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Abstract. In this paper, the periodic predator-prey-mutualist model of three species was discussed. Sufficient

conditions for the existence of a unique globally asymptotically stable periodic solution of the system are obtained.
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1. Introduction

Mutualism is a symbiotic association between any two species, the interaction between the

two species is beneficial to both of the species. For instance, ants prevent herbivores from feed-

ing on plants (see [1]) and ants prevent predators from feeding on aphids (see [2-3]). Mutualism

is one of the most important relationships in the theory of ecology. However, as was pointed out

by Murray [4]: this area has not been as widely studied as the others even though its importance

is comparable to that of predator-prey and competition interactions.
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Recently, Chen et al. ([5]) discussed a two species discrete model of mutualism with delays

and feedback controls. They showed that feedback control variables have no influence on the

persistence property of the system. Chen et al. ([6]) have considered the global asymptotical

stability of the equilibria of Lotka-Volterra obligate system. Xie et al. ([7]) studied the global

attractivity of an integrodifferential model of mutualism.

It brings to our attention that all the works of [5-7] are deal with the relationship between two

cooperative species, while in the real world, the relationship among species is very complicated,

and it needs to consider the more complicated models. To this end, Rai and Krawcewicz [8]

have considered the following system:

dx
dt

= αx(1− x
K )−

βxz
1+my

,

dy
dt

= γy
(

1− y
lx+L0

)
,

dz
dt

= z
(
− s+

cβx
1+my

)
.

(1.1)

They have considered the Hopf bifurcation system with diffusive migration between interacting

communities.

However, due to seasonal effects of weather, temperature, food supply, mating habits, contact

with predators and other resource or physical environmental quantities, we can assume temporal

to be cyclic or periodic (see[9-16]). In this paper, we proposed the following system:

ẋ = x
(

a1(t)−b1(t)x−
c1(t)z

d1(t)+d2(t)y

)
,

ẏ = y
(

a2(t)−
y

d3(t)+d4(t)x

)
,

ż = z
(
−a3(t)+

k1(t)c1(t)x
d1(t)+d2(t)y

−b2(t)z
)
,

(1.2)

where x is the density of the prey, y is the density of the mutualist and z is the density of the

predator. The functions ai(t)(i = 1,2,3),b1(t),b2(t),k1(t),d j(t)( j = 1,2,3,4) are continuous,

nonnegative and periodic functions with a common period T > 0, ai(t)(i = 1,2,3),b1(t),b2(t)

are strictly positive, a1(t) is the intrinsic growth rate of prey specie x, a2(t) is the intrinsic

growth rate of mutualist y, a3(t) is the death rate of the predator specie z, c1(t) is the coefficient

of the functional response. The function k1(t) is called the conversion ration, which denotes the
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fraction of the prey biomass being converted to predator biomass. The functions d4,d2 are the

mutualism functions. We mention here that in system (1.2), we consider the density restriction

term of predator species (b2(t)z), such a consideration is needed since the density of any species

is restricted by the environment [17].

We arrange the rest of the paper as follows: In Section 2, we shall be interested in the exis-

tence of the positive periodic solution of (1.2). In Section 3, the sufficient conditions about the

uniqueness and global attractivity of the periodic solution of the (1.2) are obtained. Finally, a

suitable example is given to illustrate that the conditions of the main theorem are feasible. We

end this paper by a briefly discussion.

2. Existence of a positive periodic solution

It is obvious that there exists a unique solution of the system (1.2) corresponding to any posi-

tive initial value w0 =(x(0),y(0),z(0)). Such a solution is denoted by (x(t,w0),y(t,w0),z(t,w0)).

Lemma 2.1 R3
+ =

{
(x,y,z)|x≥ 0,y≥ 0,z≥ 0

}
is invariant with respect to (1.2).

Proof. Since

x(t) = x(0)exp
∫ t

0

(
a1(s)−b1(s)x(s)−

c1(s)z(s)
d1(s)+d2(s)y(s)

)
ds,

y(t) = y(0)exp
∫ t

0

(
a2(s)−

y(s)
d3(s)+d4(s)x(s)

)
ds,

z(t) = z(0)exp
∫ t

0

(
−a3(s)+

k1(s)c1(s)x(s)
d1(s)+d2(s)y(s)

−b2(s)z(s)
)

ds,

(2.1)

the assertion of the lemma follows immediately for all t ∈ [0,+∞).

We introduce the following notations. If f (t) is a continuous T -periodic function defined on

[0,+∞), we set

f m = max
t∈[0,T ]

f (t), f l = min
t∈[0,T ]

f (t).

