
Available online at http://scik.org

Commun. Math. Biol. Neurosci. 2015, 2015:1

ISSN: 2052-2541

HOPF BIFURCATION IN A DELAYED LOGISTIC GROWTH WITH FEEDBACK
CONTROL

XIAOJIE GONG1, XIANDDONG XIE2,∗, RONGYU HAN1, LIYA YANG1

1College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350002, China

2Department of Mathematics, Ningde Normal University, Ningde, Fujian 352300, China

Copyright c© 2015 Gong, Xie, Han and Yang. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, the bifurcation of the delayed logistic model with feedback control variable are investi-

gated. By regarding the corresponding characteristic equations, the linear stability of the system is discussed and

Hopf bifurcations are demonstrated, especially the stability switch is discussed in this system. By the normal form

and the center manifold theory, the explicit formulae are derived to determine the stability, direction and other

properties of bifurcating periodic solutions. Finally, some examples are presented to verify our main results.
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1. Introduction

The single-species logistic growth model governed by delay differential (and integro-differential)

equations plays an important role in population dynamics and ecology that has been investigat-

ed in-depth involving the stability, persistent, oscillations and chaotic behavior of solutions
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[1]-[11]. Gopalsamy and Weng [12] considered the following control system:

dn(t)
dt

= rn(t)[1− a1n(t)+a2n(t− τ)

K
− cu(t)],

du(t)
dt

= −au(t)+bn(t− τ),

(1.1)

where r,K,c,a,b,a1,a2 ∈ (0,+∞), τ ∈ [0,+∞). The authors presented some sufficient condi-

tions for the global asymptotic stability of the positive equilibrium of the system. On one hand,

in Song et al. [13], the authors considered the Hopf bifurcation for a regulated logistic growth

model which is a special case of (1.1) as follows

dn(t)
dt

= rn(t)[1− n(t− τ)

K
− cu(t)],

du(t)
dt

= −au(t)+bn(t− τ),

(1.2)

where r,K,c,a,b ∈ (0,+∞), τ ∈ [0,+∞). And the authors gave the explicit algorithm deter-

mining the direction of Hopf bifurcations and the stability of the periodic solutions, while they

didn’t discuss the existence of stability switches of this system. On the other hands, Gopalsamy

and Weng [12] investigate the following control system:

dn(t)
dt

= rn(t)[1− n(t− τ)

K
− cu(t)],

du(t)
dt

= −au(t)+bn(t),
(1.3)

where r,K,c,a,b ∈ (0,+∞), τ ∈ [0,+∞), the initial conditions for the system (1.3) take the

form of n(s) = φ(s)≥ 0; φ(0)> 0; φ ∈C([−τ,0],R+); u(0) = u0. It is not difficult to see that

solutions of (1.3) are defined for all t > 0 and also satisfy n(t) > 0,u(t) > 0 for t > 0. And

system (1.3) has unique positive equilibrium (n∗,u∗) = (
aK

a+Kbc
,

bK
a+Kbc

). Then by the linear

chain trick technique [12], system (1.3) can be transformed into the following equivalent system

dx(t)
dt

= −ax(t)+bn∗S(t),

dS(t)
dt

= −crx(t)− rn∗

K
S(t− τ),

(1.4)

where r,K,c,a,b ∈ (0,+∞), τ ∈ [0,+∞). The author obtained when the condition (H)
bc
a

>
1
K

and a > (1+
√

2)r hold, the positive equilibrium (n∗,u∗) of (1.3) is linearly asymptotically

stable irrespective of the size of the delay τ . It concludes that a delay induced switching from
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stability to instability cannot take place; that is, an appropriate indirect feedback control can be

used to avoid the occurrence of a Hopf-type bifurcation. We are interested in the effect of delay

τ on dynamics of system (1.3) when the condition (H) is not satisfied. Taking the delay τ as a

parameter, we show that the stability switches and a Hopf bifurcation occurs when the delay τ

passes through a critical value.

