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Abstract. Small Area Estimation (SAE) is a statistical technique to estimate parameters of subpopulation con-

taining small-size of samples. SAE is an indirect estimation method by utilizing the strength of the neighbor

area and data sources outside the area so that the sample becomes more effective and reduces the variance of pa-

rameter estimators. This paper deals with non-symmetrical count data in SAE which can be modelled based on

Poisson-Lognormal distribution using hierarchical Bayesian (HB) approach and information on covariate contains

measurement error. We develop the Poisson-Lognormal model for predicting small area counts with structural

measurement error in the area-specific covariate. To get the HB Bayes estimator for Poisson-Lognormal model

with measurement error in its covariates, the Metropolis-Hastings (MH) algorithm from the Markov Chain Monte

Carlo (MCMC) technique is used. The HB estimator performance is studied through simulation and implementa-

tion of real data to predict the illiteracy rate at the sub-district level in Kepulauan Riau Province Indonesia based

on The National Socio-Economic Survey (Susenas) data in March 2020.
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1. INTRODUCTION

Small Area Estimation (SAE) is concerned with the development of statistical procedures

for estimating small areas (or domains) when direct survey estimates (i.e. based only on the

area-specific sample data) are unreliable or even can not be calculated because of the limited

sample size. In the context of small area estimation, direct estimators lead to unacceptably large

standard errors for areas with unduly small sample sizes or no sample units may be selected from

some small domains. Data obtained from sample surveys can be used to derive reliable direct

estimates for large areas or domains, but sample sizes in small areas are rarely large enough for

direct estimators to provide adequate precision for small areas.

Another method which can be used to obtain higher precision in SAE are developed by

linking some information in particular area with some other areas through appropriate model

and it is called indirect estimation. There are two connecting models in indirect estimation,

implicit and explicit models. Traditional methods of indirect estimation are based on implicit

models that provide a link to related small areas through supplementary data. The explicit

small area models make specific allowance for between-area variation. [1] introduce mixed

models involving random area-specific effects that account for between-area variation beyond

that explained by covariates included in the model.

The SAE method was first used by [2] through a linear mixed model with area random effects

for estimating per capita income in a small area in the United States. [2] uses the Empirical Best

Linear Unbiased Prediction (EBLUP) which is an improvement on the Best Linear Unbiased

Prediction (BLUP). The BLUP estimator was first introduced by [3] for linear mixed models.

In this case, ”best” stands for minimum mean square error among all linear unbiased predictors,

”linear” means that the predictor is a linear combination of the response variable values and

”unbiased” means that the expected value of the prediction error is zero. The BLUP methods

described in [3] assumed that the variances associated with random effects in the mixed model

are known. In practice, variance components are unknown and have to be estimated from the

data. The predictor obtained from the BLUP when unknown variance components are replaced

by associated estimators is called the empirical best linear unbiased predictor (EBLUP) and

is described in [5]. While BLUP was originally proposed by [3], the empirical version of
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BLUP (EBLUP) is related to the classical shrinkage estimator studied by [4], who established

analytically that EBLUP improves on the sample means when the number of small areas is

larger than or equal to three.

In addition to EBLUP, empirical Bayes (EB) and hierarchical Bayes (HB) estimation and in-

ference methods have been also applied to small area estimation. The BLUP/EBLUP method is

applied to the linear mixed model which handles the problem of estimating small areas, but they

are not suitable for handling binary or count data. The EB and HB methods are applicable more

generally in the sense of handling models for binary and count data as well as normal linear

mixed models. Empirical Bayes methods are procedures for statistical inference in which the

prior distribution is estimated from the data. But in the HB approach, unknown model param-

eters (including variance components) are treated as random, with values drawn from specified

prior distributions. Posterior distributions for the small area characteristics of interest are then

obtained by integrating over these priors, with inferences based on these posterior distributions.

