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Abstract. In this paper, a two-species May type cooperation model with stage structure is presented and studied.

Results on the global extinction, partial survival and global attractivity of the positive equilibrium are given, which

generalize the well-known May’s result for the two species cooperation system and, moreover, they confirm the

negative effect of stage structure on the persistent of populations. Conclusions in this paper suggest that for a

cooperation community, stage structure and the death rate of mature species are two of the most important reason

that cause global attractivity and extinction, cooperate has no influence on the persistent property of the model,

and conditions which ensure the permanence of the single species are enough to ensure the global stability of the

system.
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1. Introduction

In nature, many species exhibit enormous diversity during their life histories, and they go

through two or more life stages as they proceed from birth to death. Such life history diver-

sity of species can be modelled by stage-structured models.

Aiello and Freedman (1990) proposed a single-species growth model with stage structure

consisting of immature and mature stages. They showed that under suitable hypotheses there

exists a globally asymptotically stable positive equilibrium; Freedman et al. (1994) proposed

a model of a stage-structured population with fixed maturity time for the immature stage and

interaction terms that may be interpreted as cooperation or cannibalism. The existence and sta-

bility of the equilibrium set were discussed. In the case of cannibalism, they found that a Hopf

bifurcation could result in a stable periodic solution. Song and Chen (2002) studied the asymp-

totic behavior of a single-species model with stage structure and harvesting. For the constant,

variable, and periodic harvesting effort, they obtained conditions for the global stability of the

equilibria, permanence of the system and global attractivity of the periodic solution, respec-

tively. Traditional two species ecosystem includes three type: predator-prey, competition and

mutualism (cooperation). Several scholars had incorporated the stage-structure to a two species

competition system, Chen (2006) studied a non-autonomous, almost periodic competitive two-

species model with a stage structure in one species, sufficient conditions were obtained for the

existence of a unique, globally attractive, strictly positive (componentwise), almost periodic

solution; Liu, Chen and Li (2002) proposed a stage-structured competition system, where he

used a discrete delay to denote the time taken from birth to maturity; Al-Omari and Gourley

(2003), Al-Omari, Al-Omari (2011), Liu and Beretta (2006), Wang and Feng (2010) studied the

competition system with stage-structured of distributed delay. Predator-prey system with stage-

structured for prey or predator are also extensively investigated by many authors (Chen et al.,

2008, 2012, 2013a, 2013b, Cui and Song, 2004, 2007, Hu and Huang 2010, Huang et al., 2010,

Li et al., 2009, Ma et al.,2008, Wang et al.,2001, Xu et al., 2005, 2011, Zhang et al., 2000,

Zhang, 2005, Gui and Ge, 2005). Specially, recently, in their series works, Chen et al. (2012,

2013a, 2013b) investigated a stage-structured predator-prey system, their studied shows that for

this kind of system, the extinction of prey may not necessarily lead to extinction of predator.
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By introducing a new lemma and applying the standard comparison theorem, they investigated

the persistent property of the system; By using an iterative method, the global stability of the

interior equilibrium point of the system is investigated. They showed that conditions which en-

sure the permanence of the system are enough to ensure the global stability of the system. Their

studied shows that the death rate of mature prey and predator species is one of the essential

factor to determine the dynamic behaviors of the system.

As was pointed out by Murry (1998) “the mutual advantage of mutualism or symbiosis can

be very important. As a topic of theoretical ecology, even for two species, this area has not been

as widely studied as the others even though its importance is comparable to that of predator-

prey and competition interactions.” During the past ten years, such topic as existence of positive

periodic solution and persistent property of the cooperation system has been extensively inves-

tigated by many scholars (Chen et al, 2006, 2007, 2008, 2009; Chen et al., 2009, Chen and Xie,

2011, Hu and Zhang, 2010, Niyaz and Muhammadhaji, 2013, Muhammadhaji and Teng, 2013,

Yang and Li, 2011). However, all of the above works did not considered the influence of the

stage structure of the species, to this day, only Zhang, Wu and Wang (2004) investigated the

positive periodic solution of a stage-structured Lotka-Volterra type cooperation system. To the

best of the author’s knowledge, to this day, there are still no scholar investigate the permanence,

extinction and stability property of stage-structured cooperation system.