The organization of this paper is as follows. In Section 2, we study the stability and the

Hopf bifurcation of system (1.3). In the next section, by the normal form method and the center

manifold theory introduced by Hassard et al. [14], the direction of Hopf bifurcation and the

stability of bifurcating periodic solutions are determined. The main results are illustrated by

examples with numerical simulations in the last section.

2. Local stability and Hopf bifurcation

The characteristic equation associated with nonlinear system (1.4) is

λ
2 +λ (a+

r
K

n∗e−λτ)+
arn∗

K
e−λτ +bcrn∗ = 0 (2.1)

Case 1. If τ = 0, the equation (2.1) becomes

λ
2 +λ (a+

r
K

n∗)+(
ar
K

+bcr)n∗ = 0

whose roots have negative real parts. Thus the trivial solution of the linear of system (1.3) is

asymptotically stable when τ = 0 [15].

Case 2. If τ > 0, we assume λ = iω (ω > 0) is a purely imaginary root of (2.1), then we can

obtained

−ω
2 +

ωrn∗

K
sinωτ +

arn∗

K
cosωτ +bcrn∗+ i(ωa+

ωrn∗

K
cosωτ− arn∗

K
sinωτ) = 0. (2.2)

Separating the real and imaginary parts of (2.2),

−bcrn∗+ω2 =
ωrn∗

K
sinωτ +

arn∗

K
cosωτ,

−ωa =
ωrn∗

K
cosωτ− arn∗

K
sinωτ.

(2.3)
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then

cosωτ =
−abcK
ω2 +a2 , sinωτ =

Kω(ω2 +a2−bcrn∗)
(ω2 +a2)rn∗

. (2.4)

Since sin2ωτ + cos2ωτ = 1, therefore,

ω
4 +w2[a2−2bcrn∗− (

rn∗

K
)2]+ (bcrn∗)2− (

arn∗

K
)2 = 0. (2.5)

We know that n∗ =
aK

a+Kbc
, so

n∗ < K, bcn∗ < a. (2.6)

Let F(M) =M2+M[a2−2bcrn∗−(
rn∗

K
)2]+(bcrn∗)2−(

arn∗

K
)2, then it follows from (2.5) that

F(M)=0, where M = ω2.

(1) If the condition
bc
a

<
1
K

holds, then (bcrn∗)2− (
arn∗

K
)2 < 0 is satisfied. So, the equation

(2.5) has a solution ω0 > 0, since the first equation of the (2.4),

τn =
1

ω0
arccos

−abcK
ω2

0 +a2 +
2nπ

ω0
, n = 0,1,2,3, ...

then, ±iω0 is the purely imaginary root of (2.1), according to Rorche theorem, the positive

equilibrium of (1.3) will be locally asymptotically stability at τ ∈ [0,τ0).

We compute dλ/dτ from equation (2.1),

dλ

dτ
=

(λ +a)λ rn∗e−λτ

(2λ +a)K + rn∗(1−λτ−aτ)e−λτ

The sign of the real part of
dλ

dτ
and (

dλ

dτ
)−1 are identical. So,

(
dλ

dτ
)−1 =

(2λ +a)K + rn∗(1−λτ−aτ)e−λτ

(λ +a)λ rn∗e−λτ

=
(2λ +a)K + rn∗e−λτ

(λ +a)λ rn∗e−λτ
− τ

λ
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When λ = iω ,

(
dλ

dτ
)−1 =

(2iω +a)K + rn∗(cosω0τ− isinω0τ)

iω0(iω0 +a)rn∗(cosω0τ− isinω0τ)
− τ

iω0

=
aK + rn∗cosω0τ + i(2Kω0− rn∗sinω0τ)

−rn∗ω2
0 cosω0τ + irn∗ω2

0 sinω0τ + irn∗aω0cosω0τ + rn∗aω0sinω0τ
− τ

iω0

=
M+ iN
C+ iD

− τ

iω0

=
MC+ND
C2 +D2 − i

MD−NC
C2 +D2 −

τ

iω0
,

where

M = aK + rn∗cosω0τ, N = 2Kω0− rn∗sinω0τ

and

C = rn∗aω0sinω0τ− rn∗ω2
0 cosω0τ, D = rn∗aω0cosω0τ + rn∗ω2

0 sinω0τ.