As in [1], Bayesian specifications for small area models with count data are derived from ba-

sic area level models for SAE, e.g. the Fay-Harriot model [2] or a generalized linear Poisson

model. Bayesian data analysis is based on the posterior distribution of relevant parameters

given the data. For some simple posterior distributions it is possible to find the exact form of

the posterior distribution and to find explicit forms for the posterior mean. The posterior dis-

tribution represents both prior information and observational data, each of which is represented

by the prior distribution of its likelihood function. The likelihood function represents the data

condition, while the prior distribution determines the researcher’s subjectivity. The prior dis-

tribution specification in Bayes’ inference is also very important because this prior distribution

will affect the inference regarding its posterior distribution. However, it is commonly the case

that for reasonably realistic model, it is not possible to obtain a closed form for the posterior

distribution. In this situation, simulation methods must be made to to posterior sampling i.e.

obtain samples from the posterior distribution which then can be summarised to get estimates

of relevant quantities.

The properties of the small area estimators derived under the SAE model are based on the

hypothesis that the auxiliary data or covariates are available for all the areas and that they are
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measured without error. However, it is sometimes difficult to find error-free covariates. When

the covariate used in the SAE model is measured with error, using a small area estimator such

as the Fay-Herriot estimator while ignoring measurement error may be worse than simply using

the direct estimator [7]. Survey data can be used as an up-to-date covariate but it may contain

measurement error. As in [8], ignoring measurement errors can produce biased estimators and

lead to incorrect conclusions in data analysis. Many statistical procedures have been developed

for statistical inference in measurement error models [9]. The measurement error model is

a combination of measurement errors and unobserved random variables where the observed

value is known. Since the true random variables are unobserved, it is important to estimate

the nature of the distribution of populations through the distribution of prior random variables

that contain measurement errors. The problem of estimating the density function of a true or

unobserved random variable using its observed sample (surrogate) is called deconvolution [10].

There are many parametric and nonparametric methods proposed to estimate the density func-

tion of the unobserved random variables due to measurement errors. In the additive measure-

ment error model, [10] proposed the deconvolution kernel density estimator to recover the un-

known density function from contaminated data, where the kernel idea and the Fourier inverse

were employed in the construction of the estimator. In this article, we estimate the density func-

tion of unobserved covariate under the framework of measurement error model by Empirical

Bayes Deconvolution (EBD) method proposed by [11, 12]. The basic idea of the EBD method

is modeling prior density as a member of exponential family density. Empirical Bayes infer-

ence assumes an unknown prior density of the unobserved covariate produces an independent

observation as surrogated with a known probability distribution mechanism.

The HB predictor for the area-level small area means based on the Fay-Herriot model with

measurement error in covariates proposed by [15] is constructed for continuous responses. But

for count data, the basic Poisson model is widely used with the assumption that the mean and

variance of the count data are equal. However, this equal mean-variance relationship rarely

occurs in observational data. In most cases, the observed variance is larger than the assumed

variance, which is called overdispersion. The Poisson formulation has to be adjusted to accom-

modate the extra variety of sample data observations. So, we develop the Poisson-Lognormal
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model using the HB approach in the context of small area estimation for handling overdisper-

sion in nonsymmetrical count data. When area-level covariate contains measurement error is

used in the Poisson-Lognormal model, it is necessary to utilizing information from covariates,

even though it may contain measurement errors. Measurement error might either be introduced

by the measuring technique which involves the subjective judgment by human action or due to

a cheaper or more convenient substitution of the correct quantity. Treating imprecise data as the

true value of covariate can result in some misleading outcomes. In the structural measurement

error model, the true covariate is treated as a random variable and its surrogate distribution is

assumed unknown. We construct the HB estimator of the Poisson-Lognormal model with mea-

surement error in covariates using the HB framework by adding the distribution of unobserved

covariate as the prior distribution. We used simulation studies to investigate the modeling as-

pects of the Poisson-Lognormal model with measurement error in covariate and used a real data

example to illustrate the practical usefulness of this work.