The organization of this paper is as follows. In Section 2, we introduce some models. In Sec-

tion 3, we state the main results for globally stability properties, partial survival and extinction

of the system. Detailed proof of the main results are presented in Section 4. We end this paper

by a detail discussion.

2. Formulation of the models

Traditional two species Lotka-Volterra cooperation model takes the form:

ẋ1 = x1
(
a1−b11x1 +b12x2

)
,

ẋ2 = x2
(
a2 +b21x1−b22x2

)
,

(2.1)
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where ai,bi j, i, j = 1,2 are all positive constants. Murray (1998) had pointed out that one of

the drawback of above system is the sensitivity between unbounded growth and a finite positive

steady state. If symbiosis of either species is too large then both populations grow unboundedly.

Base on model (2.1), Zhang, Wu and Wang (2004) proposed the following stage-structured

cooperation system:

ẋ1(t) = α(t)x2(t)− γ1(t)x1(t)−β (t)x1(t)−η1(t)x2
1(t),

ẋ2(t) = β (t)x1(t)− γ2(t)x2(t)−η2(t)x2
2(t)+b(t)x2(t)y(t),

ẏ(t) = y(t)
(
R(t)−a(t)y(t)+ c(t)x2(t)

)
,

(2.2)

where x1(t) denotes the density of immaturity of species X at time t, x2(t) denotes the density

of maturity of species X at time t, y(t) denotes the density of species Y at time t. By using the

continuation theorem of coincidence degree theory, the existence of a positive periodic solution

for above system is established.

To overcome the drawbacks of system (2.1), May (1976) suggested the following set of e-

quations to describe a pair of mutualists:

u̇ = r1u
[
1− u

a1 +b1v
− c1u

]
,

v̇ = r2v
[
1− v

a2 +b2u
− c2v

]
,

(2.3)

where u,v are the densities of the species U,V at time t respectively. ri,ai,bi, i= 1,2 are positive

constants. He showed that system (2.3) has a globally asymptotically stable equilibrium point

in the region u > 0,v > 0. The basic idea about this model is that the cooperate of two species

increasing the other species carrying capacity.

Aiello and Freedman (1990) had introduced the following single-species stage-structured

model:

I
′
(t) = aM(t)− γI(t)−ae−γτM(t− τ),

M
′
(t) = ae−γτM(t− τ)−bM2(t),

(2.4)

where I(t) and M(t) represent the immature and mature population densities, respectively. The

authors had proved the system admits a unique globally attractive positive equilibrium. Recent-

ly, in their series works, Chen et al.(2012, 2013a, 2013b) studied a predator-prey system with
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stage-structure for both predator and prey species, they incorporate the death rate of mature prey

and predator species to their system and many new findings were obtained.

Stimulated by the works of May (1976), Aiello and Freedman (1990) and Chen et al. (2012,

2013a, 2013b), in this paper, we propose the following May type stage-structured cooperation

model,

ẋ1(t) = b1e−d11τ1x1(t− τ1)−d12x1(t)−
a11x2

1(t)
c1 + f1x2(t)

−a12x2
1(t),

ẏ1(t) = b1x1(t)−d11y1(t)−b1e−d11τ1x1(t− τ1),

ẋ2(t) = b2e−d22τ2x2(t− τ2)−d21x2(t)−
a22x2

2(t)
c2 + f2x1(t)

−a21x2
2(t),

ẏ2(t) = b2x2(t)−d22y2(t)−b2e−d22τ2x2(t− τ2),

(2.5)

where bi,ai j,di j,ci, fi(i, j = 1,2) are all positive constants. We suppose that the system is occu-

pied by two cooperation species denoted as species 1 and species 2. The life histories of both

species are divided into two stages: the immature and the mature. Let xi(t) and yi(t)(i = 1,2)

be the density of the mature and the immature of the i-th species, respectively. We make the

following assumptions for our model:

(A1) We assume that the immature and mature individuals are divided by a fixed period, also

a species needs some time to attain its level of maturity to cooperate with the other species,

the cooperation benefits the other species by increasing its’ carrying capacity, and the immature

individual could not cooperate with each other.