Therefore, it follows from (2.4) that

MC+ND = a2rKω0n∗sinω0τ +Karn∗ω2
0 cosω0τ +2Kω3

0 rn∗sinω0τ− r2(n∗)2ω2
0

= Karn∗ω2
0 cosω0τ +Krω0n∗(a2 +2ω2

0 )sinω0τ− r2(n∗)2ω2
0

= Karn∗
−Kabc
ω2

0 +a2 +Krω0n∗(a2 +2ω
2
0 )

Kω0(ω
2
0 +a2−bcrn∗)

(ω2
0 +a2)rn∗

− r2(n∗)2
ω

2
0

=
K2ω2

0 [2ω2
0 (a

2 +ω2
0 )+

(
a2−2bcrn∗− (

rn∗

K
)2)(a2 +ω

2
0 )]

ω2
0 +a2

= K2ω2
0
(
2ω2

0 +a2−2bcrn∗− (
rn∗

K
)2).

Since 2ω2
0 = 2bcrn∗+(

rn∗

K
)2−a2+

√
4, where,4= [a2−2bcrn∗− (

rn∗

K
)2]2−4

(
(bcrn∗)2−

(
arn∗

K
)2), we find that

MC+ND = K2
ω

2
0

√
4> 0.

Thus,

sgn
{
[Re(

dλ

dτ
)]λ=iω0

}
= sgn

{
[Re(

dλ

dτ
)−1]λ=iω0

}
= sgn

{MC+ND
C2 +D2

}
> 0.

It follows from Transversal condition that the positive equilibrium of (1.3) occur Hopf bifurca-

tion when τ = τ0. Consequently, the positive equilibrium of (1.3) will be locally asymptotically

stability at τ ∈ [0,τ0), and will occur Hopf bifurcation when τ = τn,n = 0,1,2....
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(2) If
bc
a

>
1
K

and
r

a+Kbc
>
√

2−1 are satisfied, we can obtain a2−2bcrn∗− (
rn∗

K
)2 < 0 and

(bcrn∗)2− (
arn∗

K
)2 > 0. Then, the equation (2.1) has two imaginary solutions, λ± = iω±, with

ω+ > ω− > 0 in this case. It follows from (1) that

2ω
2
± = 2bcrn∗+(

rn∗

K
)2−a2±

√
4,

where4= [a2−2bcrn∗−(
rn∗

K
)2]2−4

(
(bcrn∗)2−(

arn∗

K
)2). It is obvious that all purely imag-

inary roots are simple (unless a=r=0 ).

The quantity of interest is again the sign of the derivative of Reλ with respect to τ at the

points where λ is purely imaginary. Similar to (1),

sgn
{
[Re(

dλ

dτ
)]λ=iω+

}
= sgn

{
[Re(

dλ

dτ
)−1]λ=iω+

}
= sgn

{K2ω2
0
√
4

C2 +D2

}
> 0,

sgn
{
[Re(

dλ

dτ
)]λ=iω−

}
= sgn

{
[Re(

dλ

dτ
)−1]λ=iω−

}
= sgn

{−K2ω2
0
√
4

C2 +D2

}
< 0.

Therefore, crossing of the imaginary axis from left to right with increasing τ occurs whenever

τ assumes a value corresponding to ω+, and crossing from right to left occurs for values of the

τ corresponding to ω−. Using the first equation of the (2.4), then

τ+n =
1

ω+
arccos

−abcK
ω2
++a2 +

2nπ

ω+

τ−n =
1

ω−
arccos

−abcK
ω2
−+a2 +

2nπ

ω−
(n = 0,1,2, ...)

.

