

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 3, 759-767

ISSN: 1927-5307

SOME PROPERTIES OF ANALYTIC FUNCTIONS DEFINED BY A NEW GENERALIZED MULTIPLIER TRANSFORMATION

S R SWAMY*
Department of Computer Science and Engineering, R V College of Engineering, Mysore Road, Bangalore560 059, INDIA

Abstract

The object of the present paper is to derive some properties of analytic functions in the open unit disc which are defined by using new generalized multiplier transformations, applying a lemma due to Miller and Mocanu.

Keywords: Analytic functions, Differential subordination, Multiplier transformations.
2000 AMS Subject Classification: 30C45

1. INTRODUCTION

Let $A(p, n)$ denote the class of functions $\mathrm{f}(\mathrm{z})$ of the form $f(z)=\mathrm{z}^{p}+\sum_{j=p+n}^{\infty} a_{j} z^{j}$ $p, n \in N=\{1,2,3 \ldots\}$, which are analytic in the open unit disc $U=\{z: z \in C,|z|<1\}$. In particular, we set $A(p, 1)=A_{p}, A(1, n)=A(n)$ and $A(1,1)=A=A_{1}=A(1)$, which are well known classes of analytic functions in U.

We consider the following new generalized multiplier transformation.

[^0]Definition 1.1[17]. Let $f(z) \in A(p, n)$.The new generalized multiplier transformation $I_{p, \alpha, \beta}^{\delta}$ on $A(p, n)$ is defined by the following infinite series:

$$
\begin{equation*}
I_{p, \alpha, \beta}^{\delta} f(z)=z^{p}+\sum_{j=p+n}^{\infty}\left(\frac{\alpha+k \beta}{\alpha+p \beta}\right)^{\delta} a_{j} z^{j}, \tag{1.1}
\end{equation*}
$$

where $p, n \in N, \delta \geq 0, \beta \geq 0, \alpha$ a real number such that $\alpha+p \beta>0$.

It follows from (1.1) that

$$
\begin{align*}
& I_{p, \alpha, 0}^{\delta} f(z)=f(z) \text { and } I_{p, 0, \beta}^{\delta} f(z)=z f^{\prime}(z) / p, \\
& (\alpha+p \beta) I_{p, \alpha, \beta}^{\delta+1} f(z)=\alpha I_{p, \alpha, \beta}^{\delta} f(z)+\beta z\left(I_{p, \alpha, \beta}^{\delta} f(z)\right)^{\prime} . \tag{1.2}
\end{align*}
$$

We note that for $\delta=m \in N_{0}=N \cup\{0\}(\mathrm{n}=1$ in some cases $)$

- $\quad I_{1, \alpha, \beta}^{m} f(z)=I_{\alpha, \beta}^{m} f(z)($ See [16] $)$.
- $\quad I_{p, \alpha, 1}^{m} f(z)=I_{p}^{m}(\alpha) f(z), \alpha>-p$ (See [1], [13] and [14]).
- $\quad I_{p, l+p-p \beta, \beta}^{m} f(z)=I_{p}^{m}(\beta, l) f(z), l>-p, \beta \geq 0$ (See [6]).
- $\quad I_{p, 0, \beta}^{m} f(z)=D_{p}^{m} f(z)$ (See [4], [9] and [11]).
- $\quad I_{p, 1, \beta}^{m} f(z)=N_{p, \beta}^{m} f(z)$, where $N_{p, \beta}^{m} f(z)$ is a new operator defined by

$$
N_{p, \beta}^{m} f(z)=z^{p}+\sum_{j=p+n}^{\infty}\left(\frac{1+k \beta}{1+p \beta}\right)^{m} a_{j} z^{j},(f \in A(p, n), \beta \geq 0) .
$$

Remark 1.2. i) $I_{p}^{m}(\alpha) f(z)$ was considered in [1], [13] and [14] for $\alpha \geq 0$ and $I_{p}^{m}(\beta, l) f(z)$ was defined in [6] for $l \geq 0, \beta \geq 0$, ii) $I_{p}^{m}(l) f(z)=I_{p}^{m}(1, l) f(z), l>-p$, iii) $I_{p}^{m}(\beta, 0) f(z)=D_{p}^{m}(\beta) f(z), \beta \geq 0$, was mentioned in Aouf et.al. [3], iv) $D_{1}^{m}(\beta), \beta \geq 0$, was introduced by Al-Oboudi [2], v) $D_{1}^{m}(1) f(z)=D^{m} f(z)$ was defined by Salagean [12] and was considered for $\mathrm{m} \geq 0$ in [5] , vi) $I_{1}^{m}(\alpha) f(z), \alpha \geq 0$, was investigated in [7] and [8] and vii) $I_{1}^{m}(1) f(z)$ was due to Uralegaddi and Somanatha [18].

