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Abstract: In this paper, we prove some quadrupled best proximity point theorems in partially ordered metric space
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results obtained.
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1. INTRODUCTION

In a metric space (X,d) a self mapping T on X is said to posses fixed point if the equation
Tx = x has at least one solution. In this case x is said to be the fixed point of T. The existence
of fixed point of a mapping may or may not be unique. The study of the existence of fixed point
of mapping has been an area of extensive research for the past many years and Banach
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contraction principle has the most important tool in order to obtain fixed point of a mapping.
Now, the question arises if the equation Tx =x has no solution. In order to investigate
further the study of best proximity started.

Let A and B be non-empty closed subsets of a metric space (X,d) and T:A — B be a
non-self mapping. A point x in A for which d(x,Tx) = d(A,B) is called a best proximity
point of T. It can be noted that the best proximity point becomes a fixed point if the underlying
mapping is assumed to be self mapping.

The best approximation theorem given by Ky Fan [1] stated as follows:

If K is a non-empty compact convex subset of a Hausdroff locally convex topological
vector space E with a continuous seminorm p and T:K — E is a single valued continuous
function, then there exists an element x € K such that

p(x —Tx) = d,(Tx,K) = inf{p(Tx — y):y € K}

The result of Ky Fan was generalised by a large number of authors in various direction (see
[2-19] and references there in).

The concept of coupled fixed point was introduced by Guo and Lakshmikantham [20] in the
year 1987. Further, Bhaskar and Lakshmikantham [21] introduced the concept of mixed
monotone mapping and established some coupled fixed point theorems for mapping satisfying
mixed monotone property.

The concept of coupled fixed point was further extended to triple fixed point by Berinde and
Borcut [22] and quadrupled fixed point by Karapinar and Luong [23]. These concepts of Tripled
and quadrupled fixed points were presented in a more generalised form by Wu and Liu [24].
For more results on coupled, tripled, quadrupled fixed point, one can see the research articles
([25-50] and references there in).

In this note we prove some quadrupled best proximity point theorems in partially ordered
metric space by using proximally quadrupled weak (i, ¢) contraction on the line of proximally
coupled weak (¥, ¢) contractions introduced by Kumam et.al. [34]

Following definition was given in Karapinar and Luong [23].
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DEFINITION 1. [23] Let X be a non empty set and F:X* — X be a given mapping. An
element (x,y,z,w) € X* is called a quadrupled fixed point of the mapping F if
x=Fxy,zw), y=Fzwx), z=F(z,w,x,y)andw = F(w, x,y, ).
The authors mentioned above also introduced the notion of mixed monotone mapping. If (X,<)
is a partially ordered set, the mapping F is said to have the mixed monotone property, if
X1 X €X,x1 XX, = F(x,¥,2,Ww) X F(x3,¥,2,Ww),y,z,w €X,
V1. Y2 €EX,¥1 2y, = F(x,y1,2,w) = F(x,y2,2,w),x,z,w € X,
Zy,Zy €X,2y 2z, = F(x,y,z;,w) X F(x,y,z,,w),x,y,w € X,
wiw, EX,wy S w, = F(w,y,z,wy) = F(x,y,2,W,),x,Y,2,€ X,
Let A and B be non empty subsets of a metric space(X, d). We use the following notions in the
sequel:
dist(A,B) = inf{d(x,y):x €
Aandy € B},
Ay ={x € A:d(x,y) = dist(A, B), for some y € B}
B, = {y € B:d(x,y) = dist(4, B), for some x € A}

Now we give the following definition.