Since the zero solution of system (1.3) is stable for τ = 0, it is obvious that τ
+
0 < τ

−
0 . If

0 < τ
+
0 < τ

−
0 < τ

+
1 , since τ

+
n+1−τ+n =

2π

ω+
<

2π

ω−
= τ
−
n+1−τ

−
n , there can be only a finite number

of switches between stability and instability, while eventually it becomes unstable. If 0 < τ
+
0 <

τ
+
1 < τ

−
0 , it’s obviously that there have two roots with positive real parts at τ ∈ [τ+0 ,τ+1 ], so the

zero solution of system (1.3) is unstable eventually.

Then we have the follow results.

Theorem 2.1. Assume that condition
bc
a
<

1
K

hold, then the unique interior positive equilibrium

M∗ = (n∗,u∗) of system (1.3) is locally asymptotically stable for 0 ≤ τ < τ0 and unstable for

τ > τ0. Furthermore, system (1.3) undergoes Hopf bifurcation at M∗=(n∗,u∗) when τ = τn,n=

0,1,2, ....
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Theorem 2.2. Assume that condition
bc
a

>
1
K

and
r

a+Kbc
>
√

2−1 hold, then the stability of

the unique interior positive equilibrium P∗= (n∗,u∗) of system (1.3) can change a finite number

of times, at most, as τ is increased, and eventually it becomes unstable.

3. Direction and the stability of Hopf bifurcation

In this section we study the direction of the Hopf bifurcation and the stability of the bifur-

cation periodic solutions when τ = τ j under the condition
bc
a

<
1
K

and using techniques from

normal form and center manifold theory by Hassard et al.

Let x1(t) = n(τt)−n∗, x2(t) = u(τt)−u∗, τ = τ j +µ . Then system (1.3) can be written as a

functional differential equation in C =C([−1,0],R2).

x
′
(t) = Lµ(xt)+ f (µ,xt), (3.1)

where x(t) = (x1(t),x2(t))T ∈ R2 and Lµ : C→ R2, f : R×C→ R2 are given, respectively, by

Lµ(φ) = (τ j +µ)

 0 −crn∗

b −a

 φ1(0)

φ2(0)

+(τ j +µ)

 −rn∗

K
0

0 0

 φ1(−1)

φ2(−1)

 (3.2)

and

f (µ,φ) = (τ j +µ)

 Q

0

 , (3.3)

where, Q = − r
K

φ1(0)φ1(−1)− crφ1(0)φ2(0), φ = (φ1,φ2) ∈ C. By the Riesz representation

theorem, there exists a function η(θ ,µ) of bounded variation for θ ∈ [−1,0] such that

Lµ(θ) =
∫ 0

−1
dη(θ ,µ)φ(θ),φ ∈C. (3.4)

In fact, we can choose

η(θ ,µ) = (τ j +µ)

 0 −crn∗

b −a

δ (θ)− (τ j +µ)

 −rn∗

K
0

0 0

δ (θ +1), (3.5)
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where δ (θ) =

{
0, θ 6= 0,

1, θ = 0.
. That (3.2) is satisfied. For φ ∈C1([−1,0],R2), define

A(µ)φ =

{ dφ(θ)

dθ
, θ ∈ [−1,0),∫ 0

−1 dη(s,µ)φ(s), θ = 0

and

R(µ)φ =

{
0, θ ∈ [−1,0),

f (µ,φ), θ = 0.

Then system (3.1) is equivalent to

x
′
t = A(µ)xt +R(µ)xt , (3.6)

where xt(θ) = x(t +θ) for θ ∈ [−1,0]. For ψ ∈C1([−1,0],(R2)∗), define

A∗ψ(s) =

{
−dψ(θ)

dθ
, s ∈ (0,1],∫ 0

−1 dη(s,µ)φ(s), s = 0

and a bilinear inner product

< ψ(s),φ(θ)>= ψ̄(0)φ(0)−
∫ 0

−1

∫
θ

ξ=0
ψ̄(ξ −θ)dη(θ)φ(ξ )dξ , (3.7)

where η(θ) = η(θ ,0). Then A(0) and A∗ are adjoint operators. By the discussions in Section

2, we know that±iω0τ j are eigenvalues of A(0). Thus, they are also eigenvalues of A∗. We first

need to compute the eigenvector of A(0) and A∗ corresponding to iω0τ j and −iω0τ j, respec-

tively.