The remainder of this study is organized as follows. In Section 2, we specify the EBD method

for estimating the density function of unobserved covariate. Section 3 presents the Poisson-

Lognormal model with measurement error in covariate using HB approach. Sections 4 and 5

present the results of the simulation and real data example. Conclusions follow in Section 6.

2. THE EMPIRICAL BAYES DECONVOLUTION METHOD

Density estimation is a research area in statistics and has been studied extensively in many

fields. In density estimation we are interested in determining an unknown function f , given

only random samples or observations distributed according to this function. The goal of den-

sity estimation is to infer the probability density function (pdf) from observations of a random

variable. Density estimation approaches can be classified into two groups: parametric and

non-parametric density estimation. Parametric methods make strict prior assumptions about

the form of the underlying density function. In parametric density estimation approach, where

one assumes that the observations come from a parametric family of densities that has to be

specified in advance. Then, the task is to estimate the parameters that fit the data best. For

instance, a parametric approach may assume the random variables have a Normal distribution.
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Such assumptions simplify the problem since only the parameters of the chosen family distri-

bution need to be determined. In a normal distribution case, the density estimation reduces to

determining the mean µ and standard deviation σ of the sample points. But sometimes it is

not possible to make such strict assumptions about the form of the underlying density function

and non-parametric methods are more appropriate in these situations. These methods make few

assumptions about the density function and allow data to drive estimation process more directly.

[11] proposed the Empirical Bayes Deconvolution (EBD) method for estimating the density

function of an unobserved random variable based on empirical Bayes strategy. Empirical Bayes

methods are procedures for statistical inference in which the prior distribution is estimated from

the data. In the EBD method, an unknown prior distribution g(x) has yielded (unobservable)

parameters and each of Xi independently produces an observed random variable Wi according

to a known probability mechanism. From [13, 14], in classical structural measurement error

model, the true or unobserved random variable Xi and its observed variable (surrogate) Wi can

be written as additive measurement error model:

(1) Wi = Xi + ei, i = 1, ..,m

[8] assume that Xi’s are independent and identically-distributed (i.i.d.) as X, the errors ei’s are

i.i.d. as e, and X and e are mutually independent. We apply the EBD methodology in structural

measurement error problems for estimating the density function of a true or unobserved covari-

ate Xi using observational sample Wi. The Bayes deconvolution problem is one of recovering

g(x) from observed sample W and g is restricted to be in a parametric exponential family.

(2) Xi
iid∼ g(x), i = 1, ...,N

(3) Wi
iid∼ pi(Wi|Xi)

and the marginal density of Wi is

(4) f (w) =
∫

T
p(w|x)g(x)dx

where the integral is taken over the X-space, T . [11] proposed a likelihood approach to Bayes

deconvolution problem in (1) with the prior g(x) modeled by an exponential family of densities
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on the T , which is assumed to be a finite discrete support set

(5) T = (x(1), ...,x(m))

and the support set of the observations Wi is also assumed finite and discrete W =(w(1), ...,w(n)).

The unknown prior density g(x) is an m-vector g = (g1,g2, ..,gm)
t specifying probability g j on

x j,

(6) g = g(α) = exp[Qα−φ(α)].

where α is a p-dimensional parameter vector while Q is a known m× p structure matrix with

jth row denoted by Qt
j. The jth component of g(α) is

(7) g j(α) = exp[Qt
j−φ(α)], j = 1, ..,m

where the function φ(α) normalizes g(α) so that its components sum to 1:

(8) φ(α) = log
m

∑
j=1

exp(Qt
jα).

Let pi j = pi(W = w(i)|Xi = x( j)) and define the n×m matrix P = (pi j), so the marginal density

of W between g(x) and f (w) can be represented as matrix multiplication

(9) f = Pg.

