1𝐼(𝑡) 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁(𝑡) − 𝜇1𝐼(𝑡) 

with 𝑟 = Λ − 𝜇. 

2) Let 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) be new variables representing the proportion of susceptible, 

infected, and recovered groups in the population, respectively. They are represented by 

the following equations. 

𝑥(𝑡) =
𝑆(𝑡)

𝑁(𝑡)
, 𝑦(𝑡) =

𝐼(𝑡)

𝑁(𝑡)
, 𝑧(𝑡) =

𝑅(𝑡)

𝑁(𝑡)
 

Taking the derivative of the previous equations with respect to 𝑡 gives the following 

equations, 

𝑑𝑥

𝑑𝑡
=

1

𝑁(𝑡)

𝑑𝑆

𝑑𝑡
+

𝑆(𝑡)

𝑁2(𝑡)

𝑑𝑁

𝑑𝑡
 

𝑑𝑦

𝑑𝑡
=

1

𝑁(𝑡)

𝑑𝐼

𝑑𝑡
+

𝐼(𝑡)

𝑁2(𝑡)

𝑑𝑁

𝑑𝑡
 

𝑑𝑧

𝑑𝑡
=

1

𝑁(𝑡)

𝑑𝑅

𝑑𝑡
+

𝑅(𝑡)

𝑁2(𝑡)

𝑑𝑁

𝑑𝑡
 

We then obtain the normalized model in the following equations. 

𝑑𝑥

𝑑𝑡
= 𝑟𝑥(𝑡) − 𝛽𝑥(𝑡)𝑦(𝑡) − 𝜇𝑥(𝑡) − 𝜇1𝑥(𝑡)𝑦(𝑡) − 𝛿𝑥(𝑡) 

𝑑𝑦

𝑑𝑡
= 𝑟𝑦(𝑡) + 𝛽𝑥(𝑡)𝑦(𝑡) − 𝜇𝑦(𝑡) − 𝜇1𝑦(𝑡) − 𝜇1𝑦2(𝑡) − 𝛼𝑦(𝑡) 

𝑑𝑧

𝑑𝑡
= 𝑟𝑧(𝑡) + 𝛿(𝑡)𝑥(𝑡) + 𝛼𝑦(𝑡) − 𝜇𝑧(𝑡) − 𝜇1𝑦(𝑡)𝑧(𝑡) 

(7) 

3.3. Optimal Control Problem 

 We aim to minimize the number of infected people, so that the possibility of the disease 

spreading is decreased. Moreover, we try to optimize the vaccination used with respect to 

minimizing the cost. Thus, an objective function was built as follows. 
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𝐽∗(𝛿) = min
𝛿

∫ [𝐴𝑦(𝑡) + 𝐵𝛿2(𝑡)]
𝑇

0

𝑑𝑡   (8) 

Parameters 𝐴 and 𝐵 represent the weight of the infected group and the cost of vaccination 

in the performance function that satisfies 𝐴, 𝐵 ≥ 0. The Pontryagin Maximum Principle solves 

the optimal control problem with the variable state 𝑠(𝑡) = [𝑥(𝑡) 𝑦(𝑡) 𝑧(𝑡) ]𝑇  and the 

constraints (7). 

The problem should satisfy the condition: 0 < 𝑡 < 𝑇, 0 < 𝛿(𝑡) < 1, and 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) ≥

0, where 𝑢 is the maximum control level. Note that the control 𝛿(𝑡) represents the percentage 

of vaccination programs in preventing the disease spreads and suppressing the infected group. 

The Hamiltonian function defined in (5) is equivalent to the following equations. 

𝐻 = 𝐴𝑦(𝑡) + 𝐵𝛿2(𝑡) + 𝜆1[𝑟𝑥(𝑡) − 𝛽𝑥(𝑡)𝑦(𝑡) − 𝜇𝑥(𝑡) − 𝜇1𝑥(𝑡)𝑦(𝑡) − 𝛿(𝑡)𝑥(𝑡)]

+ 𝜆2[𝑟𝑦(𝑡) + 𝛽𝑥(𝑡)𝑦(𝑡) − 𝜇𝑦(𝑡) − 𝜇1𝑦(𝑡) − 𝜇1𝑦2(𝑡) − 𝛼𝑦(𝑡)]

+ 𝜆3[𝑟𝑧(𝑡) + 𝛿(𝑡)𝑥(𝑡) + 𝛼𝑦(𝑡) − 𝜇𝑧(𝑡) − 𝜇1𝑦(𝑡)𝑧(𝑡)] 

(9) 

where 𝜆1(𝑡), 𝜆2(𝑡), and 𝜆3(𝑡) are the Lagrange multipliers of the optimization problem. The 

necessary and sufficient conditions as stated in Section 2.4.1, should satisfy the following 

Pontryagin Maximum Principle: 

• Initial state of the system for this model must be non-negative 

𝑥(0) ≥ 0, 𝑦(0) ≥ 0, 𝑧(0) ≥ 0 

• Lagrange multipliers 

�̇�1 = −𝜆1(𝑡)[−𝛽𝑦(𝑡) − 𝜇 − 𝛿(𝑡) + 𝑟 − 𝜇1𝑦(𝑡)] − 𝜆2(𝑡)𝛽𝑦(𝑡) − 𝜆3(𝑡)𝛿(𝑡) 

