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Abstract. Knowing more about the dynamics of hepatitis B viral infection with DNA containing capsids, still

under research. In this paper, we propose a new mathematical model dealing with the infection of hepatocytes

with capsids logistics growth functions and saturated rate. We initiate the work with the description and the well-

posedness of the formulation, then we study the stability of different equilibria to get a set of results which express

that the system has tree equilibrium points. For the basic reproduction number is less then one (R0 < 1) the disease-

free equilibrium is stable and when R0 > 1 other conditions determinate the stability of the endemic equilibrium

points. By numerical simulation, we verify numerically the theoretical founding.
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1. INTRODUCTION

As it known, the hepatitis B virus (HBV) can infect liver cells and can cause acute or chronic

infection of healthy hepatocytes [1,2], World Health Organization claims this disease as world-

wide public health problem and report it with more than 257 millions infected persons [3, 4].
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Several scientific works have been developed in order to study the dynamic of HBV infection

from both fields biologic and mathematics one [5–14]. In recent paper, [15] the authors describe

the HBV infection stochastically with differential model and they reconize that white noise can

influence the treatment of infectious. We can find also that HBV is studied and formulated with

ODEs system [6, 16, 17] and FDEs system [18–20], the propagation of HBV with spatial de-

pendence is discussed at [21] to design reaction-diffusion. Motivated by the natural existence

of viral genome DNA countaining capsids with hepatocytes B, it is describe as package com-

prised of an assembly of proteins, many works concider capsids as a contributing factor in the

dynamics of the viral infection [8, 16, 17, 22, 23]. After reading and analyzing what was done

by the previous research, we propose the formulation of the HBV viral dynamics with DNA

countaining capsids as the next nonlinear differential equations system:

(1)



dH
dt

= rH(1− H+I
N )− k HV

H+I ,

dI
dt

= ρI(1− H+I
N )+ k HV

H+I −δ I,

dD
dt

= aI− (β +δ )D,

dV
dt

= βD− cV.

This illustrate the dynamic between the healthy hepatocytes (H), the infected hepatocytes (I),

DNA containing capsids (D) and free virus (V).

The first equation express the variation over time of the healthy hepatocytes with two functions,

logistic growth with r as maximum proliferation and N as population capacity. The other func-

tion is saturated rate with k as infection rate due to virus and the polulation of hepatocytes.

The second equation give tree terms to describe the pace of the infected hepatocytes, we find

logistic growth with the maximum proliferation of infected cells ρ , k HV
H+I for saturation and the

last term to quantify the natural elimination with δ as death rate.

The third equation is for capsids, expressed by linear fonctions, with a as proliferation rate of

intracellular capsids associated to infected cells, β production rate of virus due to capsids and

δ death rate of capsids.
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The fourth equation descrive the variation over time of HBV as linear fonctions, with production

rate and elimination rate c of virus.

IH D V
k HV

H+I aI βD

cVδ I δD

ρI(1− H+I
N )rH(1− H+I

N )

FIGURE 1. Dynamics of HBV schematized by a graphical diagram.

The dynamics of this infection is schematized by the graphical diagram (Fig. 1). The

schematic behavior visualises well the interactions between the hepatocyte, infection cell, cap-

sids and B virus of the model (1).

This paper is organized by sections as follows. In section 2, we begin the analysis by show-

ing the non negativity and boundedness of the solution and discussing locally the stability of

steady states, in section 3, we present the numerical simulations by discussing the result then

we conclude the analysis.

2. ANALYSIS OF HBV INFECTION MODEL

In this section, we try to analyze the well posedness of the HBV dynamics formulation of the

model by assuring the positivity and the bordness of the solutions to keep biological identifica-

tion of the infection.

2.1. Well-posedness of the dynamics. In this paper, the phenomenon of HBV infection is

expressed by the equations of the model (1), we will admit that the initial condition of the

solutions are positive for biological reasons.

Proposition 1. The solution of the problem (1) is non negative and bounded for all t ≥ 0.