Define the count vector y = (y1, ...,yn)
t with yi = −Wi = w(i) for i = 1,2, ...,n as a sufficient

statistics for g and y∼multn(N, f ). The log-likelihood function l(α) for y the parameter vector

α = (α1, ...,αp)
t is

(10) l(α) =
n

∑
i=1

yi log fi(α),

where f (α) = Pg(α). Define Bi(α) = {bi1(α), ...,bim(α)}t with

(11) bi j(α) = g j(α){pi j/ fi−1},

then the score function for α is

(12) l̇i(α) = (
∂ li(α)

∂α1
, ...,

∂ li(α)

∂αp
)t = QtB+(α)

which is needed for the maximum likelihood calculation. The maximum likelihood estimate α̂

for α is obtained by solving l̇(α) = 0.
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3. THE POISSON-LOGNORMAL MODEL WITH MEASUREMENT ERROR IN COVARIATE

When the response variables are discrete such as binary, count, and multi-category, the Pois-

son regression model is a widely used model for count data [20]. But the assumptions of the

Poisson regression model turn out to be unrealistic. More specifically, the Poisson model in-

volves the assumption that the mean is equal to the variance and, therefore, the model cannot

account for overdispersion. For this reason, alternative distributions are used which imply dif-

ferent mean and variance that handle overdispersion, such as negative binomial distribution. An

alternative for Poisson regression is to assume that the logarithmic parameter of the Poisson dis-

tribution follows a normal distribution with unknown variance, and unknown mean that depends

linearly on a vector of covariates. Unfortunately, this model is not trivial to analyze because the

likelihood function is not available in closed form. This model has been suggested before as

a plausible competitor to Poisson-Gamma, and Poisson-Inverse Gaussian [21]. [21, 22, 23]

has explored the relationships between count response and error-free covariates in the Poisson-

Lognormal model using HB approach.

[16] discussed the use of generalized linear mixed models for small area estimation under this

situation, and provided hierarchical Bayesian methods. Within the HB framework, alternative

model specifications can be considered when the variable of interest is a count or a proportion

[17, 18]. According to [19], HB models have many advantages: (i) their specification allows

taking into account the different sources of variation, and (ii) inferences are clear-cut and com-

putationally feasible in most cases by using standard MCMC techniques. [19] proposed six

HB area-level models for producing small area estimation for count data. They choose the HB

approach since inference on non-standard specifications may not be feasible using classical es-

timation methods. One of the HB models which can be used in SAE is the Poisson-Lognormal

model. The Poisson-Lognormal specification does convert a standard generalized linear mixed

model for count variates into a proper HB form. The Lognormal stage depends on two sources

of random variability, the sampling error and the random area effect. [1] represent has the re-

lationship of count response and error-free covariates in the Poisson-Lognormal model as HB

SAE model.
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When covariate contains measurement error, the representation of Poisson-Lognormal model

as HB model needs additional stage for considering the covariate measurement error. We con-

sider the situation in which covariate data are available from a survey which are measured with

error. We assume that the true or unobserved covariate Xi has an unknown probability distribu-

tion with distribution of its surrogate Wi is assumed known. As in [15], we adopt a Bayesian

approach and rewrite the Poisson-Lognormal model with measurement error in covariate as a

hierarchical model. We applied the EBD method in Section 2 to estimate the density function of

unobserved covariate and use it as the prior distribution in HB stages. The simulation study and

a real data application are conducted to investigate some related issues to the use of covariates

measured with error in the Poisson-Lognormal model will be discussed. For simplification, we

focus on one covariate measured with error. The Poisson-Lognormal model with measurement

errorin its covariate can be written as the following HB stages model:

(1) Stage 1: Sampling model

As in the first stage of the HB Poisson-Lognormal model, the count response yi is written

as:

yi|λi
ind∼ Poisson(λi), i = 1, ..,m

(2) Stage 2: The linking Model:

log(λi) = xt
iβ + vi

with area random effect vi
ind∼ N(0,σ2

v ) and

log(λi)|Xi,β ,σ
2
v

ind∼ N(xt
iβ ,σ

2
v )

(3) Stage 3: Density estimation of true covariate X using the EBD method

First, we assume the observed measurement Wi as a Poisson random variable whose

mean and variance equal to unobserved covariate Xi. The observed sample W =

{W1, ...,Wm} is the realization of unobserved covariate Xi. Denote the vector proba-

bility function of X as f = ( f1, ..., fm). The vector probability f is the prior density of

W and is modeled as a family of exponential family distribution. From the EBD method

proposed by [11] we get the density estimation f (x) which will use as prior density for

X .



