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Abstract. In this paper, we study an existence theorem of solutions for generalized quasi-variational-

like inclusions involving (A, η) and relaxed cocoercive mappings. We have shown that the approximate

solutions obtained by proposed algorithm converge to the exact solutions of generalized quasi-variational-

like inclusions. As an application, we have shown that generalized quasi-variational-like inclusions include

optimization problems and also an equivalence with A-resolvent equations is given.
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1. Introduction

In 1979, Robinson [16] studied variational inclusion problem, that is for each x ∈ Rn,

find y ∈ Rm such that 0 ∈ g(x, y) + Q(x, y), where g : Rn × Rm → Rp is a single-valued

mapping and Q : Rn × Rm ( Rp is a multi-valued mapping. In the last decade, various
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classes of variational (-like) and quasi-variational (-like) inclusions have been extensively

studied and generalized in different directions as they have potential and significant ap-

plications in optimization theory, structural analysis and economics etc. (see for example

[1, 2, 5, 7]. Recently Lin [14] studied generalized quasi-variational inclusion problems and

applied them to solve simultaneous equilibrium problems and optimization problems.

Huang and Fang [11] introduced generalizedm-accretive mappings and defined resolvent

operator for generalized m-accretive mappings. Lan et al. [12] introduced a new concept

of (A, η)-accretive mappings and their resolvent operator.

Inspired and motivated by recent research going on in this fascinating and interesting

field, in this paper, we study generalized quasi-variational-like inclusions involving (A, η)

and relaxed cocoercive mappings. An iterative algorithm is suggested for finding the ap-

proximate solutions of generalized quasi-variational-like inclusions. Convergence analysis

is also discussed. Some applications are given.

2. Preliminaries

Throughout the paper, unless otherwise specified,we assume that E is a real Banach

space with its norm ‖.‖, E∗ is the topological dual of E, 〈·, ·〉 is the pairing between E

and E∗, d is the metric induced by the norm ‖.‖, 2E (respectively CB(E) ) is the family

of nonempty (respectively, nonempty closed and bounded) subsets of E and H(·, ·) is the

Hausdorff metric on CB(E) defined by

H(P,Q) = max{ sup
x∈P

d(x,Q), sup
y∈Q

d(P, y)},

where d(x,Q) = infy∈Q d(x, y) and d(P, y) = infy∈P d(x, y).

The generalized duality mapping Jq : E → 2E
∗

is defined by

Jq(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖q, ‖f‖ = ‖x‖q−1}, for all x ∈ E,

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping. It

is known that, in general, Jq(x) = ‖x‖q−2J2(x) for all x 6= 0, and Jq is single-valued if E∗
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is strictly convex. If E = X is a Hilbert space, then J2 becomes the identity mapping on

X. In what follows we shall denote the single-valued generalized duality mapping by jq.

The modulus of smoothness of E is the function ρE : [0,∞)→ [0,∞) defined by

ρE(t) = sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

A Banach space E is called uniformly smooth if limt→0
ρE(t)
t

= 0. E is called q-uniformly

smooth if there exists a constant C > 0 such that ρE(t) ≤ Ctq, q > 1.

Lemma 2.1.[17]. Let E be a real uniformly smooth Banach space. Then E is called

q-uniformly smooth if and only if there exists a constant Cq > 0 such that for all x, y ∈ E

‖x+ y‖q ≤ ‖x‖q + q〈y, jq(x)〉+ Cq‖y‖q.

Definition 2.1. Let E be a q-uniformly smooth Banach space and η : E × E → E be a

single-valued mapping. Then

(i) the single-valued mapping A : E → E is said to be r-strongly η-accretive, if there

exists a constant r > 0 such that

〈A(x)− A(y), jq(η(x, y))〉 ≥ r‖x− y‖q, for all x, y ∈ E;

(ii) the set-valued mapping M : E → 2E is said to be m-relaxed η-accretive, if there

exists a constant m > 0 such that

〈u− v, jq(η(x, y))〉 ≥ −m‖x− y‖q, for all x, y ∈ E, u ∈M(x), v ∈M(y).

Remark 2.1.

(i) If r = 0 and equality holds if and only if x = y, then (i) of Definition 2.1 reduces

to the definition of strictly η-accretive mappings.

(ii) If η(x, y) = x− y, then (i) of Definition 2.1 reduces to the Definition of r-strongly

accretive mappings.