Suppose that q(θ) = (1,q1)
T eiω0τ jθ is the eigenvector of A(0) corresponding to iω0τ j, then

A(0)q(θ) = iω0τ jq(θ). It follows from the definition of A(0), (3.4) and (3.5) that

τ j

 iω0 +
rn∗

K
e−iω0τ j crn∗

−b iω0 +a

q(0) = 0.

Thus we can easily get

q(0) = (1,q1)
T = (1,

b
iω0 +a

)T .
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On the other hand, suppose that q∗(s) = D(1,q∗1)e
iω0τ js is the eigenvector of A∗ corresponding

to −iω0τ j. By the definition of A∗, (3.4) and (3.5), we obtain

τ j

 iω0−
rn∗

K
eiω0τ j b

−crn∗ iω0−a

q∗(0)T = 0,

which implies

q∗(0) = D(1,q∗1) = D(1,
rn∗eiω0τ j − iKω0

bK
).

In order to assure < q∗(s),q(θ)>= 1, we need to determine the value of the D. From (3.7), we

have

< q∗(s),q(θ)> = q̄∗(0)q(0)−
∫ 0
−1
∫

θ

ξ=0 q̄∗(ξ −θ)dη(θ)q(ξ )dξ

= D̄(1, q̄∗1)(1,q1)
T −

∫ 0
−1
∫

θ

ξ=0 D̄(1, q̄∗1)e
−iω0τ j(ξ−θ)dη(θ)(1,q1)

T eiω0τ jξ dξ

= D̄
(
1+ q̄∗1q1−

∫ 0
−1(1, q̄

∗
1)θeiω0τ jθ dη(θ)(1,q1)

T)
= D̄

(
1+ q̄∗1q1 + τ je−iω0τ j(1, q̄∗1)

 −rn∗

K
0

0 0

(1,q1)
T)

= D̄
(
1+ q̄∗1q1−

rn∗

K
τ je−iω0τ j

)
.

Thus, we can obtain

D =
1

1+q∗1q̄1−
rn∗

K
τ jeiω0τ j

.

In the following, we use the ideas in Hassard et al. [14] to compute the coordinates describing

center manifold C0 at µ = 0. Define

z(t) =< q∗,xt >, W (t,θ) = xt−2Rez(t)q(θ). (3.8)

On the center manifold C0 we have

W (t,θ) =W (z(t), z̄(t),θ) =W20(θ)
z2

2
+W11(θ)zz̄+W02(θ)

z̄2

2
+ · · · ,

where z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗. Note

that W is real if xt is real. We consider only real solutions. For the solution xt ∈ C0 of (3.6),
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since µ = 0, we have

z
′
(t) = iω0τ jz+ q̄∗(0) f (0,W (z(t), z̄(t),θ)+2Rezq(0))

de f
= iω0τ jz+ q̄∗(0) f0(z, z̄)

= iω0τ jz+g(z, z̄),

where

g(z, z̄) = q̄∗(0) f0(z, z̄) = g20
z2

2
+g11zz̄+g02

z̄2

2
+g21

z2z̄
2
· · · (3.9)

Notice that xt(θ) = (x1t(θ),x2t(θ)) =W (t,θ)+ zq(θ)+ z̄q̄(θ) and q(θ) = (1,q1)
T eiω0τ jθ , then

we obtain

x1t(0) =W (1)
20 (0)

z2

2
+W (1)

11 (0)zz̄+W (1)
02 (0)

z̄2

2
+ z+ z̄+O(|(z, z̄)|3)

x1t(−1) =W (1)
20 (−1)

z2

2
+W (1)

11 (−1)zz̄+W (1)
02 (−1)

z̄2

2
+ e−iω0τ jz+ eiω0τ j z̄+O(|(z, z̄)|3)

x2t(0) =W (2)
20 (0)

z2

2
+W (2)

11 (0)zz̄+W (2)
02 (0)

z̄2

2
+ zq1 + z̄q̄1 +O(|(z, z̄)|3).

