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Abstract: Tuberculosis (TB) is one of the deadliest diseases nowadays, and it is caused by the mycobacterium 

tuberculosis bacterium that generally attacks the lungs. Following artificial intelligence implementation in the field of 

computer vision, especially deep learning, many computer-based diagnostic systems have been proposed to help detect 

TB from chest X-Ray images. It can produce better and faster accuracy and consistency of the diagnosis results. 

However, many radiology applications based on the deep learning method consider only images as input sources. In 

modern medical practice, non-imaging data from patient medical record history or patient demographics may influence 

disease detection and provide more data for radiologists to obtain additional insights in a clinical context. This study 

proposed a multimodal model that uses images and patient demographics to answer the need. The evaluation results 

show that our approach leads to high accuracy and can improve the area under curve (AUC) value by 0.0213 compared 

to the unimodal model. Additionally, this model successfully outperformed the previous state-of-the-art multimodal 

model by a 0.0075 (0.0213 vs. 0.0138, respectively) increase in AUC. 
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1. INTRODUCTION 

Tuberculosis (TB) is a global health problem, and Indonesia is among the top 3 countries with 

the most TB sufferers, after India and China [1]. According to the Indonesia Healthcare insurances 

report 2018, TB is in the top 5 diseases besides hypertension, stroke, heart failure, and diabetes. It 

is a disease that has long attacked humans and is still a high cause of death worldwide. Although 

TB is a curable disease, the key to a patient's recovery is timely diagnosis and treatment. 

Consequently, a delay in diagnosis can reduce the patient's chances of recovery [2]. With many 

TB patients requiring rapid treatment, early screening is vital in adequately managing patients. 

One of the initial screening techniques to identify TB is through X-Ray thorax images. From these 

X-Ray images, radiologists can locate the type of infection that occurs in the patient. However, 

new problems have emerged from this approach, as radiologists may experience fatigue, burn-out, 

and an increase in error rate due to the large number of images that need to be examined [3]. 

Therefore, a computer-based diagnostic system is highly recommended to ease radiologists' 

workload. This system can produce outstanding accuracy and consistency in diagnosis [4]. 

Previous studies have developed various diagnostic systems to predict TB based on conventional 

machine learning or deep learning [5]–[8]. 

Several previous studies have proven the deep learning method effective in TB classification 

tasks. Nevertheless, the models used in these studies only took images as input without leveraging 

other clinical data such as patient demographics, chest abnormalities, laboratory test results, or 

patient assessments as done in real-world clinical practices. A past survey found that radiologists 

require clinical information when interpreting images, which would impact their reports and 

patient clinical outcomes [9]. Thus, to answer the problems mentioned earlier, we proposed a 
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technique in which images and patient demographic data are leveraged in a multimodal ensemble 

model to solve complex TB classification tasks. This model adopts EfficientNet [10] and XGBoost 

[11]  as the base model and is followed by a weighted ensemble to generate final predictions. 

Experiments were carried out on a dataset taken from Murni Teguh Memorial Hospital, Medan, 

Indonesia.  

 

2. RELATED WORKS 

Historically, computer-based systems for TB diagnosis relied heavily on feature extraction and 

pattern recognition techniques. With its emergence and rising popularity, CNNs have been applied 

in many pulmonary TB classification studies [7], [8], [12]. CNN is a data-hungry network. 

Unfortunately, most medical imaging datasets are often tiny and may not provide enough data to 

train this network from scratch. In medical image research, transfer learning is currently the most 

popular approach in attempting to improve the deep learning model. It enables the CNN model to 

learn effectively from small datasets and enhance accuracy and time consumption[13]–[21]. Muljo, 

Pardamean, Purwandari, and Cenggoro suggested a transfer learning technique that used pre-

trained DenseNet121 in their lung disease classification study, which achieved a decent AUC of 

99.99% [22]. Besides transfer learning, image segmentation is another technique to improve the 

TB detection model. This technique was used to extract lung regions from chest X-Ray images 

[23], [24]. Not only medical images, but image segmentation can also work well on other computer 

vision tasks not involving medical, as demonstrated by Muchtar, Rahman, Cenggoro, Budiarto, 

and Pardamean, which proposed a texture-based foreground segmentation using a block-based 

adaptive segmenter method [25]. Furthermore, this concept was also used to develop an intelligent 

human counting system for  smart building management [26]. 