DEFINITION 2. Let (X,d,=<) be a partially ordered metric space and A, B are nonempty
subsets of X. A mapping F:AXAXAXA— B is said to have proximal mixed monotone
property if F(x,y,z,w) is proximally non decreasing in x and z, and is proximally non
increasing iny and w, that is for all x,y,z,w € A4,

x15x25x35x4

d uLF(xLy, Z, W)) = dist(A,B)

(
d( dist(A, B)
(
(

uz,F(xz,y, Z, W)) =
d u3,F(x3,y, Z, W)) = dist(A,B)

d u4,F(x4,y, z, W) dist(A,B)
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S U U R U3 XUy

d u7F(xy3 z, W)

y

(s F (22, 2w))
d (u6 F(xyz z, w)) = dist(A, B)

( )
d( F(xy4 Z, W)) dist(A,B)

Us = Ug = Uy = Ug

Ug = Ugg = Upp = Upp

and
wy S wy; S wz S wy,
d(u13F(xy Z, Wy

)=
d(u F(xy Z, Wy ) dist(A,B)
)=

d(ulSF(xy Z, W3
a(

Uie F(xy Z, w4) = dist(A,B)

= Uz = Uy = Ugs = Uge

Where xl, xZ,X3,X4, yl,yz,y3,y4, 21,22,23,24, W1,W2,W3,W4,u1,u2, ...,u16 € A
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If we take A = B the above definition, the notion of the proximal mixed monotone property
becomes the conditions of mixed monotone property. The following lemmas are essential for our

results.

LEMMA 1. Let (X,d, <) be a partially ordered metric space and A, B are nonempty subsets
of X. Assume that A, is nonempty. A mapping F:AXAXAXA — B has the proximal
mixed monotone property with F (A, X Ay X Ay X Ay) € B, Whenever

X0, X1, X2, X3, Y0, Y1, V2, Y3, Z0, Z1, Z2, Z3, Wo, W1, Wp, W3 € A such that
fxoixl 5x2 $X3;y0zylEyz2y3;20521$22$23;W02W12W2 EW3
d (xl ,F(xo,yo,zojwo)) = dist(4, B).

< (xz F(x1,y1, 21, Wl)) = dist(4, B). o
(x F(xz,yz,zz WZ)) = dist(4A, B).
(x4 ,F(x3,y3,z3,wg)> = dist(A, B).

\ = x; X X x33xy

Proof : By hypothesis we have F(A4y X Ay X Ay X Ay) € By, therefore F(x3,¥4,2oWp) €

B,. Hence, there exist x; € A such that

d (Xik, F(X3,y0,ZO,W0)> = dlSt(A,B) (2)
Since F is proximal mixed monotone ( in particular F is proximally non decreasing in x) from

(1) and (2), we get

, Xg =X <X, < x

X1 ,F(xo,yo,zo WO)) = dlst(A B).
Xy F(xl,yl,z1 wl)) dist(4, B).

a(
a(
4 (3)
d (x F(xz, V2,22, WZ) = dist(4, B).
a(

XI :F(x3;YO’ZO,WO)) = dlSt(A, B)
\ = x; X L x3 2 x7

Similarly, using the fact that F is proximal mixed monotone (in particular, F is

proximally non increasing in y) from (1) and (2), we get



610
LANGPOKLAKPAM PREMILA DEVI AND LAISHRAM SHAMBHU SINGH

( YoZY1ZY22Z Y3
d (xi“ ,F(xg,yo,zojwo)) = dist(4, B)

d (x4 , F(x3,y3,z3'w3)) = dist(A,B)
= x; < Xy

(4)

From (3) and (4), we have x; < x, < x3 < x4. This completes the proof.

LEMMA 2. Let (X,d,<) be apartially ordered metric space and A, B are non empty
subsets of X. Assume A, isnonempty. Amapping F:AXAXAXA— B hasthe proximal
mixed monotone property with  F(A, X Ay X Ay X 4y) € B, whenever

X0, X1, X2, X3, Y0, Y1, Y2, Y3, Z0 Z1, Z2, Z3, Wo, W1, W, W3 € A such that

fxoﬁxlﬁxZ $X3;y02y12y2Zy3;205215Z2$Z3;W02W12W2ZW3

d (y1 ) F(yo,zo,wo,xo)) = dist(A, B).

) d (3’2 ,F(yl,zl,wl,x1,)> = dist(A, B). -
d (y3 ,F(yz,zz,wz,xzj)) = dist(4A, B).
d |y, ,F(yg,zg_w3,x3)) = dist(4, B).