Example 2.1. Let E = (−∞,∞), M(x) =
√
x, η(x, y) = (−2

√
x) − (−2

√
y), for all

x, y ≥ 0 ∈ E. Then M is 2-relaxed η-accretive.
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Definition 2.2. Let A : E → E, η : E × E → E be the single-valued mappings. Then a

multi-valued mapping M : E → 2E is called (A, η)-accretive if M is m-relaxed η-accretive

and (A+ ρM)(E) = E, for every ρ > 0.

Example 2.2. Let E = (−∞,∞), A(x) = x5, M(x) = x4, η(x, y) = (−2x4) − (−2y4),

for all x, y ∈ E. Then M is (A, η)-accretive.

Remark 2.2.

(i) If m = 0, then Definition 2.2 reduces to the definition of (H, η)-accretive operators

[8] which includes generalized m-accretive operators [11], H-accretive operators [6]

and classical m-accretive operators.

(ii) When m = 0 and E = X (Hilbert space), then Definition 2.2 reduces to the

Definition of (H, η)-monotone operators [9, 10], which includes classical maximal

monotone operators [18].

Definition 2.3. A mapping g : E → E is said to be (b, ξ)-relaxed cocoercive, if there

exist constants b, ξ > 0 such that

〈g(x)− g(y), jq(x− y)〉 ≥ −b‖g(x)− g(y)‖q + ξ‖x− y‖q, for all x, y ∈ E.

Definition 2.4. Let A : E → E be a strictly η-accretive mapping and M : E → 2E be

an (A, η)-accretive mapping. Then the resolvent operator Jρ,Aη,M : E → E is defined by

Jρ,Aη,M(u) = (A+ ρM)−1(u), for all u ∈ E.

Proposition 2.1[12]. Let E be a q-uniformly smooth Banach space and η : E ×E → E

be τ -Lipschitz continuous, A : E → E be an r-strongly η-accretive mapping and

M : E → 2E be an (A, η)-accretive mapping. Then the resolvent operator Jρ,Aη,M : E → E

is τq−1

r−ρm -Lipschitz continuous, i.e.,

‖Jρ,Aη,M(u)− Jρ,Aη,M(v)‖ ≤ τ q−1

r − ρm
‖u− v‖, for all u, v ∈ E,

where ρ ∈ (0, r
m

) is a constant.

3. Main results
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LetN,W, η : E×E → E, g,m,A : E → E be the single-valued mappings, B,C,D, F,G :

E → 2E be the multi-valued mappings. Let M : E×E → 2E be an (A, η)-accretive map-

ping in the first argument such that g(u)−m(w) ∈ dom(M(·, u)),

∀ u,w ∈ E. We consider the following generalized quasi-variational-like inclusion problem:

Find u ∈ E, x ∈ B(u), y ∈ C(u), z ∈ D(u), v ∈ F (u) and w ∈ G(u) such that

0 ∈ N(x, y)−W (z, v) +m(w) +M(g(u)−m(w), u). (3.1)

Below are some special cases of problem (3.1).

(1) If m = 0,M(g(u) − m(w), u) = M(g(u)) and W,D,F = 0, then problem (3.1)

reduces to the problem of finding u ∈ E, x ∈ B(u), y ∈ C(u) such that

0 ∈ N(x, y) +M(g(u)). (3.2)

Problem (3.2) is considered by Peng [15].

(2) If B and C are single-valued mappings, then problem (3.2) can be replaced by

finding u ∈ E such that

0 ∈ N(B(u), C(u)) +M(g(u)). (3.3)

Similar problem to (3.3) is considered by Lan [13].

(3) If C = 0 and B, g = I, the identity mapping, then (3.3) reduces to the problem of

finding u ∈ E such that

0 ∈ N(u) +M(u), (3.4)

which is considered by Bi et al. [4].

Lemma 3.1. u ∈ E, x ∈ B(u), y ∈ C(u), z ∈ D(u), v ∈ F (u) and w ∈ G(u) is the

solution of problem (3.1) if and only if (u, x, y, z, v, w) satisfies the relation:

g(u) = m(w) + Jρ,Aη,M(·,u)
[
A(g(u)−m(w))− ρ(N(x, y)−W (z, v) +m(w))

]
, (3.5)

where Jρ,Aη,M(·,u) = (A+ ρM(·, u))−1 and ρ ∈ (0, r
m

) is a constant.