2.1 TB detection using Ensemble of CNN  

Only one model is applied in most CNN applications, especially in a classification task. 

However, there is an approach to using multiple CNN models to solve the same problem called an 
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ensemble, which is the technique that uses various CNN algorithms to get a better predictive result 

[27], [28]. As a result, ensemble techniques have attracted machine learning researcher's attention. 

Guo, Passi, and Jain introduced an ensemble method that combines multiple CNN models, which 

included VGG16 [29], VGG19 [29], InceptionV3 [30], ResNet34, ResNet50, and ResNet101 to 

produce 0.99 of AUC in their research for chest abnormalities [31]. 

2.2 EfficientNet on classification tasks 

EfficientNet was first introduced by Tan and Le [10]. This model approach applies compound 

scaling in all network dimensions, such as width, depth, and image resolution. The performance 

of EfficientNet had reached state-of-the-art on the Imagenet while being 8.4x smaller and 6.1x 

faster [10]. Due to excellent accuracy and time efficiency, Munadi, Muchtar, Maulina, and Pradhan 

used EfficientNet in their TB detection study [32]. More recently, Marques, Agarwal, and de la 

Torre Díez [33] suggest an automatic medical diagnosis of COVID-19 using EfficientNet [33]. 

Although mainly used for image classification tasks, EfficientNet had also obtained magnificent 

results in sounds classification tasks. Gunawan, Hidayat, Cenggoro, and Pardamean demonstrated 

EfficientNet model used two acoustic features to classify owl sound. As such, it can be said that 

its prowess in deep learning-related tasks has undoubtedly been astounding [34]. 

2.3  XGBoost for disease diagnosis 

Unlike the previous CNN model based on deep learning, the XGBoost Algorithm is the 

advanced gradient boosting method based on a tree algorithm. One of this method's advantages is 

handling regularization and overfitting-underfitting issues. Budholiya, Shrivastava, and Sharma 

used this model in their heart disease prediction study [35]. On the other hand, Li, Fu, and Li used 

an XGBoost algorithm for diabetes prediction [36]. These studies showed that XGBoost worked 

very well when used to train tabular medical data. Another technique to leverage XGBoost for TB 

detection was introduced by Rahman, Cao, Sun, Li, and Hao [37]. The technique used in their 

study is to replace the fully connected layer on CNN with XGBoost for classification tasks. 
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2.4  Multimodal model for TB detection 

As mentioned earlier in section 1, modern medical practice relies heavily on multiple data 

sources, where substantial clinical context is often essential for making diagnostic decisions. 

Therefore, Heo et al. [40] presented a multimodal technique that leveraged image data and 

demographics variables, including age, gender, height, and weight, for their TB classification 

model. Before training, image segmentation was applied in the preprocessing step using the U-Net 

[38] algorithm. This multimodal model has successfully increased an AUC score by 0.0138 

compared to the non-demographic variables model. 

 

3.  METHODS AND MATERIALS 

3.1 Ethics Statement 

Private medical records for all patients were anonymized before analysis. Murni Teguh 

Memorial Hospital Medan, Indonesia, and the Health Research Ethical Committee of Medical 

Faculty Nommensen HKBP University Medan, Indonesia, has approved this study (IRB: 

256/KEPK/FK/VII/2021). 

3.2 Dataset 

The training dataset used in this study is a collection of images and demographic variables from 

2014 to 2021 as part of Murni Teguh Memorial Hospital's daily radiology examination routines. 

A total of 754 images, which consists of 552 normal X-Ray images and 202 images of TB used in 

this study. This study used demographic variables included age, sex, and body mass index (BMI). 

Past studies have shown that underweight patient have a higher infection rate compared to a patient 

with an average weight (1.80 vs. 0.92 per 1000 patients) [39]. We allocated 20% of training data 

for validation purposes. In addition, a separate dataset was distributed for testing purposes, 

consisting of 47 normal images and 47 pulmonary TB images. It is worth mentioning that testing 

datasets were not used in the training phase of the model and all training and testing datasets have 

the corresponding radiologist examination report, which is then considered ground truth. 
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U-Net Bitwise Operation 

3.3 Method 

The proposed method is shown in Figure 1. EfficientNet was used for image classification, 

while XGBoost [11] was used for demographic variables classification.  