(A2) The birth rate in the immature population of i-th species is proportional to the living

mature population with proportionality constant bi > 0. For each species, its immature cannot

give birth to babies. The death rate of the i-th immature is proportional to the existing immature

population with proportionality constants dii > 0, i = 1,2.

(A3) The death rate of the i-species mature population is proportional to the existing immature

population with proportionality constants di j > 0, i, j = 1,2, i 6= j..

(A4) τi > 0, i = 1,2 is the length of the i-immature stage, that is, those immature individuals

of i-th species born at time t− τi and surviving to the time t leave the immature stage and enter

into the mature population.

The initial conditions for system (2.5) take the form

xi(θ) = φi(θ)> 0, yi(θ) = ψi(θ)> 0,−τ ≤ θ ≤ 0, i = 1,2, (2.6)
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where τ = max{τi, i = 1,2,3,4}. For the continuity of the solutions of system (1.1), in this

paper, we always assume

yi(0) = ψi(0) =
∫ 0

−τi

biφi(s)ediisds, i = 1,2. (2.7)

Note that in the system (2.5) the equations for the variable y1 and y2 have a particular forms

yi =−diiyi + fi(xi(t),xi(t− τi)), i = 1,2,

where fi(xi(t),xi(t−τi)) = bixi(t)−bie−riτixi(t−τi). By the well-known theory of ODE, if xi(t)

is bounded then yi(t) is bounded, and if xi(t)→ x∗i as t→+∞, then yi(t)→
f (x∗i ,x

∗
i )

di
as t→+∞;

that is, the asymptotic behavior of yi(t) is depended on that of xi(t). Therefore, in this paper we

just need to study the asymptotic behavior for the subsystem of system (2.5).

ẋ1(t) = b1e−d11τ1x1(t− τ1)−d12x1(t)−
a11x2

1(t)
c1 + f1x2(t)

−a12x2
1(t),

ẋ2(t) = b2e−d22τ2x2(t− τ2)−d21x2(t)−
a22x2

2(t)
c2 + f2x1(t)

−a21x2
2(t).

(2.8)

3. Main results

Lemma 3.1 Assume that λ1 > 0,λ2 > 0, then the following system

λ1−
a11x1

c1 + f1x2
−a12x1 = 0,

λ2−
a22x2

c2 + f2x1
−a21x2 = 0

(3.1)

admits a unique positive solution (x∗1,x
∗
2).

Proof. Since we are focus on the positive solution of the system (3.1), it implies that we only

need to consider the case x1 > 0,x2 > 0. Hence, to ensure the first equality holds, x1 should be

lies in the interval (0, r1
a12

), similarly, to ensure the second equality holds, x2 should be lies in

the interval (0, r2
a21

). Following we will investigate the positive solution of system (3.1) on the

rectangle (0, r1
a12

)× (0, r2
a21

).

The first equation of system (3.1) define a curve

l1 : x2 =−
−λ1c1 +a11x1 +a12x1c1

f1(−λ1 +a12x1)
. (3.2)
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The second equation of system (3.1) define a curve

l2 : x2 =
r2(c2 + f2x1)

a22+a21c2 +a21 f2x1
. (3.3)

Now let us consider the function

F :=−−λ1c1 +a11x1 +a12x1c1

f1(−λ1 +a12x1)
− r2(c2 + f2x1)

a22+a21c2 +a21 f2x1
. (3.4)

Since F is a continuous function of x1 on the interval (0, r1
a12

),

F(0) =−r2 f1c2 + c1a22 + c1a21c2

f1(a22 +a21c2)
< 0, lim

x1→
r1

a12

F =+∞.

which means that F has at least one zero in the interval (0, r1
a12

), that is, the curve l1 and l2

intersect at least one point, which is equivalent to system (3.1) admits at least one positive

solution (x∗1,x
∗
2).

