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                                      1.  INTRODUCTION 

Let ),( npA denote the class of functions f(z) of the form )(zf  = z p + j

npj
j za





 

Nnp ,  = {1, 2, 3…},which are analytic in the open unit disc }1,:{  zCzzU . In 

particular, we set )(),1(,)1,( nAnAApA p   and )1()1,1( 1 AAAA  , which are well 

known classes of analytic functions inU . 

 

We consider the following new generalized multiplier transformation. 
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Definition 1.1[17]. Let ),()( npAzf  .The new generalized multiplier transformation 


 ,,pI  on ),( npA is defined by the following infinite series: 

(1.1)  ,)(,,
j

j
npj

p
p za

p
kzzfI 



















 


 

where np,  N ,  ,0,0   a real number such that 0  p . 

 

It follows from (1.1) that  

 

)()(0,, zfzfI p 
 and pzzfzfI p /)()( '

,0, 
 , 

(1.2)  ))'(()()()( ,,,,
1
,, zfIzzfIzfIp ppp








    . 

 

We note that for }0{0  NNm (n = 1 in some cases) 

 

 )()( ,,,1 zfIzfI mm
  (See [16]). 

 pzfIzfI m
p

m
p   ),()()(1,, (See [1], [13] and [14]). 

 0,),(),()(,,   plzflIzfI m
p

m
pplp (See [6]). 

 )()(,0, zfDzfI m
p

m
p  (See [4], [9] and [11]). 

 )()( ,,1, zfNzfI m
p

m
p   , where )(, zfN m

p  is a new operator defined by  

j
j

m

npj

pm
p za

p
kzzfN 



















 1

1
)(, , ).0),,((  npAf  

Remark 1.2.  i) )()( zfI mp   was considered in [1], [13] and [14] for 0 and 

)(),( zflI mp 
 
was defined in [6] for 0,0  l , ii) plzflIzflI m

p
m
p  ),(),1()()( , 

iii) )()()()0,( zfDzfI m
p

m
p   , ,0 was mentioned in Aouf et.al. [3], iv) 

,0),(1 mD was introduced by Al-Oboudi [2], v) )()()1(1 zfDzfD mm  was defined by 

Salagean [12] and was considered for m  0 in [5] , vi) ,0),()(1  zfI m was 

investigated in [7] and [8] and vii) )()1(1 zfI m was due to Uralegaddi and  Somanatha [18]. 
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  The main object of this paper is to present some interesting properties of analytic 

functions defined by using the new generalized multiplier transformations )(,, zfI p


  

associated with the class ).,( npA  

 

In order to prove our main results, we will make use of the following lemma. 

 

Lemma 1.3 [10]. Let  be a set in the complex plane C. Suppose that the function 

CUC  2: satisfies the condition );,( 12 zyix   for all zU  and for all real  

x 2 and y1  such that  

(1.3)         y1   -
2

1
n (1 + x 2

2 ). 

If )(zp  = 1 + c n z n + … is analytic in U  and for zU , ));('),(( zzzpzp  , then 

0))(Re( zp  in U . 

 

2. MAIN RESULTS 

 

Theorem 2.1.  Let   be a complex number satisfying 0)Re(   and .1 Let 

,, Nnp   ,0,0,0   a real number such that ,0  p )(),( zgzf  

),( npA and  

(2.1)  .),Re(0,
)(

)(
Re

1
,,

,, Uz
zgI
zgI

p

p 












  



  

Then  

  ,,
)(2

)(2

)(

)(
Re

,,

,, Uz
np
np

zgI
zfI

p

p 




































  

whenever 

(2.2)  .,
)(

)(

)(

)(

)(

)(
)1(Re

1

,,

,,

1
,,

1
,,

,,

,, Uz
zgI
zfI

zgI
zfI

zgI
zfI

p

p

p

p

p

p 
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Proof. Let ))(2/())(2(  npnp  and define the function 

)(zp by 

(2.3)  






















  









)(

)(
)1()(

,,

,,1

zgI
zfI

zp
p

p . 

Then, clearly, ...1)( 1
1  


n
n

n
n zczczp  and is analytic in U . We set 

)(

)(
)(

1
,,

,,

zgI
zgI

zu
p

p
 




 and observe from (2.1) that .,))(Re( Uzzu   Making use of the 

identity (1.2), we find from (2.3) that  

 

(2.4)  

)](
)(

)(
)()[1(

)(

)(

)(

)(

)(

)(
)1( '

1

,,

,,

1
,,

1
,,

,,

,, zzp
p
zuzp
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zfI

zgI
zfI

zgI
zfI

p

p

p

p

p

p
















































































 

If we define );,( zyx by  

(2.5)  ,
)(

)(
)1();,( 










 y
p
zuxzyx


  

then, we obtain from (2.2) and (2.4) that 

  { 1:));('),(( zzzzpzp }  {  )Re(: wCw }. 

Now for all Uz and for all real 2x and 1y  constrained by the inequality (1.3), we find 

from (2.5) that  

  ))(Re(
)(

)1()};,(Re{ 1
12 zu

p
yzyix







  

            .
)(2

)1( 


 



p

n
 

Hence .);,( 12 zyix Thus by Lemma 1.1, 0))(Re( zp and hence 








 
























)(

)(
Re

,,

,,

zgI
zfI

p

p  in U .This proves our theorem. 
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 If we set 
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p

p , 

then for  ,0,0,0  a real number such that ,0  p 0 and 0 , 

Theorem 2.1 reduces to  

(2.6)  Uzzv  ,0))(Re(  implies
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 Let  . Then (2.6) is equivalent to  
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In the following theorem we shall extend the above result, the proof of which is 

similar to that of Theorem 2.1. 