 

Figure 1. Multimodal ensemble method for TB detection 

The image dataset contains two types of images: non-segmented and segmented images. We 

used the U-Net model to generate the image masks. This model was previously trained using two 

public datasets, namely Shenzhen and Montgomery, which achieved a dice coefficient of 0.9633 

for 138 test sets. Following this, we applied the bitwise operation to crop only part of the lung 

corresponding to the mask after they were generated, as shown in Figure 2. 

         

Figure 2. Lung Segmentation Using U-Net and OpenCV Bitwise Operation. 

All input images were resized to 260 x 260 pixels prior to training. As mentioned earlier in 

section 2, one advantage of transfer learning is its capability to be used for small datasets. Realizing 

that our dataset is small, we used pre-trained ImageNet weights for EfficientNet in this study. 

During the evaluation, the EfficientNet models used are EfficientNetB1-B5. Lastly, we add the 

following custom top layers: Global Average Pooling layer, Fully Connected layer, Batch 
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Normalization layer, Dropout layer, and Sigmoid Classification layer. The details of each layer can 

be seen in Table 1. 

Demographic variables consisting of age, gender, and BMI used in this study were raw data. To 

handle this, we used data preprocessing methods such as null value filling, one-hot (OH) encoding, 

and row-grouping. Our strategy applied one-hot encoding to age, gender, and BMI, then trained 

these variables using the XGBoost model. 

As mentioned earlier in Figure 1, this study proposed a multimodal ensemble architecture of 

deep learning and machine learning algorithms to detect TB from CXR images. Therefore the final 

step in this method is to use each individually predicted result as input for the weighted ensemble 

model, as shown in  (1): 

 𝑃𝑟𝑒𝑑 =  𝑤1  ×  �̂�1  +  𝑤2 ×  �̂�2 (1) 

 Equation (1) contains variables �̂�1  and �̂�2 , which are predictions of EffcientNet and the 

XGBoost model. Additionally, both 𝑤1 and 𝑤2 are weight parameters for those models. 

Table 1. EfficientNet Layer Types and Parameters Used in Proposed Method. 

Layer (Type) Input_shape Output_shape 

Image_input 260x260x3 260x260x3 

top_conv 9x9x352 9x9x1408 

top_bn 9x9x1408 9x9x1408 

top_activation 9x9x1408 9x9x1408 

dropout 9x9x1408 9x9x1408 

global_avg_pool 9x9x1408 1408 

pred (dense) 1408 1 

 

 The contribution made by this study was introducing an ensemble model that can use multiple 

sources of input to solve TB classification tasks. We also compared the final proposed method with 

the previous state-of-the-art multimodal model by Heo et al. The results demonstrated that this study 

method obtained a better performance. 
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4. RESULTS AND DISCUSSION 

4.1 Demographic Variables with XGBoost 

The first step in the method is to train the XGBoost model using demographic variables 

consisting of one categorical variable, gender, and two numeric variables: age and BMI. Before 

training, row grouping, and one-hot encoding were done for age, gender, and BMI. The detail of 

demographic variables categorization can be seen in Table 2 and Table 3. 

Table 2. BMI Classifications. 

Classification BMI 

Underweight < 18.5 

Normal 18.5-25.0 

Overweight 25.1-27.0 

Obese > 27 

 

Table 3. Age Grouping. 

Group 
Age 

From To 

1 0 5 

2 6 11 

3 12 16 

4 17 25 

5 26 35 

6 36 45 

7 45 56 

8 56 65 

9 > 65 

 

Since XGBoost is a decision tree-based algorithm, multiple tree-related hyper-parameters, 

including n_estimator, max_depth, and learning_rate, were used to improve the model 

performance. These hyper-parameters and their description are shown in Table 4. 
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Table 4. XGBoost Classifier Parameters. 

Parameters Default value Description 

n_estimators 500 Number of trees to fit 

max_depth 4 Maximum depth of the tree 

learning_rate 0.05 Shrink the weight on each step 

 

Two kinds of experiments were utilized on demographic variables. Firstly, the XGBoost 

classifier was used on gender and BMI, and then we applied it to age, gender, and BMI. Both were 

preprocessed using one-hot-encode, and the performance evaluation of XGBoost is shown in Table 

5. 