On the other hand, the positive solution of system (3.1) is equivalent to the positive solution

of the following system

−λ1c1−λ1 f1x2 +a11x1 +a12x1c1 +a12x1 f1x2 = 0,

−λ2c2−λ2 f2x1 +a22x2 +a21x2c2 +a21x2 f2x1 = 0.
(3.5)

From (3.5), by simple computation, x1 is the solution of the following equation

Ax2
1 +Bx1 +C = 0, (3.6)

where A = a21 f2a11 +a12a21 f2c1 +a12 f1λ2 f2 > 0,

B =−a21 f2λ1c1−λ1 f1λ2 f2 +a11a22 +a11a21c2 +a12c1a22 +a12c1a21c2 +a12 f1λ2c2,

and

C =−λ1c1a22−λ1c1a21c2−λ1 f1λ2c2 < 0.

Since A > 0,C < 0, one could easily see that equation (3.6) admits unique one positive solution

x∗∗1 , consequently, system (3.5) admits at most one positive solution (x∗∗1 ,x∗∗2 ).

Above analysis shows that system (3.1) admits a unique positive solution (x∗1,x
∗
2). This ends

the proof of Lemma 3.1.
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For convenience, we denote

λ1
def
= b1e−d11τ1−d12, λ2

def
= b2e−d22τ2−d21.

Let x′1(t) = 0,x′2(t) = 0 in system (2.8), we can get four equilibria as follows:

E0 = (0,0), E1 = (
c1λ1

a11 +a12c1
,0) def

= (x1∗,0),

E2 = (0,
c2λ2

a22 +a21c2
)

def
= (0,x2∗), E(x∗1,x

∗
2),

where E is the unique positive solution of system (3.1).

Concerned with the stability property of there equilibria, we have the following theorems.

Theorem 3.1 Suppose that

λ1 > 0, λ2 > 0 (H1)

holds, then the unique positive equilibrium E is globally attractive.

Theorem 3.2 Suppose that

λ1 ≤ 0 , λ2 ≤ 0 (H2)

holds, then both of the predator and prey species will be driven to extinction, that is, E0 is

globally attractive.

Theorem 3.3 Suppose that

λ1 > 0 , λ2 ≤ 0 (H3)

holds, then E1 is globally attractive.

Theorem 3.4 Suppose that

λ1 ≤ 0, λ2 > 0 (H4)

holds, then E2 is globally attractive.

Corollary 3.1. If the parameters of system (2.5) satisfy the conditions (H1), then E ′(x∗1,y
∗
1,x
∗
2,y
∗
2)

is globally attractive, where y∗1 =
b1x∗1(1−e−d11τ1)

d11
,y∗2 =

b2x∗2(1−e−d22τ2)
d22

.

Corollary 3.2. If the parameters of system (2.5) satisfy the condition (H2), then E ′0 = (0,0,0,0)

is globally attractive.
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Corollary 3.3. If the parameters of system (2.5) satisfy the condition (H3), then E ′1 =(x1∗,y1∗,0,0)

is globally attractive, where y1∗ =
b1x1∗(1−e−d11τ1)

d11
.

Corollary 3.4. If the parameters of system (2.5) satisfy the condition (H4), then E ′2 =(0,0,x2∗,y2∗)

is globally attractive, where y2∗ =
b2x2∗(1−e−d22τ2)

d22
.

4. Proof of the main results

Now let us state several lemmas which will be useful in proving the main results.

Lemma 4.1. Assume that x1(θ) ≥ 0, x2(θ) ≥ 0 are continuous on θ ∈ [−τ,0], and x1(0) >

0, x2(0) > 0. Let (x1(t),x2(t))T be a any solution of system (2.8), then x1(t) > 0, x2(t) > 0 for

all t > 0.

The proof of Lemma 3.1 is similar to the proof of Theorem 1 in [1], so we omit its proof.