The main object of this paper is to present some interesting properties of analytic functions defined by using the new generalized multiplier transformations $I_{p, \alpha, \beta}^{\delta} f(z)$ associated with the class $A(p, n)$.

In order to prove our main results, we will make use of the following lemma.

Lemma 1.3 [10]. Let Ω be a set in the complex plane C. Suppose that the function $\Psi: C^{2} \times U \rightarrow C$ satisfies the condition $\Psi\left(i x_{2}, y_{1} ; z\right) \notin \Omega$ for all $\mathrm{z} \in U$ and for all real x_{2} and y_{1} such that

$$
\begin{equation*}
\mathrm{y}_{1} \leq-\frac{1}{2} \mathrm{n}\left(1+\mathrm{x}_{2}^{2}\right) . \tag{1.3}
\end{equation*}
$$

If $p(z)=1+\mathrm{c}_{n} \mathrm{z}^{n}+\ldots$ is analytic in U and for $\mathrm{z} \in U, \psi\left(p(z), z p^{\prime}(z) ; z\right) \subset \Omega$, then $\operatorname{Re}(p(z))>0$ in U.

2. MAIN RESULTS

Theorem 2.1. Let λ be a complex number satisfying $\operatorname{Re}(\lambda)>0$ and $\rho<1$. Let $p, n \in N, \mu>0, \delta \geq 0, \beta \geq 0, \alpha$ a real number such that $\alpha+p \beta>0, f(z), g(z)$ $\in A(p, n)$ and

$$
\begin{equation*}
\operatorname{Re}\left\{\lambda \frac{I_{p, \alpha, \beta}^{\delta} g(z)}{I_{p, \alpha, \beta}^{\delta+1} g(z)}\right\}>\gamma, 0 \leq \gamma<\operatorname{Re}(\lambda), z \in U . \tag{2.1}
\end{equation*}
$$

Then

$$
\operatorname{Re}\left\{\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu}\right\}>\frac{2 \mu(\alpha+p \beta) \rho+\beta n \gamma}{2 \mu(\alpha+p \beta)+\beta n \gamma}, z \in U,
$$

whenever

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu}+\lambda\left(\frac{I_{p, \alpha, \beta}^{\delta+1} f(z)}{I_{p, \alpha, \beta}^{\delta+1} g(z)}\right)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu-1}\right\}>\rho, z \in U . \tag{2.2}
\end{equation*}
$$

Proof. Let $\tau=(2 \mu(\alpha+p \beta) \rho+\beta n \gamma) /(2 \mu(\alpha+p \beta)+\beta n \gamma)$ and define the function $p(z)$ by

$$
\begin{equation*}
p(z)=(1-\tau)^{-1}\left\{\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu}-\tau\right\} . \tag{2.3}
\end{equation*}
$$

Then, clearly, $p(z)=1+c_{n} z^{n}+c_{n+1} z^{n+1}+\ldots$ and is analytic in U. We set $u(z)=\lambda \frac{I_{p, \alpha, \beta}^{\delta} g(z)}{I_{p, \alpha, \beta}^{\delta+1} g(z)}$ and observe from (2.1) that $\operatorname{Re}(u(z))>\gamma, z \in U$. Making use of the identity (1.2), we find from (2.3) that
$\left\{(1-\lambda)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu}+\lambda\left(\frac{I_{p, \alpha, \beta}^{\delta+1} f(z)}{I_{p, \alpha, \beta}^{\delta+1} g(z)}\right)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu-1}\right\}=\tau+(1-\tau)\left[p(z)+\frac{\beta u(z)}{\mu(\alpha+p \beta)} z p^{\prime}(z)\right]$