Table 5. Demographic Variables with XGBoost. 

n_estimator max_depth LR AUC Specificity Sensitivity 

gender and BMI one-hot encoded 

500 4 0.05 0.8512 0.8723 0.5531 

500 4 0.025 0.8723 0.8723 0.5106 

500 4 0.0125 0.8843 0.8723 0.5957 

500 4 0.00625 0.8940 0.8936 0.5744 

500 8 0.05 0.8327 0.8510 0.6170 

500 8 0.025 0.8435 0.8510 0.6170 

500 8 0.0125 0.8626 0.8723 0.5957 

500 8 0.00625 0.8707 0.8723 0.6808 

age, gender, and BMI one-hot encoded 

500 4 0.05 0.8838 0.9361 0.6170 

500 4 0.025 0.8807 0.8936 0.6170 

500 4 0.0125 0.8684 0.9361 0.5531 

500 4 0.00625 0.8644 0.9361 0.5531 

500 8 0.05 0.8829 0.8931 0.6170 

500 8 0.025 0.8811 0.8936 0.6170 

500 8 0.0125 0.8798 0.8936 0.6170 

500 8 0.00625 0.8798 0.8936 0.6170 
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4.2 Non Segmented Image + Demographics variable performance 

Next is to train non-segmented images and ensemble them with demographic variables to get 

the final result. As mentioned earlier in section 3.1, the CNNs model used were five versions of 

EfficientNet from B1 to B5. In addition, according to the previous XGBoost result, there are two 

variations of the ensemble model. The first is the demographics variable with one-hot encoded on 

gender and BMI, and the second is demographics with one-hot encoded on age, gender, and BMI. 

Ensemble results of this model can be seen in Table 6. The best performance is marked with bold 

font. 

 

Table 6. Non-segmented Image Model Performance with Gender and BMI One-hot Encoded. 

Models 

Image without Segmentation 

Threshold (0.5) 

CNN CNN+DV1 AUC Difference 

EfficientNet-B1 0.8829 0.8829 0.0000 

EfficientNet-B2 0.9361 0.9468 0.0107 

EfficientNet-B3 0.9148 0.9255 0.0107 

EfficientNet-B4 0.8829 0.8829 0.0000 

EfficientNet-B5 0.9148 0.9148 0.0000 

1CNN with demographic variables 

 

To determine the best multimodal model, we compare AUC values for the CNN model using 

only images and CNN with the XGBoost ensemble technique. AUC values for EfficientNetB1-B5 

in the test set before ensemble were 0.8829, 0.9361, 0.9148, 0.8829, and 0.9148 respectively. 

Through an ensemble process, this model successfully increased the AUC value by 0.0107. Thus, 

we added preprocessed age variables to the model with the same training step as the previous 

model. These resulted in an increment of the AUC value by 0.0213, as shown in Table 7. 
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Table 7. Non-segmented Image Model Performance with Age, Gender, and BMI One-hot 

Encoded. 

Models 

Image without Segmentation 

Threshold (0.5) 

CNN CNN+DV1 AUC Difference 

EfficientNet-B1 0.8829 0.8829 0.0000 

EfficientNet-B2 0.9361 0.9574 0.0213 

EfficientNet-B3 0.9148 0.9255 0.0107 

EfficientNet-B4 0.8829 0.9042 0.0213 

EfficientNet-B5 0.9148 0.9148 0.0000 

1CNN with demographics variable 

 

4.3 Segmented Image + Demographics variable performance 

This model aims to discover if a segmented image has better results than the non-segmented 

image model. Results by model leveraging segmented image combined with the demographics 

variable model can be seen in Table 8 and Table 9. 

 

Table 8. Segmented Image Performance with Gender and BMI One-hot Encoded. 

Models 

Image with Segmentation 

Threshold (0.5) 

CNN CNN+DV1 AUC Difference 

EfficientNet-B1 0.8723 0.8723 0.0000 

EfficientNet-B2 0.9042 0.9148 0.0106 

EfficientNet-B3 0.9148 0.9148 0.0000 

EfficientNet-B4 0.8936 0.9042 0.0106 

EfficientNet-B5 0.9361 0.9361 0.0000 

1CNN with demographic variables 
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Table 9. Segmented Image Performance with Age, Gender, and BMI One-hot Encoded. 