10 NOVKANIZA, NOTODIPUTRO, SADIK, MANGKU

(4) Stage 4: Prior Distribution

Prior distribution of parameters of the Poisson-Lognormal model with measurement

error in covariate X as follows:

f (x,β ,σ2
v ) ∝ f (x) f (β ) f (σ2

v )

with Xi ∼ f (x) from EBD method, f (β ), σ2
v ∼ IG(a,b);a ≥ 0,b > 0, parameter β and

σ2
v are independent of each other.

(5) Stage 5: The Posterior Distribution

f (λi,Xi,β ,σ
2
v |y,W ) ∝ P(Yi|λi) f (λi|Xi,β ,σ

2
v )P(Wi|Xi) f (x) f (β ) f (σ2

v )

= (
m

∏
i=1

e−λiλ
yi
i

yi!
)(σ−m

v

m

∏
i=1

e−λiλ
yi−1
i exp[− 1

2σ2
v

m

∑
i=1

(logλi−X t
i β )2])(

m

∏
i=1

e−XiXwi
i

wi!
) f (x) f (σ2

v )

(13) ∝ (σ−m
v )(

m

∏
i=1

e−(λi+Xi)λ
yi−1
i Xwi

i )exp[− 1
2σ2

v
(

m

∏
i=1

(logλi−X t
i β )2] f (x) f (σ2

v )

In situation the posterior distribution cannot be determined analytically or via grid approxi-

mation, we use simulation to approximate the posterior distribution and its characteristics. The

joint posterior distribution representation in equation (13) cannot be obtained in closed form. It

is difficult or impossible to simulate directly from a distribution, so we turn to indirect methods.

If we use the Gibbs sampler, it requires generating samples from the full conditionals of each

step λ ,X ,β ,σ2
v , given the remaining parameters and the data. Because it is not easy to find

these full conditional distributions, so posterior distributions of model parameters are computed

using the Markov Chain Monte Carlo (MCMC) method using the MH algorithm for estimating

the model parameter β̂ and σ̂v
2 with prior distribution from stage 4.

4. SIMULATION STUDY

In this section a simulation study is conducted to better understand how the performance of

the HB Poisson-Lognormal measurement error in one covariate including structure of the data,

estimation method and accuracy of the estimated parameters. The aim of the simulation study

in this study are focused on the model performance, especially about the unbiasedness and ac-

curacy of the parameter estimators. In addition, Bayes’ inference based on this simulation study
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needs to be evaluated whether the Markov chain has reached the stationarity of the desired pos-

terior distribution or not. This process is carried out through convergence diagnostics using

trace plots. Any MCMC scheme aims to produce (dependent) samples from a ”target” distribu-

tion. If well constructed, the Markov chain is guaranteed to have the posterior as its stationary

distribution. But it does not tell us how long we have to run it to convergence. The initial po-

sition may have a big influence and the proposal distribution may lead to low acceptance rates.

The chain may get caught in a local maximum in the likelihood of surface.

A Markov chain mixes well if it can reach the posterior quickly, and moves quickly around the

posterior modes. The behaviour of the Markov chain can do by graphical checks and compare

estimators obtained from multiple runs from different initial conditions. The efficiency of the

chain can be measured in terms of the variance of estimates obtained by running the chain

for a short time. Often start the chain far away from the target distribution because target

distribution unknown, so we need to do a visual check for convergence. The first “few” samples

from the chain can be a poor representation of the stationary distribution. These are usually

thrown away as “burn-in”. In this simulation, we use M-H algorithm as a common algorithm

for generating samples from a complicated distribution using MCMC. In the M-H algorithm,

it start by assuming the distribution we want to sample from, has density proportional to some

function f. We also need to pick a “proposal distribution” that changes location at each iteration

in the algorithm.