If we define $\psi(x, y ; z)$ by

$$
\begin{equation*}
\psi(x, y ; z)=\tau+(1-\tau)\left(x+\frac{\beta u(z)}{\mu(\alpha+p \beta)} y\right), \tag{2.5}
\end{equation*}
$$

then, we obtain from (2.2) and (2.4) that

$$
\left\{\psi\left(p(z), z p^{\prime}(z) ; z\right):|z|<1\right\} \subset \Omega=\{w \in C: \operatorname{Re}(w)>\rho\} .
$$

Now for all $z \in U$ and for all real x_{2} and y_{1} constrained by the inequality (1.3), we find from (2.5) that

$$
\begin{aligned}
\operatorname{Re}\left\{\psi\left(i x_{2}, y_{1} ; z\right)\right\} & =\tau+(1-\tau) \frac{\beta y_{1}}{\mu(\alpha+p \beta)} \operatorname{Re}(u(z)) \\
& \leq \tau-(1-\tau) \frac{\beta n \gamma}{2 \mu(\alpha+p \beta)} \equiv \rho .
\end{aligned}
$$

Hence $\psi\left(i x_{2}, y_{1} ; z\right) \notin \Omega$. Thus by Lemma 1.1, $\operatorname{Re}(p(z))>0$ and hence $\operatorname{Re}\left\{\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu}\right\}>\tau$ in U.This proves our theorem.

If we set

$$
v(z)=\left(\frac{I_{p, \alpha, \beta}^{\delta+1} f(z)}{I_{p, \alpha, \beta}^{\delta+1} g(z)}\right)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu-1}+\left(\frac{1}{\lambda}-1\right)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu},
$$

then for $\delta \geq 0, \beta \geq 0, \mu \geq 0, \alpha$ a real number such that $\alpha+p \beta>0, \lambda>0$ and $\rho=0$, Theorem 2.1 reduces to

$$
\begin{equation*}
\operatorname{Re}(v(z))>0, z \in U \text { implies } \operatorname{Re}\left\{\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu}\right\}>\frac{n \lambda \beta \gamma}{2 \mu(\alpha+p \beta)+n \lambda \beta \gamma}, z \in U \tag{2.6}
\end{equation*}
$$

whenever $\operatorname{Re}\left\{\frac{I_{p, \alpha, \beta}^{\delta} g(z)}{I_{p, \alpha, \beta}^{\delta+1} g(z)}\right\}>\gamma, 0 \leq \gamma \leq 1, z \in U$. Let $\lambda \rightarrow \infty$. Then (2.6) is equivalent to

$$
\left(\frac{I_{p, \alpha, \beta}^{\delta+1} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu-1}-\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu}>0 \text { in } U
$$

implies

$$
\operatorname{Re}\left\{\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu}\right\}>1 \text { in } U \text {, whenever } \operatorname{Re}\left\{\frac{I_{p, \alpha, \beta}^{\delta} g(z)}{I_{p, \alpha, \beta}^{\delta+1} g(z)}\right\}>\gamma, 0 \leq \gamma \leq 1, z \in U \text {. }
$$

In the following theorem we shall extend the above result, the proof of which is similar to that of Theorem 2.1.

Theorem 2.2. Let $p, n \in N, \mu>0, \delta \geq 0, \beta \geq 0, \alpha$ a real number such that $\alpha+p \beta>0$,

$$
\begin{aligned}
& f(z), g(z) \in A(p, n) \text { and } \operatorname{Re}\left\{\frac{I_{p, \alpha, \beta}^{\delta} g(z)}{I_{p, \alpha, \beta}^{\delta+1} g(z)}\right\}>\gamma, 0 \leq \gamma<1, z \in U . \text { If } \\
& \left.\quad \operatorname{Re}\left\{\frac{I_{p, \alpha, \beta}^{\delta+1} f(z)}{I_{p, \alpha, \beta}^{\delta+1} g(z)}\right)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu-1}-\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu}\right\}>-\frac{n \beta \lambda(1-\rho)}{2 \mu(\alpha+p \beta)}, z \in U,
\end{aligned}
$$

then

$$
\operatorname{Re}\left\{\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{I_{p, \alpha, \beta}^{\delta} g(z)}\right)^{\mu}\right\}>\rho, z \in U .
$$

Remark 2.3. For $\mu=1$, and $\alpha=l+p-p \beta, l>-p$, Theorem 2.1 and Theorem 2.2 agree with Theorem 2.1 and Theorem 2.2, respectively, of the author [15](considered for $l \geq 0$).