Models 

Image with Segmentation 

Threshold (0.5) 

CNN CNN+DV1 AUC Difference 

EfficientNet-B1 0.8723 0.8936 0.0213 

EfficientNet-B2 0.9042 0.9148 0.0106 

EfficientNet-B3 0.9148 0.9255 0,0107 

EfficientNet-B4 0.8936 0.9042 0.0106 

EfficientNet-B5 0.9361 0.9361 0.0000 

1CNN with demographic variables 

Considering the experimental results above, we have analyzed the causes of an increase in 

AUC by calculating the difference in specificity and sensitivity values. Figure 2 shows the 

confusion matrix for the EficientNet-B2 network without demographic variables, and Figure 3 

shows the confusion matrix for the multimodal model with demographic variables. There is a 

change in the number of false positives and false negatives after applied demographic variables. 

 

Figure 2. Confusion Matrix for Unimodal Model. 

 

Figure 3. Confusion Matrix for Multimodal Model. 
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A further analysis was conducted to examine the difference in the sensitivity and specificity of 

unimodal and multimodal models. The multimodal model showed greater sensitivity and 

specificity reflected in 0.9361 and 0.9574, respectively. The ROC Curve of the multimodal 

ensemble can be seen in Figure 4. 

 

Figure 4. Receiver Operating Characteristic (ROC) Curve of Multimodal Ensemble. 

4.4  Results using a previous multimodal method 

Based on different datasets used on the previous multimodal model by Heo et al., we have 

replicated their model for evaluation on our datasets. A comparative analysis was done based on 

the AUC value in Table 10. The greater AUC was recorded in the image without segmentation. 

These outcomes align with the results of our methods that show higher AUC in non-segmented 

images as well. The performance shown in Table 10 indicates that the best AUC obtained by the 

previous model is 0.9255, compared to 0.9574 using our proposed model.  

Table 10.  Heo et al. (2019) Model Results on Study Dataset 

Models 

AUC 

CNN CNN+DV1 Difference 

Heo et al. (2019) model without image segmentation 0.9148 0.9255 0.0107 

Heo et al. (2019) model with image segmentation 0.9042 0.9148 0.0106 
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5.  DISCUSSIONS 

The experimental results illustrate that combining EfficientNet and XGBoost impacts the 

model performance. In Rahman, Cao, Sun, Li, and Hao's [37] study, they achieved a better AUC 

of  99.43 ± 0.39% using VGG19-XGBoost. On the other hand, our model outperforms the model 

proposed by Munadi, Muchtar, Maulina, and Pradhan [32] in AUC (0.9574 vs. 0.9480). However, 

their model is not a multimodal model like our proposed method, making it improper to perform a 

comparison, and that is not apple-to-apple.  

According to the experimental results, EfficientNetB2-XGBoost has the best performance with 

0.9574 AUC and 0.0213 points increment. Meanwhile, our final multimodal model outperforms 

the previous study regarding AUC and its increment when combined with demographic variables. 

Table 11 shows a comparison of AUC values to our proposed method, and the best performance 

is marked with bold font. 

Table 11. Comparison between Proposed and Benchmark Models. 

Models CNN-AUC CNN+DV1-AUC Difference 

Heo et al. (2019) 0.9075 0.9213 0.0138 

Proposed Model 0.9361 0.9574 0.0213 

1CNN with demographic variables 

 

6. CONCLUSIONS 

The primary goal of this study was to improve the TB detection model with additional 

demographic variables. The present study proved that this model could improve the AUC values 

by 0.0213 points, and this study method also proved that proper demographic variables 

preprocessing will enhance detection performance. As shown in Table 6 and Table 7, an AUC of 

0.0106 points increases compared to the non-grouped age model. Our model works well with a 

modern medical method that heavily depends on numerous data sources to support decision-

making. Based on the experimental results, we can conclude that the suggested approach can 
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improve the quality of TB diagnosis. This also opens the possibility for future works to develop a 

robust model with other medical data sources such as laboratory reports, patient assessment 

records, and radiology examination reports. 
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