Proof. Firstly, lets show that R4
+ = {(H, I,D,V ) ∈ R4 : H ≥ 0, I ≥ 0,D ≥ 0 and V ≥ 0} is a

positively invariant region.
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Indeed, for (H, I,D,V ) ∈ R4
+, we have:

dH
dt

∣∣∣∣
H=0

= 0≥ 0,

dI
dt

∣∣∣∣
I=0

= KV ≥ 0,

dD
dt

∣∣∣∣
D=0

= aI ≥ 0,

dV
dt

∣∣∣∣
V=0

= βD≥ 0.

Therefore, all solutions initiating are positive, which give the result.

Secondly, for the boundness, from the system (1), we have:

dH
dt
≤ rH(1− H

N
),

d(H + I)
dt

≤Max(r,ρ)(H + I)(1− H + I
N

),

dD
dt

+(β +δ )D≤ aI,

dV
dt

+ cV ≤ βD.

We deduce that H, I, D and V are bounded. �

2.2. Existence and local stability of the solution. Before discussing the stability of the viral

dynamic, it is necessary to calculate the basic reproduction number (BRN), the average of the

new possible cases contaminated by one infected cell and mathematically it is defined by the

spectral radius of the next generation matrix.

By a simple calculation we get in our case the following formulation of BRN:

R0 =
akβ

δc(β +δ )
.
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The equations of the model (1) are null at any equilibrium instant E∗(H∗, I∗,D∗,V ∗).

(2)



0 = rH∗(1− H∗+ I∗

N
)− k

H∗V ∗

H∗+ I∗
,

0 = ρI∗(1− H∗+ I∗

N
)+ k

H∗V ∗

H∗+ I∗
−δ I∗,

0 = aI∗− (β +δ )D∗,

0 = βD∗− cV ∗.

So, the last two equations of (2) give:
D∗ =

a
(β +δ )

I∗,

V ∗ =
aβ

c(β +δ )
I∗ =

δR0

k
I∗.

For I∗ = 0, that give D∗ = 0, V ∗ = 0 and H∗ = N which implies:

The disease-free equilibrium E0(N,0,0,0).

For H∗= 0 and ρ ≥ δ , that give I∗= N
ρ
(ρ−δ ) , D∗= a

(β+δ )
N
ρ
(ρ−δ ) and V ∗= aβ

c(β+δ )
N
ρ
(ρ−δ )

which implies one endemic equilibrium point:

The first endemic equilibrium E1(0, I1,D1,V1)

With:

I1 =
N
ρ
(ρ−δ ),

D1 =
a

(β +δ )

N
ρ
(ρ−δ ),

V1 =
δR0

k
N
ρ
(ρ−δ ).

From the discussion above we can start the stability analysis studies with the following set of

results:

Proposition 2. If R0 < 1, the disease-free equilibrium E0 is locally asymptotically stable.
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Proof. The Jacobian matrix at E0 is:

−r −r 0 −k

0 −δ 0 k

0 a −β −δ 0

0 0 β −c


The characteristic polynomial of the matrix is:

PE0 = (X + r)[(X +δ )(X +β +δ )(X + c)−aβk]

From the Routh–Hurwitz stability criterion, it follows that all roots of PE0 have negative real

part, when R0 < 1. �

Proposition 3. If ρ > δ and R0 >
r
ρ

, the endemic equilibrium E1 exist and it is locally asymp-

totically stable.

Proof. The Jacobian matrix at E1 is:

r(1− I1
N )−

kV1
I1

0 0 0

−ρI1
N + kV1

I1
ρ(1−2 I1

N )−δ 0 0

0 a −β −δ 0

0 0 β −c


The characteristic polynomial of the matrix is:

PE1 = (X + c)(X +β +δ )(X +δ −ρ(1−2
I1

N
))(X +

kV1

I1
− r(1− I1

N
)).

So, when ρ > δ and ρR0 > r, we get the stability criterion of the endemic equilibrium E1. �
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For H∗ 6= 0, we pose X∗ = H∗+ I∗ 6= 0.

So, the first two equations of (2) give:
I∗ =

r
δR0

X∗(1− X∗

N
),

H∗ =
1

δR0
X∗
(

δ −ρ(1− X∗

N
)

)
= X∗(1− r

δR0
(1− X∗

N )).

That give : δR0 = (r−ρ)(1− X∗
N )+δ .