Lemma 4.2 ([27]) Consider the following equations:

x
′
(t) = bx(t−δ )−a1x(t)−a2x2(t),

x(t) = φ(t)> 0, −δ ≤ t ≤ 0,

and assume that b,a2 > 0,a1 ≥ 0 and δ ≥ 0 are constants, then:

(i) If b≥ a1, then lim
t→+∞

x(t) =
b−a1

a2
;

(ii) If b≤ a1, then lim
t→+∞

x(t) = 0.

Proof of Theorem 3.1. By the first equation of system (2.8) and Lemma 4.1, we have

ẋ1(t)≤ b1e−d11τ1x1(t− τ1)−d12x1(t)−a12x2
1(t).

From Lemma 4.2, it follows that

limsup
t→+∞

x1(t)≤
b1e−d11τ1−d12

a12
=

λ1

a12
. (4.1)

Hence, for enough small ε > 0(ε < min{ λ1c1
2(a12c1+a11)

, λ2c2
2(a22+a21c2)

}), it follows from (4.1) that

there exists a T ′1 > 0 such that

x1(t)<
λ1
a12

+ ε
def
= M(1)

1 for t > T ′1. (4.2)
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Similarly, for above ε > 0, it follows from the second equation of system (2.8) that there exists

a T1 > T ′1 such that

x2(t)<
λ2
a21

+ ε
def
= M(1)

2 for t > T1. (4.3)

(4.3) together with the first equation of system (2.8) implies

ẋ1(t) = b1e−d11τ1x1(t− τ1)−d12x1(t)−
a11x2

1(t)
c1 + f1x2(t)

−a12x2
1(t)

≤ b1e−d11τ1x1(t− τ1)−d12x1(t)−
a11x2

1(t)

c1 + f1M(1)
2

−a12x2
1(t) for t > T1.

(4.4)

Therefore, by Lemma 4.2, we have

limsup
t→+∞

x1(t)≤
(b1e−d11τ1−d12)(c1 + f1M(1)

2 )

a12(c1 + f1M(1)
2 )+a11

=
λ1(c1 + f1M(1)

2 )

a12(c1 + f1M(1)
2 )+a11

. (4.5)

That is, for ε > 0 be defined by (4.2)-(4.3), there exists a T ′2 > T1 such that

x1(t)<
λ1(c1 + f1M(1)

2 )

a12(c1 + f1M(1)
2 )+a11

+
ε

2
def
= M(2)

1 > 0 for t > T ′2. (4.6)

It follows from (4.2) and the second equation of system (2.8) that

ẋ2(t) ≤ b2e−d22τ2x2(t− τ2)−d21x2(t)−
a22x2

2(t)

c2 + f2M(1)
1

−a21x2
2(t) (4.7)

Therefore, by Lemma 4.2, we have

limsup
t→+∞

x2(t)≤
(b2e−r2τ2−d21)(c2 + f2M(1)

1 )

a21(c2 + f2M(1)
1 )+a22

. (4.8)

That is, for ε > 0 be defined by (4.2) and (4.3), there exists a T2 > T
′

2 such that

x2(t)<
λ2(c2 + f2M(1)

1 )

a21(c2 + f2M(1)
1 )+a22

+
ε

2
def
= M(2)

2 > 0 for t > T2. (4.9)

From the first equation of system (2.8),

ẋ1(t) ≥ b1e−d11τ1x1(t− τ1)−d12x1(t)−
a11x2

1(t)
c1

−a12x2
1(t) for t > T2. (4.10)

Therefore, by Lemma 4.2, we have

liminf
t→+∞

x1(t)≥
λ1c1

a12c1 +a11
. (4.11)
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Hence, for ε > 0 be defined by (4.2)-(4.3), there exists a T ′3 > T2 such that

x1(t)>
λ1c1

a12c1 +a11
− ε

def
= m(1)

1 , for t > T ′3. (4.12)

