

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 3, 768-773

ISSN: 1927-5307

A LOWER BOUND FOR THE NUMBER OF CONJUGACY CLASSES IN POSITIVE PERMUTATION BRAIDS

E.A.ELRIFAI* AND M.ANIS*

Department of mathematics, Faculty of science, Mansoura university, Mansoura 35516, Egypt

Abstract

We study the problem of finding lower and upper bounds for the number of conjugacy clases in positive permutation braids. For such braids with associated type cycle (n), all possible values of their crossing numbers, the minimum and maximum crossing numbers and a more sharbend lower bound of the number of their conjugacy classes in S_{n}^{+}are given. Also for positive permutation braids with associate type cycle $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ the minimum crossing number is given..

Keywords: Braid groups, Knots, Conjugacy classes.

2000 AMS Subject Classification: 57M27, 20B30, 20 E 45.

1. Introduction

The Artin's braid group B_{n} and the symmetric group S_{n} have, respectively, the presentations:

$$
B_{n}=\left\{\begin{array}{c}
\sigma_{i}, i=1,2, \ldots, n-1: \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { if }|i-j|>1 \tag{1}\\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \text { if } i=1,2, \ldots, n-2
\end{array}\right\}
$$

[^0]\[

S_{n}=\left\{$$
\begin{array}{c}
\tau_{i}=(i i+1), i=1,2, \ldots, n-1: \tau_{i} \tau_{j}=\tau_{j} \tau_{i} \text { if }|i-j|>1, \tag{2}\\
\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1} \text { if } i=1,2, \ldots, n-2, \tau_{i}^{2}=1 \forall i
\end{array}
$$\right\}
\]

So we have the natural homomorphism $\theta: B_{n} \rightarrow S_{n}$, such that $\theta\left(\sigma_{i}\right)=\tau_{i}$ for all i. There are several known algorithms for solving the word and the conjugacy problems in braid groups [1]. The first algorithm for these problems was given by Garside [2]. Then it was improved by Elrifai [3], Elrifai and Morton [4]. A positive braid in B_{n} is the braid which can be written as a word in positive powers of generators σ_{i}, and without use of the inverse elements σ_{i}^{-1}. The set of all positive braids form a monoid, denoted B_{n}^{+}. The positive permutation braids, PPBs S_{n}^{+}, were first defined by Elrifai [3], where a braid is a positive permutation braid if it is positive and each pair of its strings cross at most once. PPBs represent a geometric analogue of permutations, and $S_{n}^{+} \subseteq B_{n}^{+} \subseteq B_{n}$. The algebraic crossing number of a braid is the algebraic sum of the powers of the letters in it. In [5] Elrifai and Benkhalifa introduced a conjugacy invariant matrix, called classification crossing matrix, for positive braids. They also proved that this matrix is a complete conjugacy invariant for PPBs when $n \leq 5$. In [6] Morton and Hadji studied the problem in point of view of knot theory. They proved that PPBs which close to the trivial knot or to the trefoil knot are all conjugate.

The knot is an embedded circle in $S^{3}\left(R^{3}\right)$, and a link is a disjoint collection of knots. The closure (closed braid) of a braid in B_{n} is formed by joining the top points to the bottom. Each knot or link can be represented as a closed braid. Two closed braids are equivalent (as links) if and only if their braid representatives are related by a finite sequence of Markov moves, $b \longleftrightarrow a b a^{-1}$ for any a, b in B_{n} (conjugation) and $b \longleftrightarrow b \sigma_{n}^{ \pm 1}$ for any $b \in B_{n}$ (stabilizer). The half twist braid $\Delta_{n}=\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-2}\right) \ldots\left(\sigma_{1} \sigma_{2}\right)\left(\sigma_{1}\right)$ in B_{n} plays an important role in braid theory. Through this article we use symbols α, β, \ldots for elements in S_{n}, and $\alpha^{+}, \beta^{+}, \ldots$ for elements in S_{n}^{+}. Let $c(\alpha)=c\left(\alpha^{+}\right)$, be the crossing number of the strings of α as a permutation, or α^{+}as a PPB. For more details about braid and link theories, we refer to [7].