We can notice that the discussion will be continued with the differentiation between the prolif-

erating rates of proliferation is essential,

2.2.1. Same proliferation rates of healthy and infected hepatocytes. At the case when the

healthy and infected hepatocytes proliferate at the same rate ρ = r. We can talk over and

calculat two equilibruim points, one DFE E0 and EE E1 and specially when R0 = 1, we can get

an infinity of positive steady states E∗.

For the stability, we can discuss the next results from above as follow:

Proposition 4. If R0 < 1, the disease-free equilibrium E0 is locally asymptotically stable.

Proof. Same as Proposition 2. �

Proposition 5. If r > δ and R0 > 1, the endemic equilibrium E1 exist and it is locally asymp-

totically stable.

Proof. Same as it is at Proposition 3 for ρ = r. �

To sum up the pervious propositions when the healthy and infected hepatocytes proliferate at

the same rate, we present the following bifurcation diagram showing the relation between the

basic reproduction number R0 and steady states obtained in this case, we consider R0 is varied

via δ .

2.2.2. Different proliferation rates of healthy and infected hepatocytes. At the case when the

infected hepatocytes proliferating at a different rate from the healthy one, we can discuss the

existence of an other endemic equilibruim point.

We pose : RD = δ (R0−1)
r−ρ

= 1− X∗
N .
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FIGURE 2. Equilibrium healthy hepatocyte, infected hepatocyte, capsid and

virus bifurcation diagrams as R0 functions when the paremeters value are:

r = 0.4,N = 2×1011,k = 0.0014,a= 450δ = 0.0693,β = 0.001 and c= 0.693.

The second endemic equilibrium E2(H2, I2,D2,V2).

With:

H2 = N(1−RD)(1−
r

δR0
RD),

I2 =
rN

δR0
(1−RD)RD,

D2 =
ar

(β +δ )

N
δR0

(1−RD)RD,

V2 =
Nr
k
(1−RD)RD.

We can study the stability of this endemic equilibruim and conclude the following results.

Remarque 1. From the boundness result X can get the maximum value at N. So, RD is positive,

we conclude that (R0 > 1 and r > ρ) or (R0 < 1 and r < ρ).

For meaningful interpretation, we consider R0 > 1 and r > ρ , the existence of E2 is also

related to the condition giving as follow:

1 < R0 <
r
ρ
.
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Fig. 3 helps to search the maximum values of ρ that agree the existence of E2, it is obvious that

ρ is less than r, and to get more details about the relation between R0 and ρ the following curve

give the response.

FIGURE 3. Maximum values of ρ for the steady state E2, with the proliferation

rate of healthy hepatocyte is unit (r = 1)

Proposition 6. If RD < Min(1, δR0
r ,

2δ+β+c+ r
δR0

ρ+ r
δR0

) and Hi < 1,∀i ∈ {1,2,3}, the endemic equi-

librium E2 is locally asymptotically stable.

Proof. The Jacobian matrix at E2 is:



r(1− 2H2+I2
N )− kV2I2

(H2+I2)2 − rH2
N + kV2H2

(H2+I2)2 0 −k H2
H2+I2

−ρI2
N + kV2I2

(H2+I2)2 ρ(1− H2+2I2
N )− kV2H2

(H2+I2)2 −δ 0 k H2
H2+I2

0 a −β −δ 0

0 0 β −c


The characteristic polynomial of the matrix is:

PE2 = X4 +AX3 +BX2 +CX +D.
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With:

A = 2δ +β + c+ r
R0
(1−RD)−ρRD,

B = (c+β +δ )( r
R0
(1−RD)−ρRD +δ )+ c(β +δ )+ r(1−2RD)(δR0− rRD),

C = c(β +δ )(δ + r
R0
(1−RD)−ρRD)+(δ +β + c)r(1−2RD)(δR0− rRD)− kaβ (1− r

δR0
RD),

D = r(1−2RD)(δR0− rRD)c(β +δ )+ kaβ (1− r
δR0

RD)(δR0 +ρRD− r
R0
(1−RD)−δ ).

Again, using Routh-Hurwitz stability criterion, the eigenvalues of the above matrix have negative real

parts when A > 0, D > 0, AB−C > 0 and A(BC−AD)−C2 > 0.