Proof. The proof follows directly from the Definition 2.4.
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Algorithm 3.1. For any given uo ∈ E, we choose xo ∈ B(uo), yo ∈ C(uo), zo ∈ D(uo),

vo ∈ F (uo), w0 ∈ G(u0) and compute {un}, {xn}, {yn}, {zn}, {vn} and {wn} by the

following iterative schemes:

g(un+1) = m(wn)+Jρ,Aη,M(·,un)
[
A(g(un)−m(wn))−ρ(N(xn, yn)−W (zn, vn)+m(wn))

]
, (3.6)

xn+1 ∈ B(un+1), ‖xn+1 − xn‖ ≤ H(B(un+1), B(un)), (3.7)

yn+1 ∈ C(un+1), ‖yn+1 − yn‖ ≤ H(C(un+1), C(un)), (3.8)

zn+1 ∈ D(un+1), ‖zn+1 − zn‖ ≤ H(D(un+1), D(un)), (3.9)

vn+1 ∈ F (un+1), ‖vn+1 − vn‖ ≤ H(F (un+1), F (un)), (3.10)

wn+1 ∈ G(un+1), ‖wn+1 − wn‖ ≤ H(G(un+1), G(un)), (3.11)

n = 0, 1, 2, 3......, ρ ∈ (0, r
m

) is a constant.

Theorem 3.1. Let E be a q-uniformly smooth Banach space and η : E × E → E

be Lipschitz continuous mapping with constant τ . Let A : E → E be r-strongly η-

accretive and Lipschitz continuous mapping with constant λA,m : E → E be Lipschitz

continuous mapping with constants λm and M : E×E → 2E be (A, η)-accretive mapping

in the first argument such that g(u) − m(w) ∈ dom(M(·, u)), ∀ u,w ∈ E. Suppose

N,W : E × E → E be Lipschitz continuous mappings in both arguments with constants

λN1 , λN2 , λW1 and λW1 , respectively and B,C,D, F and G : E → CB(E) be H-Lipschitz

continuous mappings with constants α, β, γ, µ and δ, respectively. Let g : E → E be

(b, ξ)-relaxed cocoercive, Lipschitz continuous mapping with constant λg and strongly

accretive with constant l.

Suppose that there exist ρ ∈ (0, r
m

) and t > 0 such that the following conditions hold:

‖Jρ,Aη,M(·,un)(x)− Jρ,Aη,M(·,un−1)
(x)‖ ≤ t‖un − un−1‖, for all un, un−1 ∈ E, (3.12)

and

0 < λmδ(ρ+λA)+λA
q

√
(1− qξ + (qb+ Cq)λg

q+ρ q

√
(λN1α + λN2β)q − (q − Cq)(λW1γ + λW2µ)q

+λA <
[l − (λmδ + t)](r − ρm)

τ q−1
, l > (λmδ + t),

r

ρ
> m, (3.13)
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where Cq is the constant as in Lemma 2.1, then the iterative sequences {un}, {xn}, {yn},

{zn},{vn} and {wn} generated by Algorithm 3.1 converge strongly to u, x, y, z, v and w,

respectively and (u, x, y, z, v, w) is a solution of problem (3.1).

Proof. From Algorithm 3.1, Proposition 2.1 and (3.12),we have

‖g(un+1)− g(un)‖ = ‖m(wn) + Jρ,Aη,M(·,un)
[
A(g(un)−m(wn))− ρ(N(xn, yn)

−W (zn, vn) +m(wn))
]
−
{
m(wn−1) + Jρ,Aη,M(·,un−1)

[
A(g(un−1)−m(wn−1))

− ρ(N(xn−1, yn−1)−W (zn−1, vn−1) +m(wn−1))
]}
‖

≤ ‖m(wn)−m(wn−1)‖+ ‖Jρ,Aη,M(·,un)
[
A(g(un)−m(wn))− ρ(N(xn, yn)

−W (zn, vn) +m(wn))
]
− Jρ,Aη,M(·,un)

[
A(g(un−1)−m(wn−1))

− ρ(N(xn−1, yn−1)−W (zn−1, vn−1) +m(wn−1))
]
‖

+ ‖Jρ,Aη,M(·,un)
[
A(g(un−1)−m(wn−1))− ρ(N(xn−1, yn−1)−W (zn−1, vn−1)