In this simulation study, we assume the true covariate X is generated from Gamma distribu-

tion and its surrogate has Poisson distribution with E(Wi) = Xi. By using number of MCMC

samples 1000000 with thinning 500, the output of the estimated posterior distribution is as

follows:
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TABLE 1. Posterior statistics summaries of HB estimator of

Poisson-Lognormal model with measurement error in one covariate

Number of Area Parameter Cov Xi ∼ G(1,5) MSPE Cov Xi ∼ G(1,0.2) MSPE

Mean Std dev Mean Std dev

m = 5 β0 1.1858 0.5001 1.6565 0.7323 0.5536 1.2799

β1 0.4010 0.6422 0.2362 0.1647

σ2
v 0.5074 0.4503 0.3669 0.3451

m = 10 β0 0.7859 0.4397 1.9992 0.8766 0.5096 2.5211

β1 0.4938 0.3480 0.2657 0.1466

σ2
v 0.3496 0.2880 0.9553 0.5710

m = 30 β0 0.8868 0.1924 3.4091 1.2341 0.1218 7.6777

β1 0.3322 0.1184 0.1564 0.0124

σ2
v 0.1483 0.1176 0.1639 0.0800

Markov Chain Monte Carlo (MCMC) diagnostics are tools that can be used to check whether

the quality of a sample generated with an MCMC algorithm is sufficient to provide an accurate

approximation of the target distribution. In particular, MCMC diagnostics are used to check;

whether a large portion of the MCMC sample has been drawn from distributions that are sig-

nificantly different from the target distribution and whether the size of the generated sample is

too small. The results of the diagnostic convergence for the simulation study were carried out

through a trace plot as shown in Figures 1 and 2. The trace plot shows the sampled values of a

parameter over time and helps us to judge how quickly the MCMC procedure converges in the

distribution or how quickly it forgets its starting values. The parameter trace plots are created to

make sure that the prior distribution is well-calibrated which is indicated by parameters having

sufficient state changes as the MCMC algorithm runs. It allows us to evaluate convergence and

mixing of the chains visually. When the sampler has converged the chains show one horizontal

band, as in the Figure 1. In an intuitive sense, stationarity means that the properties of a pro-

cess generating samples do not change over time. In this case, trace plot is relatively constant

between mean and variance.
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FIGURE 1. Markov Chain Monte Carlo (MCMC) diagnostics for HB estimator

of Poisson-Lognormal model with true covariate Xi ∼ Gamma(1,5), i = 1, ...,5

Trace plots for m = 5 show that the MCMC simulation process based on the prior gamma

distribution has reached convergence to the stationarity of posterior distribution. In the ACF

plot for m = 30, there is a lot of serial correlation between successive draws. The chain is very

slow in exploring the sample space. The sample space has been explored only a few times. In

other words, there seem to be few independent observations in our sample or the effective size
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FIGURE 2. Markov Chain Monte Carlo (MCMC) diagnostics for HB estima-

tor of Poisson-Lognormal model with true covariate Xi ∼ Gamma(1,0.2), i =

1, ...,30
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of our sample is too small. Based on trace plot is shown in Figure 1, the plot shown for m = 5

are quite ideal, compare with m = 30. It exhibits rapid up-and-down variation with no long-

term trends or drifts. If we were to mentally break up this plot into a few horizontal sections,

the trace within any section would not look much different from the trace in any other section.

This indicates that the convergence in distribution takes place rapidly. Long-term trends or

drifts in the plot indicate slower convergence. ”long-term” is relative to the horizontal scale of

this plot, which depends on the number of samples. As we take more samples, the trace plot

gets squeezed together like an accordion, and slow drifts or trends eventually begin to look like

rapid up-and-down variations. The rapid up-and-down motion means that the sampled value at

any iteration is unrelated to the sampled value k iterations later, for values of k that are small

relative to the total number of samples.