We pose:

B+ = (c+β +δ )(
r

R0
(1−RD)+δ )+ c(β +δ )+ r(1−RD)(δR0− rRD),

C+ = c(β +δ )(δ +
r

R0
(1−RD))+(δ +β + c)r(1−RD)(δR0− rRD),

D+ = r(1−RD)(δR0− rRD)c(β +δ )+ kaβ (1− r
δR0

RD)(δR0 +ρRD),

B− = ρRD(c+β +δ )+ rRD(δR0− rRD),

C− = cρRD(β +δ )(δ +
r

R0
(1−RD))+ rRD(δ +β + c)(δR0− rRD)+ kaβ (1− r

δR0
RD),

D− = rRD(δR0− rRD)c(β +δ )+ kaβ (1− r
δR0

RD)(+
r

R0
(1−RD)+δ ),

H1 =
C++AB−

C−+AB+
,

H2 =
A(B+C++B−C−)

C2 +A2B+B+C−+B−C+
,

H3 =
D+

D−
.

So, we can be explicite the conditions by: Hi < 1,∀i ∈ {1,2,3} and (ρ +
r

δR0
)RD < 2δ + β + c+

r
R0

. �

3. NUMERICAL SIMULATIONS AND DISCUSSION

In the present section, several numerical simulations are carried out to exhibit the theoretical

results. Using Euler’s explicit method, we program numerically the solutions of the model (1)

under Matlab to illustrate this result.

With the following parameter values [14, 16, 24]: r = 1, ρ = 1, N = 2× 1011, k = 0.0014,

δ = 0.0693, a = 30, β = 0.87 and c = 0.693.
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FIGURE 4. The Behavior of the infection at disease-free equilibrium when the

proliferation rates of healthy and infected hepatocytes are equal (ρ = r)

FIGURE 5. The Behavior of the infection at disease-free equilibrium when the

proliferation rates of healthy and infected hepatocytes are different (ρ 6= r)
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FIGURE 6. The Behavior of the infection at endemic equilibrium when the pro-

liferation rates of healthy and infected hepatocytes are equal (ρ = r)

FIGURE 7. The Behavior of the infection at endemic equilibrium when the pro-

liferation rates of healthy and infected hepatocytes are different (ρ 6= r)
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In Fig. 4, we talk over the disease-free equilibrium, we discuss the case when we have the

same proliferation rates of healthy and infected hepatocytes (ρ = r), we simulate the solutions

and the behavior infection converge to the stable state E0 = (2× 1011,0,0,0). In this case the

basic reproduction number is less than unit (R0 = 0.8100 < 1) which is confirmed with our

theoretical result of the stability of DFEs.

Next, Fig. 5 shows the results when the proliferation rates of healthy and infected hepatocytes

are different (ρ 6= r), we choose ρ = 0.4 and do not change the other parameter values, the

disease dies out and go the same point E0. Moreover, the stability in this case is different in

terme of taking more time to converge and the infected cells, capsids and virus expand more

then the first case of the same proliferation rates.

Fig. 6 argues the stability of the endemic equilibrium, we change the paremeter a = 100 and let

the others as they are, we get the basic reproduction number is greater than unity (R0 = 2.7> 1).

At the case of the same proliferation rates of healthy and infected hepatocytes (ρ = r), the curves

converge to E1 = (0,0.0186× 1011,1.9817× 1011,2.4878× 1011), we observe the persistence

of the capcids and the virus.

Fig. 7 shows, when the proliferation rates of healthy and infected hepatocytes are different (ρ 6=

r), that the behavior infection converge to E1 =(0,0.0165×1011,1.7604×1011,2.2100×1011),

however, the persistente of the virus in this case is less than the case of the same proliferation

rates.

4. CONCLUSION

In this work, we investigated the hepatocytes B infection with DNA-containing capsids by

considering the proliferating of its dynamics following logistic growth funtions and satureted

rates under ordinary differential equation (ODE) model. In accordance with the biological con-

cept, the correct pose of the model is shown to confirm identification of the infection matemat-

ically, then we establish the analysis of the problem to prove the existence and the stability of

various steady states. At the present study, we give the local stability conditions of differents

equilibruim points and to better understand the progression of hepatic B diseases two scenarios

possible were discuss, when the healthy and infected hepatocytes proliferate at the same, we

conclude that at the disease free equilibrium the virus expand more then the case of different
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rates, however, at the endemic equillibruim the persistente result of the virus in this case of dif-

ferent rates is less than the same. Moreover, our numerical summulation confirm the theoretical

results concerning the stability of the steady states.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.