Throughout this paper, we assume that

(A1) al
1(d

l
1 +dl

2δ2)− cm
1 B3 > 0,
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(A2)
kl

1cl
1δ1

dm
1 +dm

2 B2
−am

3 > 0

holds, where

B2 = am
2 (d

m
3 +dm

4
am

1

bl
1
), B3 =

km
1 cm

1 am
1 −al

3dl
1bl

1

bl
1bl

2dl
1

,

δ1 =
al

1(d
l
1 +dl

2δ2)− cm
1 B3

(dl
1 +dl

2δ2)bm
1

, δ2 = al
2dl

3.

It follows from Lemma 2.1 that any solution of (1.2) which has a nonnegative initial condition

remains nonnegative.

Lemma 2.2 Let

S =
{

w = (x,y,z) ∈ R3
+|0 < δ1 ≤ x≤ B1,0 < δ2 ≤ y≤ B2,0 < δ3 ≤ z≤ B3

}
.

Then S is invariant with respect to (1.2).

Proof. From the first equation of system (1.2), we obtain

ẋ≤ x(am
1 −bl

1x),

so, if

0 < x(0)≤
am

1

bl
1

:= B1

holds, we have

x(t)≤ B1, t ≥ 0. (2.2)

From the second equation of (1.2), it follows that

ẏ≤ y
(

am
2 −

y
dm

3 +dm
4 B1

)
,

if

0 < y(0)≤ am
2

(
dm

3 +dm
4

am
1

bl
1

)
:= B2

holds, we obtain

y(t)≤ B2, t ≥ 0. (2.3)

From the third equation of (1.2), it follows that

ż≤ z
(
−al

3 +
km

1 cm
1 B1

dl
1
−bl

2z
)
.
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As a direct consequence of (A2), we know that the inequality −al
3 +

km
1 cm

1 B1

dl
1

> 0 holds. If

0 < z(0)≤
km

1 cm
1 am

1 −al
3dl

1bl
1

bl
1bl

2dl
1

:= B3

holds, then

z(t)≤ B3, t ≥ 0. (2.4)

From the second equation of system (1.2), one has

ẏ≥ y
(

al
2−

y
dl

3

)
,

it implies that if

y(0)≥ al
2dl

3 := δ2

holds, then

y(t)≥ δ2, t ≥ 0. (2.5)

(2.5) combining with the first equation of system (1.2) leads to

ẋ≥ x
(

al
1−bm

1 x−
cm

1 B3

dl
1 +dl

2δ2

)
.

It implies that if

x(0)≥

(
al

1−
cm

1 B3

dl
1 +dl

2δ2

)
bm

1
=

al
1(d

l
1 +dl

2δ2)− cm
1 B3

(dl
1 +dl

2δ2)bm
1

:= δ1

holds, then

x(t)≥ δ1, t ≥ 0. (2.6)

From (1.2),(2.3) and (2.6), we have

ż≥ z
(
−am

3 +
kl

1cl
1δ1

dm
1 +dm

2 B2
−bm

2 z
)
.

If

z(0)≥

kl
1cl

1δ1

dm
1 +dm

2 B2
−am

3

bm
2

=
kl

1cl
1δ1−am

3 (d
m
1 +dm

2 B2)

(dm
1 +dm

2 B2)bm
2

:= δ3

holds, we obtain

z(t)≥ δ3, t ≥ 0. (2.7)
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Conditions (A1) and (A2) implies that δi > 0, i = 1,2,3. Above analysis shows that

0 < δ1 ≤ x(t)≤ B1, 0 < δ2 ≤ y(t)≤ B2, 0 < δ3 ≤ z(t)≤ B3, (t ≥ 0).

This completes the proof of Lemma 2.2.

We can define a shift operator. It is also known as a Poincaré map u : R3
+→ R3

+ by

u(x0) = x(T,x0), x0 ∈ R3
+.

if u has a fixed point u∗, then it is a T -periodic solution for (1.2).

The following result is well known:

Theorem (Brouwer) Suppose that a continuous operator u maps a closed bounded convex set

Ω̄⊆ Rn into itself. Then Ω̄ contains at least one fixed pointed of the operator u, i.e., a point x∗

such that

u(x∗) = x∗, x∗ = (x∗1, ...,x
∗
n).

Theorem 2.1 If the coefficients of the system (1.2) satisfy (A1),(A2), then (1.2) has at least one

strictly positive T -periodic solution.