In this article, the following results are given,

1: For each positive permutation braid α^{+}in S_{n}^{+}with associated permutation of type cycle (n), it is proved that:

- $n-1 \leq c\left(\alpha^{+}\right) \leq \frac{(n-1)^{2}}{2}$ if n is odd, or $\frac{(n-1)^{2}+1}{2}$ if n is even.
- For each integer k in $\left\{(n-1),(n-1)+2,(n-1)+4, \ldots,(n-1)^{2} / 2\right.$ if n odd $\}$, there exists at least one α^{+}such that $c\left(\alpha^{+}\right)=k$.
- For each integer k in $\left\{(n-1),(n-1)+2,(n-1)+4, \ldots,\left[(n-1)^{2}+1\right] / 2\right.$ if n even $\}$, there exists at least one α^{+}such that $c\left(\alpha^{+}\right)=k$.
- A more sharpened lower bound of the number of the conjugacy classes in S_{n}^{+}of type cycle (n) is $\frac{(n-1)(n-3)}{2}$ if n is odd, or $\frac{(n-1)(n-3)+1}{2}$, if n is even, $n \geq 4$.

2: For PPBs with associate type cycle $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ the minimum crossing number is $n-r$.

2. Preliminaries

In S_{n}^{+}, the identity braid e has $c(e)=0$ and the half twist braid Δ_{n}, where each pair of strings cross exactly once, has crossing number $c\left(\Delta_{n}\right)=n(n-1) / 2$. Therefore $0 \leq c(\alpha) \leq n(n-1) / 2 \forall \alpha \in S_{n}^{+}$. Also crossing number is a conjugacy invariant but it is
not a complete invariant for conjugation. There are several examples of PPB words with the same crossing and the same type cycle but they are not conjugate [6].

3. Main results

Proposition 3.1. For elements in S_{n}^{+}with associate type cycle (n), the minimum crossing number is $n-1$.

Proof. Suppose that in the word α^{+}one of the generators σ_{k} does not appear at all, then the diagram of α^{+}will be splitted as in figure 1 b , which means that the presentation of α^{+}does not a cycle. Hence to have a cycle, each generator σ_{i} must appear at least once. Then minimal crossing will be reached if each generator appears exactly once. So that
the minimal crossing is the number of generators, i.e. it equals $n-1$. This completes the proof.

Figure 1a:
An inversion

Figure 1b:
Splitting braid

Proposition 3.2. For elements in S_{n}^{+}with associate type cycle (n), the maximum crossing number is equal to $\frac{(n-1)^{2}}{2}$ if n is odd, or $\frac{(n-1)^{2}+1}{2}$ if n is even.

Proof. Let α^{+}of type cycle (n), but Δ_{n}^{+}is the only PPB which has the maximum crossing number $\frac{n(n-1)}{2}$. The closure of Δ_{n}^{+}is a link with $\frac{n}{2}$ components if n is even, and $\frac{n+1}{2}$ if n is odd. Then to have a knot you must switch some of the crossing to make bridges between these components, so we need at least a number of bridges which equals the number of components minus one. Therefore the maximum crossing number equal

$$
\frac{n(n-1)}{2}-\left(\frac{(n+1)}{2}-1\right)=\frac{(n-1)^{2}}{2}, \quad \text { if } \quad n-o d d
$$

or

$$
\frac{n(n-1)}{2}-\left(\frac{n}{2}-1\right)=\frac{(n-1)^{2}+1}{2}, \text { if } n-\text { even }
$$

This completes the proof.
Theorem 3.3. In S_{n}^{+}, there is at least one α^{+}with type cycle (n), such that $c\left(\alpha^{+}\right)$ covers the set

$$
(n-1),(n-1)+2,(n-1)+4, \ldots,(n-1)^{2} / 2 \text { if } n \text { odd }
$$

or

$$
\left.(n-1),(n-1)+2,(n-1)+4, \ldots,\left[(n-1)^{2}+1\right] / 2 \text { if } n \text { even }\right\}
$$