+m(wn−1))
]
− Jρ,Aη,M(·,un−1)

[
A(g(un−1)−m(wn−1))− ρ(N(xn−1, yn−1)

−W (zn−1, vn−1) +m(wn−1))
]
‖

≤ ‖m(wn)−m(wn−1)‖+
τ q−1

r − ρm
[
‖A(g(un)−m(wn))− A(g(un−1)

−m(wn−1))− ρ
{

(N(xn, yn)−W (zn, vn) +m(wn)− (N(xn−1, yn−1)

−W (zn−1, vn−1)−m(wn−1))
}
‖
]

+ t‖un − un−1‖

≤ (1 +
ρτ q−1

r − ρm
)‖m(wn)−m(wn−1)‖+

τ q−1

r − ρm
‖A(g(un)−m(wn))

− A(g(un−1) +m(wn−1))‖+
τ q−1

r − ρm
ρ‖N(xn, yn)

−N(xn−1, yn−1)− (W (zn, vn))−W (zn−1, vn−1))‖+ t‖un − un−1‖. (3.14)

Since A is λA-Lipschitz continuous, we have

‖g(un+1)− g(un)‖ ≤
[
1 +

τ q−1

r − ρm
(ρ+ λA)

]
‖m(wn)−m(mn−1)‖

+
τ q−1

r − ρm
λA‖un − un−1 − (g(un)− g(un−1))‖

+
τ q−1

r − ρm
ρ‖N(xn, yn)−N(xn−1, yn−1)
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− (W (zn, vn)−W (zn−1, vn−1))‖

+
( τ q−1

r − ρm
λA + t

)
‖un − un−1‖. (3.15)

Since m is Lipschitz continuous with constant λm and G is H-Lipschitz continuous with

constant δ, we have

‖m(wn)−m(wn−1)‖ ≤ λm‖wn − wn−1‖ ≤ λmH(G(un), G(un−1))

≤ λmδ‖un − un−1‖. (3.16)

Since g is (b, ξ)-relaxed cocoercive and λg-Lipschitz continuous, we have

‖un − un−1 − (g(un)− g(un−1))‖q

≤ ‖un − un−1‖q − q〈g(un)− g(un−1), jq(un − un−1)〉+ Cq‖g(un)− g(un−1)‖q

≤ ‖un − un−1‖q + qb‖g(un)− g(un−1)‖q − qξ‖un − un−1‖q + Cqλ
q
g‖un − un−1‖q

≤ ‖un − un−1‖q + qbλqg‖un − un−1‖q − qξ‖un − un−1‖q + Cqλ
q
g‖un − un−1‖q

= (1− qξ + (qb+ Cq)λ
q
g)‖un − un−1‖q.

Thus, we have

‖un − un−1 − (g(un)− g(un−1))‖ ≤ q

√
1− qξ + (qb+ Cq)λ

q
g‖un − un−1‖. (3.17)

Also

‖N(xn, yn)−N(xn−1, yn−1)− (W (zn, vn)−W (zn−1, vn−1))‖q

≤ ‖N(xn, yn)−N(xn−1, yn−1)‖q − (q − Cq)‖W (zn, vn)−W (zn−1, vn−1)‖q. (3.18)

By using Lipschitz continuity of N with constant λN1 for the first argument and λN2 for

the second argument and H-Lipschitz continuity of B and C with constant α and β,

respectively, we have
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‖N(xn, yn)−N(xn−1, yn−1)‖ = ‖N(xn, yn)−N(xn, yn−1) +N(xn, yn−1)

−N(xn−1, yn−1)‖

≤ ‖N(xn, yn)−N(xn, yn−1)‖+ ‖N(xn, yn−1)

−N(xn−1, yn−1)‖

≤ λN2‖yn − yn−1‖+ λN1‖xn − xn−1‖

≤ λN2β‖un − un−1‖+ λN1α‖un − un−1‖

= (λN1α + λN2β)‖un − un−1‖. (3.19)

Thus

‖N(xn, yn)−N(xn−1, yn−1)‖q ≤ (λN1α + λN2β)q‖un − un−1‖q. (3.20)

Using the similar arguments as for (3.19), we have

‖W (zn, vn)−W (zn−1, vn−1)‖q ≤ (λW1γ + λW2µ)q‖un − un−1‖q. (3.21)