Similarly, it follows from the second equation of system (2.8) that there exists a T3 > T ′3 such

that

x2(t)>
λ2c2

a22+a21c2
− ε

def
= m(1)

2 , for t > T3. (4.13)

(4.13) together with the first equation of system (2.8) implies that

ẋ1(t)≥ b1e−d11τ1x1(t− τ1)−d12x1(t)−
a11x2

1(t)

c1 + f1m(1)
2

−a12x2
1(t) for t > T3. (4.14)

Therefore, by Lemma 4.2, we have

liminf
t→+∞

x1(t)≥
λ1(c1 + f1m(1)

2 )

a12(c1 + f1m(1)
2 )+a11

. (4.15)

That is, for ε > 0 be defined by (4.2)-(4.3), there exists a T ′4 > T3 such that

x1(t)>
λ1(c1 + f1m(1)

2 )

a12(c1 + f1m(1)
2 )+a11

− ε

2
def
= m(2)

1 > 0, for t > T ′4. (4.16)

Similarly, by (4.12) and the second equation of system (2.8), for ε > 0 be defined by (4.2)-(4.3),

there exists a T4 > T ′4 such that

x2(t)>
λ2(c2 + f2m(1)

1 )

a21(c2 + f2m(1)
1 )+a22

− ε

2
def
= m(2)

2 > 0, for t > T4. (4.17)

Note the fact that f (x) =
ax

bx+ c
, x > 0, where a,b,c are positive constants, is a strictly increas-

ing function. Obviously,

M(2)
1 =

λ1(c1 + f1M(1)
2 )

a12(c1 + f1M(1)
2 )+a11

+
ε

2
<

λ1

a12
+ ε = M(1)

1 ;

M(2)
2 =

λ2(c2 + f2M(1)
1 )

a21(c2 + f2M(1)
1 )+a22

+
ε

2
<

λ2

a21
+ ε = M(1)

2 ;

m(2)
1 =

λ1(c1 + f1m(1)
2 )

a12(c1 + f1m(1)
2 )+a11

− ε

2
>

λ1c1

a12c1 +a11
− ε = m(1)

1 ;

m(2)
2 =

λ2(c2 + f2m(1)
1 )

a21(c2 + f2m(1)
1 )+a22

− ε

2
>

λ2c2

2(a22 +a21c2)
− ε = m(1)

2 .

(4.18)
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Repeating the above procedure, we get four sequences M(n)
i ,m(n)

i , i = 1,2,n = 1,2, · · · , such that

for n≥ 2

M(n)
1 =

λ1(c1 + f1M(n−1)
2 )

a12(c1 + f1M(n−1)
2 )+a11

+
ε

n
;

M(n)
2 =

λ2(c2 + f2M(n−1)
1 )

a21(c2 + f2M(n−1)
1 )+a22

+
ε

n
;

m(n)
1 =

λ1(c1 + f1m(n−1)
2 )

a12(c1 + f1m(n−1)
2 )+a11

− ε

n
;

m(n)
2 =

λ2(c2 + f2m(n−1)
1 )

a21(c2 + f2m(n−1)
1 )+a22

− ε

n
.

(4.19)

Obviously,

m(n)
i < xi(t)< M(n)

i , for t ≥ T2n, i = 1,2.

We claim that sequences M(n)
i , i = 1,2 are non-increasing, and sequences m(n)

i , i = 1,2 are non-

decreasing. To proof this claim, we will carry out by induction. Firstly, from (4.18) we have

M(2)
i ≤M(1)

i , m(2)
i ≥ m(1)

i , i = 1,2.

Let us assume now that our claim is true for n, that is,

M(n)
i ≤M(n−1)

i , m(n)
i ≥ m(n−1)

i , i = 1,2.