�̇�2 = −𝐴 − 𝜆1(𝑡)[−𝛽𝑥(𝑡) − 𝜇1𝑥(𝑡)] − 𝜆2(𝑡)[𝛽𝑥(𝑡) − 𝜇 − 𝜇1 − 𝛼 + 𝑟 − 2𝜇1𝑦(𝑡)] −

𝜆3(𝑡)[𝛼 − 𝜇1𝑧(𝑡)]  

�̇�3 = −𝜆3(𝑡)[−𝜇 + 𝑟 − 𝜇1(𝑡)𝑦(𝑡)] 

• Stationer conditions 𝜕𝐻/𝜕𝛿 = 0, then 𝛿(𝑡) = [𝜆1(𝑡) − 𝜆3(𝑡)] 𝑥(𝑡)/2𝐵 

Since 0 ≤ 𝛿(𝑡) ≤ 1, we obtained a control 

𝛿∗(𝑡) = min {max [0,
[𝜆1(𝑡) − 𝜆3(𝑡)]𝑥(𝑡)

2𝐵
] , 1} 

• Sufficient condition 
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Since 
𝜕2𝐻

𝜕𝛿2
= 2𝐵 > 0 satisfies the criterion of minimization optimal control problem [21] 

with 𝛿∗(𝑡) as the optimal control level of the system. 

3.4. Simulation 

 The simulation aims to illustrate the dynamics of all groups and their behavior in the long 

term. We provide numerical examples with control and without control by using the values of the 

parameters and initial condition as shown in Tables 3 and 4. 

3.4.1. Study of Parameter Estimation 

 

Figure 4. The comparison of the Susceptible 

 

Figure 5. The comparison of the Infected 
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Figure 6. The comparison of the Recovered 

 

 

Figure 7. Long-term simulation 
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The comparison between the numerical result and real data of each compartment can be seen in 

Fig. 4, Fig. 5, and Fig. 6 respectively. Fig. 4 shows the comparison of the Susceptible individuals. 

The susceptible individuals decrease over time because of the assumption that the susceptible 

individuals will move to the infected group if they get infected with COVID-19. Otherwise, the 

recovered individuals increase over time because of the assumption that the infected individuals 

will move to the recovered group if they recover from COVID-19. According to the model, the 

number of infected individuals increases over time because the basic reproduction number is 

more than one. This means the disease will remain or spread in the population. By using the SIR 

model, we can see the population dynamics for the long term in Fig. 7. Therefore, we conclude 

that the population would reach the stability of the equilibrium at one time. 

3.4.2. Study of Optimal Control Problem 

  

(a)  (b)  

Figure 8. Population dynamics without vaccination control; (a) the whole population and (b) the 

infected 

 Fig. 8 shows that the proportion of infected group increases in the population over time. This 

is because there is no vaccination effort as an intervention to prevent the spread of COVID-19 

disease. Therefore, preventive action such as vaccination is needed to be applied. Thus, we used 

optimal control by using vaccination to prevent the disease spread and kept to optimize the effort 

with minimized cost. 
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(a)  (b)  

Figure 9. Population dynamics with vaccination control; (a) the whole population and (b) the 

infected 

 Fig. 9 shows that the proportion of infected group was suppressed in the population. The 

susceptible group proportion decreases, while the recovered group proportion increases. This 

means that the intervention through vaccination to prevent and control the disease spreads 

successfully achieves the goal. Moreover, the graph of the control level over time is obtained 

(see Fig. 10). 

 

Figure 10. Vaccination control function 
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 Fig. 10 shows that the control level by using vaccination decreases over time. This is related 

to the decrease of the infected group proportion in the population. It seems that vaccination 

control indirectly impacts the reduction of infected groups. We then compare both graphs of the 

infected group, without control and with control to find out their different behavior (see Fig. 11). 

 

Figure 11. The effect of vaccination control 

 Fig. 11 shows the different condition between without control and with control of 

vaccination to the system of disease spreads. It is shown that the vaccination control clearly 

suppresses the infected group proportion. 

 

4. CONCLUSION 

 In this article, a study of COVID-19 spread in the West Java province of Indonesia has been 

done using the SIR epidemic model. We estimated the parameters using the average of each 

corresponding data to obtain the infection rate, the recovery rate, and the death rate due to the 

disease. The comparison between the actual data and that of the model shows that the SIR model 

can fit the data well enough. Then, the SIR model was normalized to simplify the calculating 

process and obtain a more straightforward interpretation from the simulation of the dynamics 

population. The simulation shows that the infected group is predicted to increase over time when 

the vaccination control is not applied. Furthermore, we used a control such as vaccination to 

prevent the disease spread and regard it as an optimal control problem that can be solved through 
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the Pontryagin Maximum Principle. The result shows that this control impacts the system by 

reducing the infected group proportion in the population and going extinct over time. 
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