It can be seen that the estimated parameter values for each parameter of the prior gamma

distribution are centered around the original generated value for m = 5. This shows that the

MCMC simulation process based on the prior gamma distribution has reached convergence to

the stationarity of posterior distribution. Furthermore, based on the acf plot and the density plot

shown in Figure 1, it provides an indication that is consistent with the trace plot results. Accord-

ing to the results of the autocorrelation plot for each observed parameter, it shows almost the

same pattern, a rapid decline after the second lag. Likewise, the probability density plot shows a

pattern that the distribution of the observed parameter estimates tends to be symmetrical, except

for density plot of random effect variance. However, based on the results in Figure 2 for m = 5,

it shows that the estimated value of the observed parameters has relatively large fluctuations and

it is indicated the larger sample size value is relatively less convergence of the posterior distri-

bution. Consequently, when traces show a trend convergence has not been reached and more

iterations are necessary. If convergence of Markov chain has not been achieved, it is necessary

to increase the ’burn-in’ period in the simulation process [24].

The simulation study indicates further studies to be carried out to validate the choice of prior

distribution of model parameters. The lacks of the proposed models are the assumption we use

in the EBD method for estimating the probability distribution of covariate measured with error is

finite discrete support set and the assumption of independence of observed sample covariate that
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is not always be satisfied in practice. Following the HB way of thinking, a Poisson-lognormal

model could be more appropriate for taking explicitly into account the nature of the count

response variable and distribution of covariate measurement error.

5. ILLITERACY RATE PREDICTION OF RIAU ISLAND PROVINCE, INDONESIA

As real data example to illustrate the construction of Poisson-Lognormal model with mea-

surement error in covariate is illiteracy dataset of Riau Island Province Indonesia from the

National Socio-Economic Survey (Susenas) in March 2020. In Indonesia, there has been a sig-

nificant decline in the number of illiterate people, from 7.42% in 2009 to 4% in 2020 based

on National Socio-Economic Survey (Susenas) 2020 by the Central Bureau of Statistics (BPS)

Indonesia. Before 1993, the achievement of literacy is evaluated every 10 years through a cen-

sus. After 1993, literacy data is collected annually in the form of Susenas which was held by

BPS to provide data on human resources, particularly those that are related to socio-economy

characteristics.

To evaluate the implementation of literacy education, a literacy indicator is used and for in-

vestigating the respondents’ ability to read and write, the survey interviewers ask the respondent

to demonstrate his/her ability to read a simple paragraph and to write simple sentences in the

Indonesian language. The indicator is the ratio of those aged 15 and over who are literate to

the total adult population (aged 15 and over). The literacy rate (LR) of the population aged 15

and over is defined as the number of literates aged 15 and over divide by total population aged

15 and over (x100%). Another indicator used is the illiteracy rate, which refers to the ratio of

illiterates among the total population falling into a certain age group. The illiteracy rate of the

population aged 15 and above is defined as the number of illiterates aged 15 and over divide

by the total population aged 15 and over (x100%). LR can be used as one of people welfare

indicators for measuring educational development in a certain area. The indicator can be mea-

sured if all variables related is available. Along with the establishment of regional policy, where

regional governments had greater power to manage their region, the availability of LR on lower

levels to monitor regional educational development is necessary.

For Susenas March 2020, the survey provides data at the city/district level and the data can

also be categorized by rural and urban, sex, age groups, and family expenditure. These make
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it possible for the country to observe any discrepancy in literacy level among groups. Due to

the sampling design of Susenas, accommodated the only estimation on the district level and it

will give high variance if it used to estimate on lower sub-district level, although still unbiased.

The high variance will result in a broader confidence interval of estimation, which will make

the estimation unreliable. One of the methods to obtain accurate estimators from inadequate

sample size in a small area is a method of SAE with the count response, Yi is the number of

illiterate people aged 15 and over in sub-district i and from the same survey, we choose the

number of people who live in rural areas as covariate measurement error Wi.