On the other hand, in terms of the definition of f (µ,xt), we have

g(z, z̄) = q̄∗(0) f0(z, z̄)

= D̄τ j

{
(−2r

K
q1e−iω0τ j −2crq1)

z2

2

+

[
− r

K
(q̄1eiω0τ j +q1e−iω0τ j)− cr(q̄1 +q1)

]
zz̄+(−2r

K
q̄1eiω0τ j −2crq̄1)

z̄2

2

+

[
− r

K

(
W (1)

20 (0)q̄1eiω0τ j +2W (1)
11 (0)q1e−iω0τ j +2W (1)

11 (−1)+W (1)
20 (−1)

)
−cr

(
W (1)

20 (0)q̄1 +2W (1)
11 (0)q1 +2W (2)

11 (0)+W (2)
20 (0)

)]z2z̄
2

+ · · ·

}
.

Comparing the coefficients with (3.9), we have

g20 =−2(
r
K

e−iω0τ j + crq1)D̄τ j

g11 =−
[ r

K
(eiω0τ j + e−iω0τ j)+ cr(q̄1 +q1)

]
D̄τ j

g02 =−2(
r
K

eiω0τ j + crq̄1)D̄τ j

g21 =
[
W (1)

20 (0)(− r
K

eiω0τ j − crq̄1)+W (1)
11 (0)(−2r

K
e−iω0τ j −2crq1)

−2r
K

W (1)
11 (−1)− r

K
W (1)

20 (−1)−2crW (2)
11 (0)− crW (2)

20 (0)
]
D̄τ j.

(3.10)
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Since W20(θ) and W11(θ) for θ ∈ [−1,0] appear in g21, we still need to compute them. From

(3.6) and (3.8), we have

W
′

= x
′
t−2Rez

′
(t)q(θ)

= A(0)xt +R(0)xt−2Re
{
[iω0τ jz+ q̄∗0 f0(z, z̄)]q(θ)

}
= A(0)W (t,θ)+2Re

{
z(t)A(0)q(θ)

}
+R(0)xt−2Re

{
iω0τ jq(θ)z(t)

}
−2Re

{
q̄∗0 f0(z, z̄)q(θ)

}
= A(0)W (t,θ)+R(0)xt−2Re

{
q̄∗0 f0(z, z̄)q(θ)

}
=

{
A(0)W (t,θ)−2Re

{
q̄∗0 f0(z, z̄)q(θ)

}
, θ ∈ [−1,0)

A(0)W (t,θ)−2Re
{

q̄∗0 f0(z, z̄)q(θ)
}
+ f0, θ = 0

de f
= A(0)W +H(z, z̄,θ),

(3.11)

where

H(z, z̄,θ) = H20(θ)
z2

2
+H11(θ)zz̄+H02

z̄2

2
+ · · · (3.12)

Note that on the center manifold C0 near the origin

W
′

t =Wzz
′
t +Wz̄z̄

′
t

= (W20(θ)z+W11(θ)z̄+ · · ·)(iω0τ jz+g(z, z̄))

+(W11(θ)z+W02(θ)z̄+ · · ·)(−iω0τ j z̄+ ḡ(z, z̄))

= iω0τ jW20(θ)z2− iω0τ jW02(θ)z̄2 + · · ·

(3.13)

and

A(0)W (t,θ) = A(0)W20(θ)
z2

2
+A(0)W11(θ)zz̄+A(0)W02(θ)

z̄2

2
+ · · · . (3.14)

It follows from (3.12)-(3.14), we can get

2iω0τ jW20(θ)−A(0)W20(θ) = H20(θ)

−A(0)W11(θ) = H11(θ).