\ = Y1ZY2ZY3Z Vs

LEMMA 3. Let (X,d,<X) be a partially ordered metric space and A, B are non empty
subsets of X. Assume A, is nonempty. Amapping F:AXAXAXA — B has the proximal
mixed monotone property with F(Ay X Ay X Ay X Ay) € B, whenever

X0, X1, X2, X3, Y0, Y1, Y2, Y3, Zo Z1, Z3, Z3, W, W1, Wo, W3 € A such that

(Xo XX, XXy X33V Z V1 Z Y2 Z Y3320 22y R Zy [ Z3;Wo Z Wy = Wy = Ws
d (z1 ,F(zo,wolxo,yo)) = dist(A, B).

d (zz ,F(zl,wl,xl,yl,)) = dist(A, B).

d (23 ,F(zz,wzlxz,yzl)) = dist(4A, B).
d

(Z4 ,F(Zg, W3’x3, y3)) = dlSt(A, B).
\ =2z, 2, 32332,

(6)
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LEMMA 4. Let (X,d,X) be a partially ordered metric spaces and A, B are non empty

subsets of X. Assume A, is nonempty. Amapping F:AXAXAXA — B has the proximal

mixed monotone property  with F(Ay X Ay X Ay X Ap) € B, whenever

X0, X1, X2, X3, Y0, Y1, Y20 V3 20,21, Z2, Z3, Wo, W1, W, W3 € A such that

(X0 X X1 XX R X33V = V1 Z Y2 2 Y3320 221 X2y R Z3; W Z W, Z Wy = W3
d (W1 ,F(wo,xo,yo,zo)) = dist(4, B).

(wz ,F(wy, xl,yl,zl,)) = dist(4, B).

(

_ (7)
w3 ,F(Wz,leyz,sz)) = dist(4, B).

d
d
d (W4 ,F(W3,x3,y3,z3)) = dist(A, B).
\ DS WL =Wy = W3 =W,

Proof of lemma 2, 3, 4 are omitted.

Following definition was given by Luong and Thuan [37]

DEFINITION 3. [37] Let ¢ be the class of all functions ¢:[0,0) — [0,0) which satisfy:
1. ¢ is continuous and non decreasing,
2. ¢(t)=0 ifandonlyif t =0,
3. p(t+5s) <o)+ ¢p(s),Vt,s €[0,x).
And let i be the class of all functions :[0,%) = [0,0) which satisfy ltlirrl Y(t) >0 for

all r>0 and tll)rg;r Yt)=0.

Now we give the following definition of proximally quadrupled weak (i, ¢) contraction.

DEFINITION 4. Let (X,d,<) be a partially ordered metric space and A and B are non
empty subsets of X. Assume A, is non empty. A mapping F:AXAXAXA— B issaid to
be proximally quadrupled weak (i, ¢) contraction on A, whenever

X1 < X2; V1 = V2, Zq =< Zy; Wq = Wy
d(w, F(x1,y1,21,w1)) = dist(4,B)
d(v, F(xz, yz, Zy, Wz)) == dlSt(A, B)
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= ¢(d(w,v))

= ¢(d(x1»x2) +d(y,y2) +d(z1,2,) + d(WI’WZ))

NN

<

<d(x1,x2) +d(y1,y2) +d(zy,2) + d(W1,W2)>
4

where x4, X2, V1, Y2, Z1, Z2, W1, Wy € A.
If A = B inthe above definition, the notion of proximally quadrupled weak (i, ¢)

contraction on A reduces to that of a quadrupled weak (i, ¢) contraction.

3. MAIN RESULT

Let (X,d,<X) be a partially ordered complete metric space endowed with the
product space A X A X A x A satisfying the following conditions for (x,y,z,w),(p,q,7,s) €
AXAXAXA,

(,qrs) 2 (xyzw) Sx=py=<qz=r,w=s.