Using (3.19) and (3.20), (3.17) becomes

‖N(xn, yn)−N(xn−1, yn−1)− [W (zn, vn)−W (zn−1, vn−1)]‖q

=
[
(λN1α + λN2β)q − (q − Cq)(λW1γ + λW2µ)q

]
‖un − un−1‖q. (3.22)

It follows that

‖N(xn, yn)−N(xn−1, yn−1)− (W (zn, vn)−W (zn−1, vn−1))‖

≤ q

√
(λN1α + λN2β)q − (q − Cq)(λW1γ + λW2µ)q‖un − un−1‖q. (3.23)

Combining (3.16),(3.17),(3.23) with (3.15), we obtain

‖g(un+1)− g(un)‖ ≤ (λmδ +
τ q−1λmδ

r − ρm
(ρ+ λA))‖un − un−1‖

+
τ q−1ρ

r − ρm
λA

q

√
(1− qξ + (qb+ Cq)λg

q‖un − un−1‖

+
τ q−1ρ

r − ρm
q

√
(λN1α + λN2β)q − (q − Cq)(λW1γ + λW2µ)q‖un − un−1‖

+ (
τ q−1λA
r − ρm

+ t)‖un − un−1‖



510 RAIS AHMAD1,∗, MOHAMMAD DILSHAD2 AND ZUBAIR KHAN3

=

[
λmδ +

τ q−1λmδ

r − ρm
(ρ+ λA) +

τ q−1ρ

r − ρm
λA

q

√
(1− qξ + (qb+ Cq)λg

q

+
τ q−1

r − ρm
ρ q

√
(λN1α + λN2β)q − (q − Cq)(λW1γ + λW2µ)q

+
τ q−1

r − ρm
λA + t

]
‖un − un−1‖. (3.24)

By the strong accretivity of g with constant l, we have

‖g(un+1)− g(un)‖.‖un+1 − un‖q−1 ≥ 〈g(un+1)− g(un), jq(un+1 − un)〉 ≥ l‖un+1 − un‖q,

which implies that

‖un+1 − un‖ ≤
1

l
‖g(un+1)− g(un)‖. (3.25)

Combining (3.24) and (3.25), we have

‖un+1 − un‖ ≤ θ‖un − un−1‖, (3.26)

where θ =
[
λmδ+

τ q−1λmδ

r − ρm
(ρ+λA)+

τ q−1ρ

r − ρm
λA

q

√
(1− qξ + (qb+ Cq)λg

q

+
τ q−1

r − ρm
ρ q

√
(λN1α + λN2β)q − (q − Cq)(λW1γ + λW2µ)q +

τ q−1

r − ρm
λA + t

]/
l.

By (3.13), we know that θ < 1 and so (3.26) implies that {un} is a Cauchy sequence.

Thus, there exists u ∈ E such that un → u as n → ∞. The Lipschitz continuity of

multi-valued mappings B,C,D, F and G implies that xn → x, yn → y, zn → z, vn → v

and wn → w.

As A, η,M,N,W,B,C,D, F,G,m, g and Jρ,Aη,M are all continuous and by Algorithm

3.1, it follows that u, x, y, z, v, w satisfy the following relation:

g(u) = m(w) + Jρ,Aη,M(·,u)
[
A(g(u)−m(w))− ρ(N(x, y)−W (z, v) +m(w))

]
.

It follow that (u, x, y, z, v, w) is a solution of generalized quasi-variational-like inclusion

problem (3.1). This completes the proof.

4. Applications
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(1) We show that generalized quasi- variational-like inclusion problem (3.1) includes op-

timization problem.

If E = X, a Hilbert space ; B,C,D, F,G,W,m = 0; g = I, identity mapping; N :

X → 2X is a multi-valued mapping and M(u, u) = M(u) = ∂ϕ(.), where ϕ : X →

R ∪ {+∞} is a proper function and ∂ϕ denotes the η-subdifferential of ϕ. If in addition

∂ϕ = δk, the indicator function on a nonempty closed convex set K ⊂ X, then generalized

quasi- variational-like inclusion problem (3.1) reduces to the problem finding u ∈ K, ξ ∈

N(u) such that

〈ξ, η(a, u)〉 ≥ 0, for all a ∈ K. (4.1)

Let ψ : K → R be a given function, then the optimization problem is to find u ∈ K such

that

ψ(a)− ψ(u) ≥ 0, for all a ∈ K. (4.2)

By using the definition of Clarke generalized subdifferential of ψ and invexity, the equiv-

alence of (4.1) and (4.2) can be shown easily. See for example, Ansari and Yao [3] and

references therein.