REFERENCES

[1] K. Wang, W. Wang, Propagation of HBV with spatial dependence, Math. Biosci. 210 (2007), 78–95. https:

//doi.org/10.1016/j.mbs.2007.05.004.

[2] R.M. Ribeiro, A. Lo, A.S. Perelson, Dynamics of hepatitis B virus infection, Microbes Infect. 4 (2002),

829–835. https://doi.org/10.1016/s1286-4579(02)01603-9.

[3] World Health Organization, Global hepatitis report 2017, 2017. https://www.who.int/publications/i/item/97

89241565455.

[4] World Health Organization News and Events, Progress toward access to hepatitis B treatment worldwide,

2018.

[5] S. Liu, R. Zhang, On an age-structured hepatitis B virus infection model with HBV DNA-containing capsids,

Bull. Malays. Math. Sci. Soc. 44 (2020), 1345–1370. https://doi.org/10.1007/s40840-020-01014-6.

[6] K. Manna, S.P. Chakrabarty, Chronic hepatitis B infection and HBV DNA-containing capsids: Modeling and

analysis, Commun. Nonlinear Sci. Numer. Simul. 22 (2015), 383–395. https://doi.org/10.1016/j.cnsns.2014

.08.036.

[7] J.M. Murray, R.H. Purcell, S.F. Wieland, The half-life of hepatitis B virions, Hepatology. 44 (2006),

1117–1121. https://doi.org/10.1002/hep.21364.

[8] J. Danane, K. Allali, Mathematical analysis and treatment for a delayed hepatitis B viral infection model

with the adaptive immune response and DNA-containing capsids, High-Throughput. 7 (2018), 35. https:

//doi.org/10.3390/ht7040035.

[9] K. Allali, A. Meskaf, Y. Tabit, Dynamics of a hepatitis B viral infection model with logistic hepatocyte

growth and cytotoxic T-lymphocyte response, Nonlinear Anal. Differ. Equ. 4 (2016), 109–120. https://doi.or

g/10.12988/nade.2016.510642.

[10] A. Meskaf, K. Allali, Y. Tabit, Optimal control of a delayed hepatitis B viral infection model with cytotoxic

T-lymphocyte and antibody responses, Int. J. Dynam. Control. 5 (2016), 893–902. https://doi.org/10.1007/s4

0435-016-0231-4.

https://doi.org/10.1016/j.mbs.2007.05.004
https://doi.org/10.1016/j.mbs.2007.05.004
https://doi.org/10.1016/s1286-4579(02)01603-9
https://www.who.int/publications/i/item/9789241565455
https://www.who.int/publications/i/item/9789241565455
https://doi.org/10.1007/s40840-020-01014-6
https://doi.org/10.1016/j.cnsns.2014.08.036
https://doi.org/10.1016/j.cnsns.2014.08.036
https://doi.org/10.1002/hep.21364
https://doi.org/10.3390/ht7040035
https://doi.org/10.3390/ht7040035
https://doi.org/10.12988/nade.2016.510642
https://doi.org/10.12988/nade.2016.510642
https://doi.org/10.1007/s40435-016-0231-4
https://doi.org/10.1007/s40435-016-0231-4


VIRAL INFECTION DYNAMICS OF HBV DNA-CONTAINING CAPSIDS 15

[11] M. Li, J. Zu, The review of differential equation models of HBV infection dynamics, J. Virol. Methods. 266

(2019), 103–113. https://doi.org/10.1016/j.jviromet.2019.01.014.

[12] Q. Huang, B. Zhou, D. Cai, et al. Rapid turnover of hepatitis B virus covalently closed circular DNA indi-

cated by monitoring emergence and reversion of signature-mutation in treated chronic hepatitis B patients,

Hepatology. 73 (2020), 41–52. https://doi.org/10.1002/hep.31240.