In a manner similar to Theorem 2.1, we can easily prove the following theorems.

Theorem 2.4. Let $p, n \in N, \delta \geq 0, \beta \geq 0, \alpha$ a real number such that $\alpha+p \beta>0$, $\mu>0, \rho<1$ and $f(z) \in A(p, n)$. Then for λ a complex number with $\operatorname{Re}(\lambda)>0$, we have

$$
\operatorname{Re}\left(\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{z^{p}}\right)^{\mu}\right)>\frac{2 \mu(\alpha+p \beta) \rho+n \beta \operatorname{Re}(\lambda)}{2 \mu(\alpha+p \beta)+n \beta \operatorname{Re}(\lambda)}, z \in U
$$

whenever

$$
\operatorname{Re}\left\{(1-\lambda)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{z^{p}}\right)^{\mu}+\lambda\left(\frac{I_{p, \alpha, \beta}^{\delta+1} f(z)}{I_{p, \alpha, \beta}^{\delta} f(z)}\right)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{z^{p}}\right)^{\mu}\right\}>\rho, z \in U .
$$

Theorem 2.5. Let $p, n \in N, \delta \geq 0, \beta \geq 0, \alpha$ a real number such that $\alpha+p \beta>0, \mu>0$, λ a complex number with $\operatorname{Re}(\lambda)>0$ and $\frac{n \beta \operatorname{Re}(\lambda)}{2 \mu(\alpha+p \beta)+n \beta \operatorname{Re}(\lambda)} \leq \rho<1$.If $f(z) \in A(p, n)$ satisfies the condition

$$
\operatorname{Re}\left((1-\lambda)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{z^{p}}\right)^{2 \mu}+\lambda\left(\frac{I_{p, \alpha, \beta}^{\delta+1} f(z)}{I_{p, \alpha, \beta}^{\delta} f(z)}\right)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{z^{p}}\right)^{2 \mu}\right)>M(p, n, \lambda, \alpha, \beta, \mu, \rho),
$$

$(\mathrm{z} \in U)$, then $\operatorname{Re}\left(\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{z^{p}}\right)^{\mu}\right)>\rho, z \in U$, where

$$
M(p, n, \lambda, \alpha, \beta, \mu, \rho)=\frac{\rho[(2 \mu(\alpha+p \beta)+n \beta \operatorname{Re}(\lambda)) \rho-n \beta \operatorname{Re}(\lambda)]}{2 \mu(\alpha+p \beta)} .
$$

$$
\rho=\frac{n \beta \operatorname{Re}(\lambda)}{2 \mu(\alpha+p \beta)+n \beta \operatorname{Re}(\lambda)} \text { and } \rho=\frac{n \beta \operatorname{Re}(\lambda)}{2[2 \mu(\alpha+p \beta)+n \beta \operatorname{Re}(\lambda)]} \text { in Theorem } 2.4
$$

yields the following:

Corollary 2.6. Let $p, n \in N, \delta \geq 0, \beta \geq 0, \alpha$ a real number such that $\alpha+p \beta>0$, $\mu>0, \lambda$ a complex number with $\operatorname{Re}(\lambda)>0$ and $f(z) \in A(p, n)$. Then
(i)

$$
\operatorname{Re}\left((1-\lambda)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{z^{p}}\right)^{2 \mu}+\lambda\left(\frac{I_{p, \alpha, \beta}^{\delta+1} f(z)}{I_{p, \alpha, \beta}^{\delta} f(z)}\right)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{z^{p}}\right)^{2 \mu}\right)>0, z \in U
$$

implies

$$
\operatorname{Re}\left(\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{z^{p}}\right)^{\mu}\right)>\frac{n \beta \operatorname{Re}(\lambda)}{2 \mu(\alpha+p \beta)+n \beta \operatorname{Re}(\lambda)}, z \in U,
$$

and
(ii)
$\operatorname{Re}\left((1-\lambda)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{z^{p}}\right)^{2 \mu}+\lambda\left(\frac{I_{p, \alpha, \beta}^{\delta+1} f(z)}{I_{p, \alpha, \beta}^{\delta} f(z)}\right)\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{z^{p}}\right)^{2 \mu}\right)>M(p, n, \lambda, \alpha, \beta, \mu), z \in U$
implies