Again from the strictly increasing of function f (x) =
ax

bx+ c
, x > 0, where a,b,c are positive

constants, we immediately obtain

M(n+1)
1 =

λ1(c1 + f1M(n)
2 )

a12(c1 + f1M(n)
2 )+a11

+
ε

n+1
<

λ1(c1 + f1M(n−1)
2 )

a12(c1 + f1M(n−1)
2 )+a11

+
ε

n
= M(n)

1 ;

M(n+1)
2 =

λ2(c2 + f2M(n)
1 )

a21(c2 + f2M(n)
1 )+a22

+
ε

n+1
<

λ2(c2 + f2M(n−1)
1 )

a21(c2 + f2M(n−1)
1 )+a22

+
ε

n
= M(n)

2 ;

m(n+1)
1 =

λ1(c1 + f1m(n)
2 )

a12(c1 + f1m(n)
2 )+a11

− ε

n+1
>

λ1(c1 + f1m(n−1)
2 )

a12(c1 + f1m(n−1)
2 )+a11

− ε

n
= m(n)

1 ;

m(n+1)
2 =

λ2(c2 + f2m(n)
1 )

a21(c2 + f2m(n)
1 )+a22

− ε

n+1
>

λ2(c2 + f2m(n−1)
1 )

a21(c2 + f2m(n−1)
1 )+a22

− ε

n
= m(n)

2 .

Therefore,

lim
t→+∞

M(n)
i = xi, lim

t→+∞
m(n)

i = xi, i = 1,2.
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Letting n→+∞ in (4.19), we obtain

λ1−
a11x1

c1 + f1x2
−a12x1 = 0,λ2−

a22x2

c2 + f2x1
−a21x2 = 0,

λ1−
a11x1

c1 + f1x2
−a12x1 = 0,λ2−

a22x2
c2 + f2x1

−a21x2 = 0,
(4.20)

(4.20) shows that (x1,x2) and (x1,x2) are positive solutions of (3.1). By Lemma 3.1, (3.1) has a

unique positive solution E∗(x∗1,x
∗
2). Hence, we conclude that

xi = xi = x∗i , i = 1,2,

that is

lim
t→+∞

xi(t) = x∗i i = 1,2.

Thus, the unique interior equilibrium E∗(x∗1,x
∗
2) is globally attractive. This completes the proof

of Theorem 3.1.

Proof of Theorem 3.2. It follows from the first equation of system (2.8), we have

ẋ1(t)< b1e−d11τ1x1(t− τ1)−d12x1(t)−a12x2
1(t).

According to first inequality of condition (H2), we have b1e−d11τ1−d12 < 0. By applying Lem-

ma 3.2(ii) and standard comparison theorem, we have limsup
t→+∞

x1(t)≤ 0. That is,

lim
t→+∞

x1(t) = 0.

Similarly, it follows from the second equation of system (2.8) and λ2 ≤ 0, we have

lim
t→+∞

x2(t) = 0.

Therefore, E0 = (0,0) is globally attractive. This completes the proof of Theorem 3.2.

Proof of Theorem 3.3. It follows from the second equation of system (2.8) and λ2 ≤ 0, we

have

lim
t→+∞

x2(t) = 0.

Then for any ε > 0, there exists a T > 0 such that

0 < x2(t)< ε.
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Therefore, it follows from the first equation of system (2.8), we have

ẋ1(t) ≤ b1e−d11τ1x1(t− τ1)−d12x1(t)−
a11x2

1(t)
c1 + f1ε

−a12x2
1(t) for t > T. (4.21)

Applying Lemma 4.2 to (4.21) leads to

lim
t→+∞

x1(t)≤
λ1(c1 + f1ε)

a12(c1 + f1ε)+a11
. (4.22)

Setting ε → 0 in above inequality, one has

lim
t→+∞

x1(t)≤
λ1c1

a12c1 +a11
. (4.23)

Again, from the first equation of system (2.8), we have

ẋ1(t) ≥ b1e−d11τ1x1(t− τ1)−d12x1(t)−
a11x2

1(t)
c1

−a12x2
1(t) for t > T. (4.24)

Applying Lemma 4.2 to (4.24) leads to

lim
t→+∞

x1(t)≥
λ1c1

a12c1 +a11
. (4.25)

(4.23) together with (4.25) implies that

lim
t→+∞

x1(t) =
λ1c1

a12c1 +a11
. (4.26)

This ends the proof of Theorem 3.3.