TABLE 2. Descriptive statistics of illiterate dataset

Variables Min Max Mean Std Dev

Yi 0 1470 230.47 303.37

Xi 0 17067 3257.24 3842.98

Because Yi is non-symmetrical count data and it has overdispersion problem as in Table 2,

for predicting the number of illiterate people aged 15 years old and above, we construct the

Poisson-Lognormal model as combination of the small area model and the hierarchical Bayes

approach to handle the problem of estimating small areas of counts, which includes taking into

account the random effects of the observed area and measurement error in covariate. We use the

number of people who lived in rural areas in the same survey as covariate measurement error.

As the Poisson-Lognormal model contains three parameters and the Bayes estimates can not be

obtained in closed form, the Metropolis-Hastings algorithm is used to generate MCMC samples

from the conditional posterior density of each parameter and produced parameter estimates as

shown in Table 3 as follows

TABLE 3. Posterior statistics summary of HB estimator

Parameter estimation Mean posterior Std dev HPD interval

25% 95%

β̂0 0.0686 1.1419 0.0183 0.1189

β̂1 -0.0289 0.9625 -0.0713 0.0135

σ̂2
v 92061.6190 16.1051 92060.9095 92062.3284
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Based on the results of data analysis and various model diagnostic criteria such as conver-

gence test of MCMC through traceplot, the autocorrelation plot of each parameter estimator

and the MSPE value, it is concluded that the Poisson-Lognormal model with covariates con-

taining measurement errors can be used to predict the illiteracy rate at the sub-district level in

Kepulauan Riau Province where Suak Midai District has the highest illiteracy rate of 30.88%.

In addition, it can also be obtained a prediction of the illiteracy rate of the Kepulauan Riau

Province in 2020 is 3.66%. This prediction is greater than the estimated illiteracy rate of the

Kepulauan Riau Province in 2020 based on the publication of Riau Island Province in 2021

which is only 1%.

6. CONCLUSIONS

The main goal of this research was to develop the Poisson-Lognormal model with measure-

ment error in its covariate using the HB approach in the context of small area estimation for

nonsymmetrical count data because of overdispersion. The covariate measured with error is

considered to be a random variable and modeled as a structural measurement error model. In-

stead of covariate observed directly, we observe a contaminated version of true covariate or

surrogate. One of the more significant findings to emerge from this study is that the true or

unobserved covariate can be modeled as a structural measurement error model and the density

function is estimated using Empirical Bayes Deconvolution (EBD) method. In the EBD method,

the probability distribution of an unobserved covariate is considered as the prior distribution of

its surrogate which the probability distribution is known.

As in the HB framework, we developed four stages of the HB approach by adding the es-

timated probability distribution of unobserved covariate as the prior distribution. The findings

of this research provide insights into the Poisson-Lognormal model with measurement error in

covariate which has a small MSPE value for smaller sample sizes. The research has also shown

that the stationarity of posterior distribution of parameters in the MCMC simulation process

using the Metropolis-Hastings (MH) algorithm reaches convergence rapidly for smaller sample

sizes. This gain in efficiency is also visible when the model is applied to a data set consisting

of illiterate data at the sub-district level in Kepulauan Riau Province obtained from Susenas in

March 2020 and the number of people who live in rural-area as covariate measured with error.
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Generally, this research urges the use of the Poisson-Lognormal model with measurement error

in its covariate as an alternative model to small area estimation for nonsymmetrical count data

such as the Poisson-Gamma model since it allows the non-conjugate prior (lognormal distribu-

tion) and considers covariate measured with error which comes from a survey. For covariate

measured with error, estimating the probability distribution by EBD method is an alternative

way for prior distribution in HB stages for Poisson-Lognormal model with measurement error

in its covariate. The Poisson-Lognormal model with measurement error in covariate based on

HB approach frameworks fully relies on the prior distribution. The most important limitation

lies in this study is arguments about the choice of prior distributions. Further research could

also be conducted to explore the interdependence between measurement error and covariate,

and whether this impacts the results in the EBD method.
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