(3.15)

From (3.11), for θ ∈ [−1,0)

H(z, z̄,θ) =−q̄∗0 f0(z, z̄)q(θ)−q∗0 f̄0(z, z̄)q̄(θ).
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Comparing the coefficients with (3.12) yields

H20(θ) =−g20q(θ)− ḡ02q̄(θ),

H11(θ) =−g11q(θ)− ḡ11q̄(θ).
(3.16)

It follows from (3.15),(3.16) and the definition of A that

W
′
20(θ) = 2iω0τ jW20 +g20q(θ)+ ḡ02q̄(θ).

Note that q(θ) = q(0)eiω0τ jθ , then

W20(θ) =
ig20

ω0τ j
q(0)eiω0τ jθ +

iḡ02

3ω0τ j
q̄(0)e−iω0τ jθ +E1e2iω0τ jθ , (3.17)

where E1 = (E(1)
1 ,E(2)

1 ) ∈ R2 is a constant vector. In the sequel, the appropriate E1 will be

determined. Similarly, from (3.15) and (3.16), we obtain

W
′
11(θ) = g11q(θ)+ ḡ11q̄(θ).

Then

W11(θ) =−
ig11

ω0τ j
q(0)eiω0τ jθ +

iḡ11

ω0τ j
q̄(0)e−iω0τ jθ +E2, (3.18)

where E2 = (E(1)
2 ,E(2)

2 ) ∈ R2 is a constant vector. In what follows, we shall seek appropriate E1

and E2, respectively. By the definition of A(0) and (3.15), we can obtain

∫ 0
−1 dη(θ)W20(θ) = 2iω0τ jW20(θ)−H20(θ),∫ 0
−1 dη(θ)W11(θ) =−H11(0)(θ),

(3.19)

where η(θ) = η(0,θ). It follows from (3.11) and (3.12) that

H20(0) =−g20q(0)− ḡ02q̄(0)−2τ j

 r
K

e−iω0τ j + crq1

0


H11(0) =−g11q(0)− ḡ11q̄(0)− τ j

 r
K
(eiω0τ j + e−iω0τ j)+ cr(q̄1 +q1)

0

 .

(3.20)
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Note that q(θ) is the eigenvector of A(0) and from (3.17) and the definition of A(0), we know

that

∫ 0
−1 dη(θ)W20(θ) =

ig20

ω0τ j

∫ 0

−1
dη(θ)q(θ)+

iḡ02

3ω0τ j

∫ 0

−1
dη(θ)q̄(θ)+E1

∫ 0

−1
dη(θ)e2iω0τ jθ

=
ig20

ω0τ j
A(0)q(0)+

iḡ02

3ω0τ j
A(0)q̄(0)+E1

∫ 0

−1
dη(θ)e2iω0τ jθ

=−g20q(0)+
1
3

ḡ02q̄(0)+E1

∫ 0

−1
dη(θ)e2iω0τ jθ

(3.21)

and

2iω0τ jW20(θ) =−2g20q(0)− 2
3

ḡ02q̄(0)+2iω0τ jE1. (3.22)

Then, we can obtain

(
∫ 0

−1
dη(θ)e2iω0τ jθ −2iω0τ jI)E1 = 2τ j

 r
K

e−iω0τ j + crq1

0

 ,

which yields −2iω0−
rn∗

K
e−2iω0τ j −crn∗

b −2iω0−a

E1 = 2

 r
K

e−iω0τ j + crq1

0

 .