 

Theorem 2.2. Let ,, Nnp   ,0,0,0  a real number such that ,0  p  

)(),( zgzf ),( npA and 10,
)(

)(
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1
,,

,, 
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then 
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   .,
)(

)(
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,, Uz
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zfI

p
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Remark 2.3. For 1 , and ,, plppl   Theorem 2.1 and Theorem 2.2 agree 

with Theorem 2.1 and Theorem 2.2, respectively, of the author [15](considered for 0l ). 

 

In a manner similar to Theorem 2.1, we can easily prove the following theorems. 

 

Theorem 2.4. Let ,, Nnp   ,0,0  a real number such that ,0  p  

1,0   and ),()( npAzf  . Then for   a complex number with 0)Re(  , we have 
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)Re()(2

)Re()(2)(
Re ,, Uz
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Theorem 2.5.  Let ,, Nnp   ,0,0  a real number such that ,0  p   0 , 

  a complex number with 0)Re(   and 
)Re()(2

)Re(



np

n


 1  .If 

),()( npAzf  satisfies the condition 
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)Re()(2

)Re(



np

n


 and 
)]Re()(2[2

)Re(



np

n


 in Theorem 2.4 

yields the following: 

 

Corollary 2.6. Let ,, Nnp   ,0,0   a real number such that ,0  p   

0 ,  a complex number with 0)Re(  and )(zf  ).,( npA Then  
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Remark 2.7. For ,, plppl   Theorem 2.4, Theorem 2.5 and Corollary 2.6 

agree with Theorem 2.4, Theorem 2.5 and Corollary 2.6, respectively, of the author [15] 

(considered for 0l ).  



766                                      SOME PROPERTIES OF ANALYTIC FUNCTIONS 

 766

                               REFERENCES 

 

[1] R. Aghalary, R. M. Ali , S. B. Joshi and V. Ravichandran, Inequalities for functions defined by certain 

linear operator, Int. j. Math. Sci. , 4 , no.2 (2005), 267 - 274. 

[2] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. 

Sci., 27(2004), 1429 - 1436. 

[3] M. K. Aouf, R. M. El-Ashwah and S. M. El-Deeb, Some inequalities for certain p-valent functions 

involving extended multiplier transformations, Proc. Pak. Acad. Sci.,46(4)(2009),217 - 221. 

[4] M. K. Aouf and A. O. Mostafa, On a subclasses of n-p-valent prestarlike functions, Comput. Math. 

Appl. , 55(2008), 851 - 861. 

[5] S. S. Bhoosnurmath and S. R. Swamy, On certain classes of analytic functions, Soochow J. Math., 

20(1994), no.1, 1 - 9. 

[6] A. Catas, On certain class of p-valent functions defined by new multiplier transformations, Proceedings 

of the international symposium on geometric function theory and applications, August, 20-24, 2007,TC 

Isambul Kultur Univ., Turkey,241-250. 

[7] N. E. Cho and H. M. Srivastava , Argument estimates of certain analytic functions defined by a class of 

multiplier transformations, Math. Comput. Modeling, 37(1-2) (2003), 39 - 49. 

[8] N. E. Cho and T. H. Kim, Multiplier transformations and strongly Close-to-Convex functions, Bull. 

Korean Math. Soc., 40(3) (2003), 399 - 410. 

[9] M. Kamali and H. Orhan, On a subclass of certain starlike functions with negative coefficients, Bull. 

Korean Math. Soc., 41(2004), 53 - 71. 

[10] S. S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Series on 

Monographs and Text Books in Pure and Applied Mathematics (N.225), Marcel Dekker, New York and 

Besel , 2000. 

[11] H. Orhan and H. Kiziltunc, A generalization on subfamily of p-valent functions with negative 

coefficients, Appl. Math. Comput. 155(2004), 521 - 530. 

[12] G. St. Salagean, Subclasses of univalent functions, Proc. Fifth Rou. Fin. Semin. Buch. Complex Anal., 

Lect. notes in Math., Springer Verlag, Berlin , 1013(1983), 362 -372. 

[13] S. Shivaprasad Kumar, H. C. Taneja and V. Ravichandran, Classes of Multivalent functions defined by 

Dziok-Srivastava linear operator and multiplier transformation, Kyungpook Math. J. , 46(2006), no.1, 97 - 

109. 

[14] H. M. Srivastava, K. B. Suchitra, A. Stephen and S. Sivasubramanian, Inclusion and neighborhood 

properties of certain subclasses of multivalent functions of complex order, JIPAM, 7,Issue 2 (2006), article 

7,1 - 8. 

[15] S. R. Swamy, Differential subordinations associated with multiplier transformations, Inter. Math. 

Forum, 7, no.15 (2012), 719 - 725. 



S R SWAMY*                                                                                                   767 

 767

[16] S. R. Swamy, Inclusion properties of certain subclasses of analytic functions, to appear in Inter. Math. 

Forum, 7 , (2012). 

[17] S. R. Swamy, Inclusion properties for certain subclasses of analytic functions defined by a generalized 

multiplier transformation, to appear in Inter. J. Math. Anal. , 6 ,   (2012). 

[18] B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, Current topics in analytic  

function theory, World Sci. Publishing, River Edge, N. Y., (1992),371 - 375. 

 