Proof. From Lemma 2.2, the operator u defined above map S into itself, i.e., u(S)⊂ S. Because

the solution of (1.2) is continuous with respect to the initial value, the operator u is continuous.

It can also be seen that S is a bounded closed convex set in R3
+. By Brouwer’s theorem, u has a

fixed point in S. Consequently, there exists at least one strictly positive periodic solution.

Suppose V (t) = (v1(t),v2(t),v3(t)) ∈ R3
+ is a strictly positive T -periodic solution of the

(1.2) as described in the Theorem 2.1, we have the following corollary.

Corollary 2.1. Setting v1(t),v2(t),v3(t),δi,Bi(i = 1,2,3) be defined as above, then

δ1 ≤ v1(t)≤ B1, t ≥ 0;

δ2 ≤ v2(t)≤ B2, t ≥ 0;

δ3 ≤ v3(t)≤ B3, t ≥ 0.
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3. Uniqueness and global attractivity of the periodic solution

Suppose V (t) = (v1(t),v2(t),v3(t)) ∈ R3
+ is a strictly positive periodic solution of the (1.2)

as described in the Theorem 2.1.

Definition The periodic solution V (t) is said to be globally attractive if every other solution

Y (t) = (y1(t),y2(t),y3(t)) of (1.2) with Y (0)> 0 is defined for all t ≥ 0 and satisfies

lim
t→+∞

|vi(t)− yi(t)|= 0,(i = 1,2,3).

Theorem 3.1. If the coefficients of (1.2) satisfy (A1),(A2) and the following conditions

(A3) b1(t)−
B2

d4(t)
− c1(t)k1(t)

d1(t)
> 0,

(A4)
1

d3(t)+d4(t)B1
− c1(t)B3

d2(t)
− c1(t)k1(t)B1

d2(t)
> 0,

(A5) b2(t)−
c1(t)
d1(t)

> 0.

Then there exists a unique strictly positive periodic solution of the system (1.2) which is globally

attractive.

Proof. Let V (t) = (v1(t),v2(t),v3(t)) ∈ R3
+ be a strictly positive periodic solution as described

above, and let Y (t) = (y1(t),y2(t),y3(t)) ∈ R3
+ be any solution of (1.2) with Y (0) > 0. Since

solution of (1.2) remain nonnegative, we can let

Vi(t) = lnvi(t), Yi(t) = lnyi(t), (i = 1,2,3). (3.1)

It follows from (3.1) and (1.2) that for t > 0,

V̇1(t)− Ẏ1(t) =−b1(t)(eV1(t)− eY1(t))+
eY3(t)c1(t)d2(t)(eV2(t)− eY2(t))

(d1(t)+d2(t)eY2(t))(d1(t)+d2(t)eV2(t))

−c1(t)(eV3(t)− eY3(t))

d1(t)+d2(t)eV2(t)

V̇2(t)− Ẏ2(t) =
d4(t)eY2(t)(eV1(t)− eY1(t))

(d3(t)+d4(t)eY1(t))(d3(t)+d4(t)eV1(t))
− eV2(t)− eY2(t)

d3(t)+d4(t)eV1(t)



8 LIYA YANG, XIANGDONG XIE, CHENGQIANG WU

V̇3(t)− Ẏ3(t) =
c1(t)k1(t)(eV1(t)− eY1(t))

d1(t)+d2(t)eV2(t)
−b2(t)(eV3(t)− eY3(t))

− eY1(t)c1(t)k1(t)d2(t)(eV2(t)− eY2(t))

(d1(t)+d2(t)eV2(t))(d1(t)+d2(t)eY2(t))
.

Condition (A3)− (A5) imply that

α = min
{

b1(t)−
B2

d4(t)
− c1(t)k1(t)

d1(t)
,b2(t)−

c1(t)
d1(t)

,

1
d3(t)+d4(t)B1

− c1(t)B3

d2(t)
− c1(t)k1(t)B1

d2(t)

}
> 0.