Theorem 1. Let (X,d,<) be a partially ordered complete metric space. Let A, B are non
empty closed subsets of the metric space (X,d) suchthat Ay # ¢. Let F:FAXAXAXA -
B satisfy the following conditions:
1. F is continuous proximally quadrupled weak (i, ¢) contraction on A having the
proximal mixed monotone property on A such that F(A4, X Ay X Ay X Ay) € By.
2. There exist elements (xq, Vo, 2z, Wo) and (xq,vq,2z1,wy) in Ay X Ay X Ay X A, such

that

d (x1 ,F(xo,yo,zo,wo)) = dist(A, B) with x; < x;
d (y1 ,F(yo,zo, Wo,xo)) = dist(A, B) with y, > y,,
d (21 ,F(ZO,WO,XO,_’VO)) = dist(A, B) with z, < z; and

d(wy , F(wg, X0, Yo, Z0)) = dist(4, B) with wy = wy,
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Then there exists (x,y,zw) in AXAxAxA such that d(x F(x,y,z,w)) =
dist(A,B) , d(y,F(y,z,w,x)) =dist(A,B) , d(x,F(z,w,x,y))=dist(4,B) and
d(w,F(w,x,y,2)) = dist(4,B).
Proof: By hypothesis, there exists elements (xq,yo,zoWo) and (xy,y1,ziw) in Ag X
Ay X Ay X A, such that

d (xl ,F(xo,yo,zolwo)) = dist(A, B) with x5 < x4,

d (yl ,F(yo,zo, WOIXO)) = dist(A, B) with y, = y;,

d (21 ,F(ZOJWO, xo,yo)) = dist(A, B) with z;, < z;,and

d(w1 ,F(Wo,xo,yo,zo)) = dist(A, B) with wy = wy.

Since (Ag X Ag X Ag X Ag) € By, then there exists element (x5, 2z, w,) € Ag X

Ay X Ay X A, such that

d (x2 JF (2, yl,zl,wl)) = dist(A, B)

d (y2,F(y1,21,wy.2,)) = dist(A, B)

d(z, ,F(zl,wl,xllyl)) = dist(A, B) and

d (w, ,F(wl,xl,yllzl)) = dist(4, B).
And also there exists element  (x3,¥3,z3w3) € Ag X Ay X Ay X Ay

d (x5, F (%2 y2,2,w,)) = dist(A, B)

d (y3 JF (Y322, W5,07) ) = dist(4, B)

d (23 ,F(zz,wz,leyz)) = dist(A, B)

)

d (W3 ,F(Wz, X7, yZ,ZZ) = dlSt(A, B).
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Thus by lemma 1, 2,3, 4we have x; S x, X35 V1 Z V2 2 V3 21 X Zp L zzand wy = wy =

ws. Continuing in this way, we can construct sequences {x,}, {y.}, {z,} and {w,} in A, such

that

d (xn+1 ,F (%, Y, Zn,Wn)) = dist(A,B),Vn € Nwithxy < x; < - < x, < Xpyq =, (8)

d (yn+1 ,F(yn, Zy W, xn)) = dist(A,B),Vn € Nwithy, >y, > - >y, > V.1 =... 9)

d (zn+1 ,F(zn,wn,xn,yn)) =dist(A,B),Vn € Nwithz, < z; < <z, < Z,1 <. (10)

d(Wni1, F (W, X0, Yo, 2,)) = dist(4,B),Vn € Nwithwgy = wy = -+ = wy = Wpyq = (12)
Then d (xn ;F(xn—1,Yn—1,Zn—1,Wn—1)) =dist(A,B), d (xn+1 ,F(xn, Vo zn,wn)) =

dist(A,B) and we also have x,_1 <X X, Vn1 ZVnZp1 = zZpand wy_y Zw, VRNEN .

Since F is proximally quadrupled weak (i, ¢) contraction on A, we have

d)(d (xnr xn+1))

1
< Zgb(d(xn—l'xn) + d(yn—l' yn) + d(zn—lfzn) + d(Wn—l'Wn))

_ l,l) <d(xn—1'xn) + d(yn—ll yn) :d(zn—lfzn) + d(Wn—l'Wn)> (12)
Similarly,
¢(dGn, Yns1))
1
< Z(p(d(Yn—l' Yn) + d(zn—lfzn) + d(Wn—lfwn) + d(xn—l'xn))
— l/) (d(yn—lJ yn) + d(Zn—lfzn) _Zd(wn—liwn) + d(xn—lﬂxn)> (13)
¢(d(zn' Zn+1))
1
< Z(p(d(zn—llzn) + d(Wn—an) + d(xn—lfxn) + d(yn—lf yn))
_ l/) <d(Zn_1,Zn) + d(Wn—liwn) 1’ d(xn—lﬂxn) + d(yn—li yn)) (14)

and
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¢(d (Wn' Wn+1))