[13] D. Bentaleb, S. Harroudi, S. Amine, K. Allali, Analysis and optimal control of a multistrain seir epidemic

model with saturated incidence rate and treatment, Differ. Equ. Dyn. Syst. (2020). https://doi.org/10.1007/s1

2591-020-00544-6.

[14] K. Allali, A. Meskaf, A. Tridane, Mathematical modeling of the adaptive immune responses in the early stage

of the HBV infection, Int. J. Differ. Equ. 2018 (2018), 6710575. https://doi.org/10.1155/2018/6710575.

[15] F.A. Rihan, H.J. Alsakaji, Analysis of a stochastic HBV infection model with delayed immune response,

Math. Biosci. Eng. 18 (2021), 5194–5220. https://doi.org/10.3934/mbe.2021264.

[16] K. Manna, Global properties of a HBV infection model with HBV DNA-containing capsids and CTL immune

response, Int. J. Appl. Comput. Math. 3 (2016), 2323–2338. https://doi.org/10.1007/s40819-016-0205-4.

[17] J. Danane, A. Meskaf, K. Allali, Optimal control of a delayed hepatitis B viral infection model with HBV

DNA-containing capsids and CTL immune response, Optim. Control Appl. Methods. 39 (2018), 1262–1272.

https://doi.org/10.1002/oca.2407.

[18] X. Zhou, Q. Sun, Stability analysis of a fractional-order HBV infection model, Int. J. Adv. Appl. Math. Mech.

2 (2014), 1–6.

[19] S. Ali Khan, K. Shah, P. Kumam, A. Seadawy, G. Zaman, Z. Shah, Study of mathematical model of Hepatitis

B under Caputo-Fabrizo derivative, AIMS Math. 6 (2021), 195–209. https://doi.org/10.3934/math.2021013.

[20] M. Bachraoui, M. Ait Ichou, K. Hattaf, et al. Spatiotemporal dynamics of a fractional model for hepatitis B

virus infection with cellular immunity, Math. Model. Nat. Phenom. 16 (2021), 5. https://doi.org/10.1051/mm

np/2020058.

[21] K. Wang, W. Wang, Propagation of HBV with spatial dependence, Math. Biosci. 210 (2007), 78–95. https:

//doi.org/10.1016/j.mbs.2007.05.004.

[22] S. Harroudi, A. Meskaf, K. Allali, Modelling the adaptive immune response in HBV infection model with

HBV DNA-containing capsids, Differ. Equ. Dyn. Syst. (2020). https://doi.org/10.1007/s12591-020-00549-1.

[23] A. Meskaf, Optimal control of a delayed hepatitis b viral infection infection model with dna-containing

capsids, the adaptive immune response and cure rate, Int. J. Open Probl. Comput. Math. 12 (2019), 18–33.

[24] K. Manna, S.P. Chakrabarty, Combination therapy of pegylated interferon and lamivudine and optimal con-

trols for chronic hepatitis B infection, Int. J. Dynam. Control. 6 (2017), 354–368. https://doi.org/10.1007/s4

0435-017-0306-x.

https://doi.org/10.1016/j.jviromet.2019.01.014
https://doi.org/10.1002/hep.31240
https://doi.org/10.1007/s12591-020-00544-6
https://doi.org/10.1007/s12591-020-00544-6
https://doi.org/10.3934/mbe.2021264
https://doi.org/10.1007/s40819-016-0205-4
https://doi.org/10.1002/oca.2407
https://doi.org/10.3934/math.2021013
https://doi.org/10.1051/mmnp/2020058
https://doi.org/10.1051/mmnp/2020058
https://doi.org/10.1016/j.mbs.2007.05.004
https://doi.org/10.1016/j.mbs.2007.05.004
https://doi.org/10.1007/s12591-020-00549-1
https://doi.org/10.1007/s40435-017-0306-x
https://doi.org/10.1007/s40435-017-0306-x

	1. Introduction
	2. Analysis of HBV Infection Model
	2.1. Well-posedness of the dynamics
	2.2. Existence and local stability of the solution

	3. Numerical Simulations and Discussion
	4. Conclusion
	Conflict of Interests
	References

