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NONNEGATIVE SOLUTIONS IN BOUNDARY VALUE PROBLEMS
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Abstract. In this paper, we study the solutions to the two point boundary value problem:

−u′′(x) = λf(u(x)) ; x ∈ (−1, 1),

u(−1) = 0 = u(1),

where λ > 0 is a positive parameter and f is a smooth function. We obtain the exact number of positive

solutions.
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1. Introduction

Here we consider the autonomous two point boundary value problem

−u′′(x) = λf(u(x)) ; x ∈ (−1, 1), (1)

u(−1) = 0 = u(1), (2)

where λ is a positive parameter and f is a smooth function. We define g by g(t) = f(t)/t

and F by F (t) =
∫ t
0
f(s)ds and Fε by Fε(t) =

∫ ε+t
ε

f(s)ds for any ε > 0. Let f ′′(t) > 0 for
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all t > 0.

We analyze in detail the nonnegative solutions to (1),(2). In this paper we employ

the Quadrature Method in [1,2]. Our results on positive solutions are in contrast to the

case of semipositone (see [1,2]) where f ′′ < 0 guaranteed existence and multiplicity. Our

methods are based on building a Quadrature Method for such explosive solutions.

We will discuss the Quadrature Method in section 2, the statements and discussion of

the main results and proofs of main results in section 3, and finally the discussion of the

complete bifurcation curve of nonnegative solutions for the special case f(u) = e−u, in

section 4.

2. Quadrature Method

First, note that any solution u(x) of (1),(2) is symmetric about any point x0 ∈ (−1, 1)

such that u′(x0) = 0. That is, u(x) must achieve its maximum at x = 0. Multiplying (1)

by u′(x) and integrating, we obtain

−[u′(x)]2/2 = λF (u(x)) + c. (3)

Since positive solutions are known to be symmetric with respect to x = 0 and u′(x) > 0

for x ∈ (−1, 0) we have ρ := supx∈(−1,1) u(x) = u(0). Taking x = 0 in (3) implies that

u′(x) =
√

2λ[F (ρ)− F (u)] ; x ∈ [−1, 0]. (4)

Now integrating (4) over [-1,x], we obtain∫ u(x)

0

du√
F (ρ)− F (u)

=
√

2λ(x+ 1) ; x ∈ [−1, 0], (5)

which in turn implies that

√
λ =

1√
2

∫ ρ

0

du√
F (ρ)− F (u)

:= G(ρ), (6)

by taking x = 0 in (5). Hence for any λ > 0 if there exists a ρ ∈ (0,+∞) with G(ρ) =
√
λ,

then (1),(2) has a positive solution u(x) given by (5) satisfying sup{u(x)|x ∈ (−1, 1)} =
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u(0) = ρ. In fact, G(ρ) is a continuous function which is differentiable over (0,+∞) with

d

dρ
G(ρ) =

1√
2

∫ 1

0

H(ρ)−H(ρv)

[F (ρ)− F (ρv)]3/2
dv, (7)

where

H(t) = F (t)− (t/2)f(t). (8)

For ρ ∈ (0,+∞), we recall from (6) that

G(ρ) =
1√
2

ρ√
F (ρ)

∫ 1

0

dv√
1− [F (ρv)/F (ρ)]

. (9)

3. Main results

Theorem 3.1. If f(0) > 0, limt→+∞ f(t) = M where 0 ≤M < f(0) and f : [0,+∞)→ R

is monotonically decreasing, then (1),(2) has a unique positive solution for any λ > 0.

Also, limλ→0 ρλ = 0, and limλ→+∞ ρλ = +∞.

Proof. Firstly, note that from hypotheses we have limt→0+ g(t) = +∞, limt→+∞ g(t) = 0,

and g′(t) < 0 for all t > 0. Hence H ′(t) > 0 for all t > 0 and H ′′(t) < 0 for all

t > 0. Also, we have H(0) = 0. Consequently G′(ρ) > 0 for any ρ ∈ (0,+∞). Next, let

L(v) := F (ρv)/F (ρ). Hence L(v) ≥ v for v ∈ [0, 1]. Consequently from (9) we have

G(ρ) ≥ (1/
√

2)(ρ/
√
F (ρ))

∫ 1

0

dv√
1− v

=
√

2(ρ/
√
F (ρ)).

But since limt→+∞ f(t) = M ; 0 < M ≤ f(0), we have limρ→+∞ ρ
2/F (ρ) = limρ→+∞ 2ρ/f(ρ) =

+∞, and hence limρ→+∞G(ρ) = +∞. Finally, it remains to prove that limρ→0+ G(ρ) = 0.

Since limt→0+ f(t)/t = +∞, consequently we have

lim
ρ→0+

G(ρ) = lim
ρ→0+

(1/
√

2)(ρ/
√
F (ρ))

∫ 1

0

dv√
1− v

= lim
ρ→0+

√
2(ρ/

√
F (ρ)) = 0.

Hence Theorem 3.1 is proved.

Theorem 3.2. If limt→0 f(t) = +∞, limt→+∞ f(t) = M where M = +∞,(or 0 <

M < +∞), then there exists λ1 > 0 with 0 < λ1 < +∞ such that (1),(2) has no

positive solutions for λ ∈ (λ1,+∞). For λ ∈ (0, λ1) the problem (1),(2) has two positive

solutions, and for λ = λ1 the problem (1),(2) has exactly one positive solution. (or the
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problem (1),(2) has a unique positive solution for any λ > 0 and limλ→0 ρλ = 0, and

limλ→∞ ρλ = +∞).