Consider a Lyapunov function V (t) defined by

V (t) =
3

∑
i=1
|Vi(t)−Yi(t)| , t > 0. (3.2)

Calculating the upper right derivative D+V (t) of V (t) along the positive solution of the system

(1.2), we get

D+V (t) = D+
3

∑
i=1
|Vi(t)−Yi(t)|

≤
3

∑
i=1

D+ |Vi(t)−Yi(t)|

=
3

∑
i=1

(Vi(t)−Yi(t))(V̇i(t)− Ẏi(t))
|Vi(t)−Yi(t))|

≤
(
−b1(t)+

B2

d4(t)
+

c1(t)k1(t)
d1(t)

)∣∣∣eV1(t)− eY1(t)
∣∣∣

+
(
− 1

d3(t)+d4(t)B1
+

c1(t)B3

d2(t)
+

c1(t)k1(t)B1

d2(t)

)∣∣∣eV2(t)− eY2(t)
∣∣∣

+
(
−b2(t)+

c1(t)
d1(t)

)∣∣∣eV3(t)− eY3(t)
∣∣∣

≤−α

3

∑
i=1
|vi(t)− yi(t)| .

Therefore

D+V (t)≤−α

3

∑
i=1
|vi(t)− yi(t)| . (3.3)

Integrating both sides of (3.3) on interval (0, t) leads to

α

∫ t

0

3

∑
i=1
|vi(s)− yi(s)|ds+

3

∑
i=1
|Vi(t)−Yi(t)| ≤V (0)<+∞. (3.4)
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It follows from (3.4) that ∑
3
i=1 |Vi(t)−Yi(t)| is bounded for t ≥ 0, which implys that

d[Vi(t)−Yi(t)]
dt

(i = 1,2,3)

remains bounded for t ≥ 0; and so ∑
3
i=1 |Vi(t)−Yi(t)| is uniformly continuous on [0,∞). Con-

sequently the uniform continuity of ∑
3
i=1 |vi(s)− yi(s)| on [0,∞) will follow. Such a uniform

continuity together with the integrability on [0,∞) (see(3.4)) of ∑
3
i=1 |vi(t)− yi(t)| will lead to

lim
t→+∞

|vi(t)− yi(t)|= 0,(i = 1,2,3). This completes the proof of Theorem 3.1.

4. Examples

In this section, we shall give an example to illustrate the feasibility of main results.

Example 4.1. Considering the following predator-prey-mutualist system system:

ẋ = x

((
0.9+0.1cos(t)

)
−1.5x− 0.1z

3+1.4y

)
,

ẏ = y

((
0.9+0.1sin(t)

)
− y

0.2+2x

)
,

ż = z

(
−0.03+

x
3+1.4y

−
(

0.19+0.1cos(t)
)

z

)
.

(4.1)

Corresponding to system (1.2), one has

a1(t)= 0.9+0.1cos(t), b1(t)= 1.5, c1(t)= 0.1, d1(t)= 3, d2(t)= 1.4, a2(t)= 0.9+0.1sin(t), d3(t)=

0.2, d4(t) = 2, a3(t) = 0.03, b2(t) = 0.19+0.1cos(t), k1(t) = 10. By calculating, one has B1 ≈

0.6667, B2 ≈ 1.5334, B3 ≈ 2.1358, δ1 ≈ 0.4892, δ2 = 0.16, δ3 ≈ 0.22431.

al
1(d

l
1 +dl

2δ2)− cm
1 B3 ≈ 2.36562 > 0,

kl
1cl

1δ1

dm
1 +dm

2 B2
−am

3 ≈ 0.0651 > 0;

b2(t)−
c1(t)
d1(t)

≈ 0.8667 > 0, b1(t)−
B2

d4(t)
− c1(t)k1(t)

d1(t)
≈ 0.39997 > 0;

1
d3(t)+d4(t)B1

− c1(t)B3

d2(t)
− c1(t)k1(t)B1

d2(t)
≈ 0.02338 > 0.

Clearly, 0 < δ1 ≤ B1, 0 < δ2 ≤ B2, 0 < δ3 ≤ B3. Condition(A1)-(A5) are satisfied. Thus,

from Theorem 2.1 and Theorem 3.1, system (4.1) admits a unique globally asymptotically

stable periodic solution.
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Fig.1 shows the dynamic behaviors of the system (4.1), which strongly supports our results.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time t/day

Ö
Ö

È
º

x
y
z

FIGURE 1. Dynamic behaviors of the solution (x(t),y(t),z(t)) system (4.1) with initial

conditions
(
x(0),y(0),z(0)

)
= (1.0,1.2,0.6),(0.5,1.6,0.4) and (0.3,1.4,0.3), respec-

tively.

5. Discussion

In this paper, we studied a periodic predator-prey-mutualist system. From our results we

know when the death rate of the predator specie z is enough small and the density restriction of

z is enough big, x and y become greater degree of cooperation, then there exists a unique strictly

positive periodic solution of the system (1.2) which is globally attractive.
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