It follows that

E1 =

r
K

e−iω0τ j + crq1

B1

 −a−2iω0

−b

 ,

where

B1 =

∣∣∣∣∣∣ −2iω0−
rn∗

K
e−2iω0τ j −crn∗

b −2iω0−a

∣∣∣∣∣∣ .
Similarly, from (3.20)-(3.22), we get E2 defined by

E2 =

r
K
(eiω0τ j + e−iω0τ j)+ cr(q̄1 +q1)

B2

 −a

−b

 ,

where

B2 =

∣∣∣∣∣∣ −
rn∗

K
−crn∗

b −a

∣∣∣∣∣∣ .
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Thus, we can determine W20(θ) and W11(θ) from (3.17) and (3.18). Furthermore, g21 can be

expressed explicitly. Thus, we can compute the following values:

c1(0) =
i

2ω0τ j

(
g20g11−2|g11|2−

|g02|2

3
)
+

g21

2
,

µ2 =−Re(c1(0))
Re

λ
′
(τ j)

,

β2 = 2Re(c1(0)),

T2 =−
Im(c1(0))+µ2Im(λ

′
(τ j))

ω0τ j
,

(3.23)

which determine the quantities of bifurcating periodic solutions in the center manifold at the

critical value τ j. Particularly, µ2 determines the directions of the Hopf bifurcation: if µ2 >

0(µ2 < 0), then the Hopf bifurcation is supercritical (subcritical) and the bifurcating period-

ic solutions exist for τ > τ0(τ < τ0); β2 determines the stability of the bifurcating periodic

solutions: the bifurcating periodic solutions are stable (unstable) if β2 < 0(β2 > 0); and T2

determines the period of the bifurcating periodic solutions: the period increase (decrease) if

T2 > 0(T2 < 0).

4. Examples

Example 1. We consider the following system

dn(t)
dt

= n(t)[1−n(t− τ)− 1
2

u(t)],

du(t)
dt

= −2u(t)+2n(t).

Thus, the coefficient of this system satisfy the condition
bc
a

<
1
K

and n∗ = u∗ =
2
3

, when τ =

2.8< τ0 = 2.8991, the unique interior equilibrium of system (1.3) will be locally asymptotically

stable. while when τ = 2.9> τ0 = 2.8991, the unique interior equilibrium M∗ losses its stability

and a Hopf bifurcation occurs. The periodic oscillations bifurcating from M∗ are depicted.

Example 2. We consider the following system

dn(t)
dt

= 4n(t)[1−n(t− τ)−3u(t)],

du(t)
dt

= −2u(t)+n(t).
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Thus, the coefficient of this system satisfy the condition of theorem 2.1 and n∗ =
2
5
,u∗ =

1
5

,

when τ = 0.5 < τ
+
0 = 0.89964225684, the unique interior equilibrium of system (1.3) will be

locally asymptotically stable. when τ
+
0 = 0.89964225684 < τ = 1.5 < τ

−
0 = 2.02269358533,

the unique interior equilibrium P∗ losses its stability and a Hopf bifurcation occurs, the periodic

oscillations bifurcating from P∗ are depicted. while when τ
−
0 = 2.02269358533 < τ = 2.5 <

τ
+
1 = 3.4559750717, the unique interior equilibrium P∗ of system (1.3) will be locally asymp-

totically stable. Due to τ
+
1 = 3.4559750717 < τ

+
2 = 6.012307886569 < τ

−
1 = 6.33924936076,

we can know that When τ > τ
+
1 = 3.4559750717, the unique interior equilibrium P∗ will be

unstable.

5. Conclusion

Gopalsamy [12] illustrated that an appropriate indirect feedback control can be used to avoid

the occurrence of a Hopf bifurcation, while our works show that with the same range of the

feedback control variable, i.e, the condition
bc
a

>
1
K

holds, the system (1.3) will occur the sta-

bility switches when
r

a+Kbc
>
√

2−1 holds (Theorem 2.2). And we also illustrate that if the

condition
bc
a

<
1
K

holds, the system (1.3) undergoes Hopf bifurcation at positive equilibrium

M∗ = (n∗,u∗) when τ = τn,n = 0,1,2, ... (Theorem 2.1). And then, the direction of Hopf bifur-

cation and the stability of the bifurcating periodic orbits are discussed by applying normal form

theory and the center manifold theorem.
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