(2) The resolvent operator technique is very important from the point of view that it is

used to established an equivalence between variational inequalities and resolvent equa-

tions. The resolvent equations are used to develop powerful and numerical techniques for

solving variational inequalities and related optimization problems. Due to this fact, here

we show that generalized quasi-variational-like inclusion problem (3.1) is equivalent to an

A-resolvent equation. We consider the following problem.

Find s, u ∈ E, x ∈ B(u), y ∈ C(u), z ∈ D(u), v ∈ F (u) and w ∈ G(u) such that

N(x, y)−W (z, u) +m(w) + ρ−1Rρ,A
η,M(.,u)(s) = 0, (4.3)

where Rρ,A
η,M(.,u) = I − A(Jρ,Aη,M(.,u)), A

[
Jρ,Aη,M(.,u)(s)

]
=
[
A(Jρ,Aη,M(.,u))

]
(s) and I is the identity

operator, Jρ,Aη,M(.,u) is the resolvent operator and ρ ∈ (0, r
m

) is a constant. We call (4.3) as

A-resolvent equation, which is new and different from those resolvent equations given in

the literature.
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Proposition 4.1. The generalized quasi-variational-like inclusion problem (3.1) has a

solution (u, x, y, z, v, w) with u ∈ E, x ∈ B(u), y ∈ C(u), z ∈ D(u), v ∈ F (u) and w ∈

G(u) if and only if A-resolvent equation problem (4.3) has a solution (s, u, x, y, z, v, w)

with s, u ∈ E, x ∈ B(u), y ∈ C(u), z ∈ D(u), v ∈ F (u) and w ∈ G(u) where

g(u) = m(w) + Jρ,Aη,M(.,u)(s) (4.4)

and

s = A(g(u)−m(w))− ρ{N(x, y)−W (z, v) +m(w)}, (4.5)

where ρ ∈ (0, r
m

) is a constant.

Proof. Let u, x, y, z, v and w is a solution of problem (3.1). Then by Lemma 3.1, it is

the solution of following equation

g(u) = m(w) + Jρ,Aη,M(.,u)

[
A(g(u)−m(w))− ρ{N(x, y)−W (z, v) +m(w)}

]
. (4.6)

Let s = A(g(u) − m(w)) − ρ{N(x, y) − W (z, v) + m(w)}, then above equation (4.6),

becomes

g(u) = m(w) + Jρ,Aη,M(.,u)(s),

using the fact that Rρ,A
η,M(.,u) = I − A(Jρ,Aη,M(.,u)), where A

[
Jρ,Aη,M(.,u)(s)

]
=
[
A(Jρ,Aη,M(.,u))

]
(s),

we obtain

s = A(m(w) + Jρ,Aη,M(.,u)(s)−m(w))− ρ{N(x, y)−W (z, v) +m(w)}

⇔ s− A(Jρ,Aη,M(.,u)(s)) = −ρ{N(x, y)−W (z, v) +m(w)}

⇔
[
I − A(Jρ,Aη,M(.,u))

]
(s) = −ρ{N(x, y)−W (z, v) +m(w)}

⇔ Rρ,A
η,M(.,u)(s) = −ρ{N(x, y)−W (z, v) +m(w)}.

Hence N(x, y)−W (z, v) +m(w) + ρ−1Rρ,A
η,M(.,u)(s) = 0.

Concluding Remark:

In this paper, we have introduced generalized quasi- variational-like inclusion problem

which contains many variational (-like), quasi variational (-like) inequalities as special

cases. Based on Lemma 3.1, we develop a general frame work for an iterative algorithm
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approximating solution of problem (3.1) while discussing the convergence analysis for the

iterative procedure.

In section 4, we have shown that problem (3.1) includes classical optimization prob-

lem. The equivalence of (3.1) and (4.1) is available vastly in literature. Further we have

shown that the problem (3.1) is equivalent to an A-resolvent equation, which is useful to

solve variational inequality problems and related optimization problems. Our results are

new and different from those given in the literature and have less assumptions but in new

general setting.
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