Proof. To prove of Theorem 3.2, we shall need following Lemma.

If in the Quadrature Method taking Fε instead of F , we obtain

G(ρ) = (1/
√

2)(ρ/
√
Fε(ρ− ε))

∫ 1

0

dv√
1− [Fε(ρv − ε)/Fε(ρ− ε)]

.

In what follows, we use this new G.

Lemma 3.3. If g(t) = f(t)/t, then g(t) is monotonically decreasing, or g(t) has a unique

extremum point.

Proof. We know that

lim
t→0+

g(t) = +∞, (10)

and

lim
t→+∞

g(t) = +∞. (11)

Thus there exists an η1 ∈ (0,+∞) such that g′(η1) = 0. We show that η1 is unique zero

of g′(t). Suppose, on the contrary, that there exists an η2 such that g′(η2) = 0. Also,

suppose that η1 is first zero of g′(t) and η2 is second zero of g′(t). Consequently from (10)

we understand that η1 is length of minimum point and η2 is length of maximum point.

In view of (11), there exists an η3 ∈ (η2,+∞) such that g′(η3) = 0. Now, let φ(t) = g′(t).

Thus we have

lim
t→0+

φ(t) = −∞, (12)

and

lim
t→+∞

φ(t) = α ; 0 < α ≤ +∞. (13)

Also, we have

φ(η1) = φ(η2) = 0, (14)

hence there exists c1 ∈ (η1, η2) such that φ′(c1) = 0. Implicitly, we have

φ(η2) = φ(η3) = 0, (15)
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hence there exists c2 ∈ (η2, η3) such that φ′(c2) = 0. In view of (12), (13), c1, c2 are length

of maximum and minimum points of φ, respectively. Consequently from (14) and (15) we

have φ(c1) > 0 and φ(c2) < 0. But we have φ′(t) = [f ′′(t)−2φ(t)]/t, hence f ′′(c2) = 2φ(c2)

which is a contradiction.

When 0 < M < +∞ it is clear to show that g is monotonically decreasing. Hence the

Lemma 3.3 is proved.

Proof Of Theorem 3.2. Now, we show for limt→+∞ f(t) = M where M = +∞, we

have limρ→+∞G(ρ) = 0, and limρ→0+ G(ρ) = 0, and G(ρ) has a unique maximum point.

Also, for 0 < M < +∞, we have limρ→0+ G(ρ) = 0, limρ→+∞G(ρ) = +∞, and G(ρ)

is monotonically increasing. But in view of Lemma 3.3, in the first case H(t) has a

unique maximum point and limt→+∞H(t) = −∞. Consequently It remains to prove that

limρ→0+ G(ρ) = 0, limρ→+∞G(ρ) = 0, and G(ρ) has a unique maximum point. Since

H(0) = 0 and Lemma 3.3 holds, we have H(t) > 0 for t ∈ (0.η1] which, in turn, implies

that G′(ρ) > 0 for ρ ≤ η1. Since limt→∞H(t) = −∞ we have H(t) < 0 for t large and

hence G′(ρ) < 0 for ρ large. Let L(v) := F (ρv)/F (ρ). Then L(v) ≤ v for v ∈ [0, 1]. With

this (9) would yield

G(ρ) ≤ 1√
2

ρ√
F (ρ)

∫ 1

0

dv√
1− v

=
√

2
ρ√
F (ρ)

. (16)

But since limt→+∞ f(t)/t = +∞, we have limρ→+∞ ρ
2/F (ρ) = limρ→+∞ 2ρ/f(ρ) = 0, and

hence limρ→+∞G(ρ) = 0.

Finally, it remains to prove that limρ→0+ G(ρ) = 0, which follows by the similar argu-

ments that we used in the proof of Theorem 3.1.

Also, in view of diagram k(v) := H(ρ0) − H(ρ0v) it is clear that G′(ρ) has a unique

zero and consequently G(ρ) has a unique maximum point.

In the second case, that is, 0 < M < +∞, the proof is similar to the ones in Theorem

3.1.

Hence Theorem 3.2 is proved.

4. Examples
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Example 4.1. Consider the problem

−u′′ = λe−u

u(−1) = 0 = u(1).

This example for which f(u) = e−u demonstrates Theorem 3.1 since f(0) = 1 > 0,

limu→+∞ f(u)/u = 0, i.e. M = 0 < 1 = f(0), and f(u) = e−u is decreasing for u > 0.

Note that F (u) = −e−u + 1 implies

G(ρ) =
1√
2

∫ ρ

0

du√
e−u − e−ρ

.

Letting w = e−u/2 we obtain

G(ρ) = −
√

2

∫ 0

sec−1(eρ/2)

e−ρ/2 sec θ tan θdθ

e−ρ/2 sec θ
√
e−ρ tan2 θ

=
√

2eρ/2
∫ sec−1(eρ/2)

0

dθ =
√

2eρ/2 sec−1(eρ/2).

Hence, limρ→0+ G(ρ) = 0, and limρ→+∞G(ρ) = +∞.

Consequently, this example shows truth of Theorem 3.1.
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