Proof of Theorem 3.4. It follows from the second equation of system (2.8) and λ1 ≤ 0, we

have

lim
t→+∞

x1(t) = 0.

Then for any ε > 0, there exists a T
′
> 0 such that

0 < x1(t)< ε.

Therefore, it follows from the second equation of system (2.8), we have

ẋ2(t) ≤ b2e−d22τ2x2(t− τ2)−d21x2(t)−
a22x2

2(t)
c2 + f2ε

−a21x2
2(t) for t > T

′
. (4.27)

Applying Lemma 4.2 to (4.27) leads to

lim
t→+∞

x2(t)≤
λ2(c2 + f2ε)

a21(c2 + f2ε)+a22
. (4.28)
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Setting ε → 0 in above inequality, one has

lim
t→+∞

x2(t)≤
λ2c2

a21c2 +a22
. (4.29)

Again, from the second equation of system (2.8), we have

ẋ1(t) ≥ b2e−d22τ2x2(t− τ2)−d21x2(t)−
a22x2

2(t)
c2

−a21x2
2(t) for t > T

′
. (4.30)

Applying Lemma 4.2 to (4.30) leads to

lim
t→+∞

x2(t)≥
λ2c2

a21c1 +a22
. (4.31)

(4.31) together with (4.29) implies that

lim
t→+∞

x2(t) =
λ2c2

a21c1 +a22
. (4.32)

This ends the proof of Theorem 3.4.

5. Discussion

May (1976) proposed a two species cooperation system (2.3), he showed that the system ad-

mits a unique globally asymptotically stable positive equilibrium, which means that the species

are coexists in a stable state. Stimulated by a series works of Chen et al. (2012, 2013a, 2013b),

in this paper, we further incorporate stage structure for both species to May’s cooperation sys-

tem, this leads to system (2.5).

By applying iterative technique and fluctuation lemma, sufficient conditions which guarantee

the globally attractive of all the nonnegative equilibria are obtained. By applying the differen-

tial inequality, we also investigate the stability property of the boundary equilibrium. From the

expression of λi, i = 1,2, one could see that the birth rate of immature species (bi), the death rate

of the immature and mature species (di j), and the time for immature to grow and into mature s-

tate (τi) are the factors which determine the persistent property of the system. Unlike the simple

behavior of May’s cooperate system, our system admits very complicate behaviors: extinction

of the system, partial survival of the species and permanence of the system are all possible.

Now, we consider the effect of the stage structure on the permanence of one species. Noting

that fix bi and di j, but enlarge τi, i = 1,2 gradually, then λi ≤ 0, i = 1,2 if τi enough large, which



16 FENGDE CHEN, XIANGDONG XIE, XIAOFENG CHEN

means the extinction of the i-th species. Therefore we have

Conclusion 1. In the stage-structured cooperate community, stage structure brings negative

effect on permanence of one species as well as contribution to its extinction.

Our next finding is concern with the death rate of the mature species. Fix bi and τi, but en-

large di j, i, j = 1,2, gradually, then λi ≤ 0, i = 1,2 if di j enough large. Hence

Conclusion 2. The death rate of immature and mature species brings negative effect on perma-

nence of one species as well as contribution to its extinction. Specially, if one needs to control

the number of some species, increasing the death rate of the mature species is one of the effect

and plausible method.

It is well known that with the cooperate of other species, traditional two species Lotka-

Volterra cooperate system could admits unbounded solution. However, noting that λi, i = 1,2

are independent of ci and fi, i = 1,2, which reflect the effect of cooperation, this means that

Conclusion 3. In the stage-structured cooperate community (2.5), cooperate has no influence

on the persistent property of the model.

Since cooperation has no influence on the persistent property of the system, note that λi >

0, i = 1,2 is the conditions to ensure the permanence of the species i, and so

Conclusion 4. Conditions which ensure the permanence of the single species are enough to

ensure the global stability of the system.
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