Proof. For PPBs of type cycle (n), proposition 1 implies the existence of at least one α with $c\left(\alpha^{+}\right)=n-1$. Also proposition 2 implies the existence of at least one α with crossing number $\frac{(n-1)^{2}}{2}$ if n is odd, or $\frac{(n-1)^{2}+1}{2}$ if n is even. But, to preserve the type cycle (n), we must increase the crossing by even natural numbers. So that $c\left(\alpha^{+}\right)$covers the set $\left\{(n-1),(n-1)+2,(n-1)+4, \ldots,(n-1)^{2} / 2\right\}$ if n is odd, and $\left\{(n-1),(n-1)+2,(n-1)+4, \ldots,\left[(n-1)^{2}+1\right] / 2\right\}$ if n is even. This completes the proof.

Theorem 3.4. A lower bound of the number of the conjugacy classes in S_{n}^{+}of type cycle (n) is $\frac{(n-1)(n-3)}{2}$ if n is odd, or $\frac{(n-1)(n-3)+1}{2}$, if n is even, $n \geq 4$.

Proof. In order to preserve the associated type cycle of a PPB, we must increase the crossing by even natural numbers. Then each crossing will be $(n-1)+2 k, k=0,1,2, \ldots$. So the upper bound of k is the maximum crossing number minus $(n-1)$, which implies that the number of conjugacy classes with different crossings of a PPB in S_{n}^{+}which associates a type cycle (n) is $\frac{(n-1)^{2}}{2}-(n-1)=\frac{(n-1)(n-3)}{4}$, if n is odd, and $\frac{(n-1)^{2}+1}{2}-(n-1)=\frac{(n-1)(n-3)+1}{4}$ if n is even. But the algebraic crossing number is invariant under conjugation, i.e. the words with different crossing numbers are not conjugate. Hence we have at least a number of conjugacy classes which is equal to the number of classes with different crossings. This completes the proof.

Corollary 3.5. PPBs with associate type cycle $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ have minimum crossing number $n-r$.

Proof. Let α be a PPB with permutation $\alpha=\alpha_{1} \circ \alpha_{2} \circ \ldots \circ \alpha_{r}$ of type cycle $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$. Let x_{i} be the least integer in the support of the cycle α_{i} for each $i=1,2, \ldots, r$, then strings from x_{i} to $\alpha\left(x_{i}\right)$ and from x_{i+1} to $\alpha\left(x_{i+1}\right)$ never cross each other, otherwise we have the inversion $\left(\alpha\left(x_{i}\right), \alpha\left(x_{i+1}\right)\right)$. Therefore in the portion $\alpha_{i} \circ \alpha_{i+1}$ we will lost one crossing. Hence the minimum number of crossings in α is $(n-1)-(r-1)=n-r$. This completes the proof.

References

[1] J.S. Birman, V. Gebhardt and J. Gonz lez-Meneses, Conjugacy in Garside groups-I: Cycling, powers and rigidity, Groups Geom. Dyn. 1 (2007), 221-279..
[2] F. A. Garside, The braid group and other groups, Quart. J. Math., Oxford 20 (1969), 235-254.
[3] E. A. Elrifai, Positive braids and Lorenz links, Ph.D. Thesis, Liverpool university (1988).
[4] E. A. Elrifai and H. Morton, Algorithms for positive braids, Quart. J. Math. Oxford 45 (1994), 479-497.
[5] E. A. Elrifai and M. Benkhalifa, On the conjugacy problem of positive braids, Journal of Knot Theory and its Ramifications Vol. 13, No. 3 (2004), 311-324.
[6] H. R. Morton and R. J. Hadji, Conjugacy of positive permutation braids, Fundamenta Mathematicae 188, (2000), 155-166.
[7] K. Murasugi, Knot theory and its applications, Birkhauser, (1996).

[^0]: *Corresponding authors
 E-mail addresses: rifai@mans.edu.eg (E.A.Elrifai), mona_anis1985@yahoo.com (M. Anis)
 Received January 13, 2012