$$
\operatorname{Re}\left(\left(\frac{I_{p, \alpha, \beta}^{\delta} f(z)}{z^{p}}\right)^{\mu}\right)>\frac{n \beta \operatorname{Re}(\lambda)}{2[(2 \mu(\alpha+p \beta)+n \beta \operatorname{Re}(\lambda))]}, z \in U,
$$

where

$$
M(p, n, \lambda, \alpha, \beta, \mu)=-\frac{n^{2} \beta^{2}(\operatorname{Re}(\lambda))^{2}}{8 \mu(\alpha+p \beta)[2 \mu(\alpha+p \beta)+n \beta \operatorname{Re}(\lambda)]} .
$$

Remark 2.7. For $\alpha=l+p-p \beta, l>-p$, Theorem 2.4, Theorem 2.5 and Corollary 2.6 agree with Theorem 2.4, Theorem 2.5 and Corollary 2.6, respectively, of the author [15] (considered for $l \geq 0$).

REFERENCES

[1] R. Aghalary, R. M. Ali, S. B. Joshi and V. Ravichandran, Inequalities for functions defined by certain linear operator, Int. j. Math. Sci. , 4, no. 2 (2005), 267-274.
[2] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27(2004), 1429-1436.
[3] M. K. Aouf, R. M. El-Ashwah and S. M. El-Deeb, Some inequalities for certain p-valent functions involving extended multiplier transformations, Proc. Pak. Acad. Sci.,46(4)(2009),217-221.
[4] M. K. Aouf and A. O. Mostafa, On a subclasses of n-p-valent prestarlike functions, Comput. Math. Appl., 55(2008), 851-861.
[5] S. S. Bhoosnurmath and S. R. Swamy, On certain classes of analytic functions, Soochow J. Math., 20(1994), no.1, 1-9.
[6] A. Catas, On certain class of p-valent functions defined by new multiplier transformations, Proceedings of the international symposium on geometric function theory and applications, August, 20-24, 2007,TC Isambul Kultur Univ., Turkey,241-250.
[7] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modeling, 37(1-2) (2003), 39-49.
[8] N. E. Cho and T. H. Kim, Multiplier transformations and strongly Close-to-Convex functions, Bull. Korean Math. Soc., 40(3) (2003), 399-410.
[9] M. Kamali and H. Orhan, On a subclass of certain starlike functions with negative coefficients, Bull. Korean Math. Soc., 41(2004), 53-71.
[10] S. S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Text Books in Pure and Applied Mathematics (N.225), Marcel Dekker, New York and Besel, 2000.
[11] H. Orhan and H. Kiziltunc, A generalization on subfamily of p-valent functions with negative coefficients, Appl. Math. Comput. 155(2004), 521-530.
[12] G. St. Salagean, Subclasses of univalent functions, Proc. Fifth Rou. Fin. Semin. Buch. Complex Anal., Lect. notes in Math., Springer Verlag, Berlin, 1013(1983), 362-372.
[13] S. Shivaprasad Kumar, H. C. Taneja and V. Ravichandran, Classes of Multivalent functions defined by Dziok-Srivastava linear operator and multiplier transformation, Kyungpook Math. J. , 46(2006), no.1, 97 109.
[14] H. M. Srivastava, K. B. Suchitra, A. Stephen and S. Sivasubramanian, Inclusion and neighborhood properties of certain subclasses of multivalent functions of complex order, JIPAM, 7,Issue 2 (2006), article 7,1-8.
[15] S. R. Swamy, Differential subordinations associated with multiplier transformations, Inter. Math. Forum, 7, no. 15 (2012), 719 - 725.
[16] S. R. Swamy, Inclusion properties of certain subclasses of analytic functions, to appear in Inter. Math. Forum, 7 , (2012).
[17] S. R. Swamy, Inclusion properties for certain subclasses of analytic functions defined by a generalized multiplier transformation, to appear in Inter. J. Math. Anal., 6, (2012).
[18] B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, Current topics in analytic function theory, World Sci. Publishing, River Edge, N. Y., (1992),371-375.

[^0]: *Corresponding author
 E-mail address: mailtoswamy@rediffmail.com (S R Swamy)
 Received January 13, 2012