1
< Z¢(d(wn—1iwn) + d(xn—lﬂxn) + d(yn—l' y‘n) + d(zn—lﬂzn))

(15)

_ lp <d(Wn—1rWn) + d(xn—llxn) + d(yn—lf yn) + d(zn—lﬂzn)>
4

From (12), (13), (14) and (15), we get
¢)(d(xn' xn+1)) + (;b(d(ynr yn+1)) + ¢(d(zn' Zn+1)) + ({b(d(Wn' Wn+1))

< ¢(d(xn—1J Xn) + dWn-1,Yn) + d(Zn_1,2n) + d(Wy_4, Wn))

(16)

_ 41/) <d(xn—1:xn) + d(yn—li yn) + d(Zn—len) + d(Wn—l'Wn)>
4

By property (iii) of ¢, we have
¢(d(xru Xn+1) + AWy Yne1) + d(Zn, Znyq) + d(Wann+1))

< ¢(d(xnl xn+1)) + ¢(d(yn' yn+1)) + ¢(d(znrzn+1)) + ¢(d(Wnr Wn+1))

17)
From (16) and (17), we get
¢(d(xn: Xns1) + dVn Yne1) + d(Zp, Znye) + d(Wn’Wn+1))
= ¢(d(xn—11xn) + d(}’n—l» yn) + d(zn—lfzn) + d(Wn—lfwn))
_ 41/) <d(xn—1an) + d(yn—li yn) Zd(zn—lﬁzn) + d(Wn—lﬂwn)> (18)

Since ¢ is non decreasing from (18), we get
A Xn+1) + dWn Yne1) + d(Zn, Zns1) + AWy, Wiyq)
< d(xp-1,%p) + d(Yp-1,Yn) + d(Zpn_1,2n) + d(Wn_q, Wy,) (19)
Let 6,= d(xp, Xns1) + AW Vna1) + d(zy, Zpeq) + d(wy, wyiq), then the sequence {6,} is

decreasing. Therefore, there is some § > 0 such that
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lim 611 = Tlli_{go[d(xn: xn+1) + d(yn» yn+1) + d(anZn+1) + d(anWn+1)] = 8 (20)

n—->oo

Now we have to show that § = 0. On the contrary, let § > 0. Taking limit as n — co on both

sides of (18) and using the fact that ¢ is continuous, we have

$(5) < lim $(5,-1) — 4 lim v (22)

4
8n—1
) < 90,

Since ltim Y(t) > 0,V r > 0, which is a contradiction and hence we conclude that § = 0.
=T

= ¢(®) — 4 Jim v

Thus,
Al_r}c}o On = Tlli_f}go[d(xn; Xnt1) + dVn Yns1) + d(Zp, Zngr) + d(Wp, wpiq)]
=0 (21)
Next we have to prove that {x,}, {y,.}, {z,} and {w,} are Cauchy sequences. On the contrary,

let us assume that at least one of the sequences {x,}, {v,}, {z,} and {w,} is not a Cauchy

sequence. This means that at least one of
lim d(x,, x,) =0, lim d(y,ym) =0
n,m—oo n,m—oo
lim d(z,,z,) =0, lim d(w,w,)=0
n,m—oo n,m—oo

IS not true and consequently,

dim_[d e, %) + G Ym) + Az, 20) + AW, w)] = 0
IS not true.
Then, there exists € >0 for which we can find subsequences {x,,}, {xm,}of {xn}; {¥n.}
{yme} of Om}s {zn} {2m,} Of {z,} and {wy,}, {wi,} of {w,} such that ny is the
smallest index for which n, > m; >k,
d(xnk,xmk) + d(ynk,ymk) + d(znk,zmk) + d(wnk,wmk) >e (22)
This means that

d(xXn—1,%my,) + A(Vnp-1, Ymy) + A(Zny—1,2my ) + d(Wny—1, Wi, ) < € (23)
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Using triangle inequality from (19) and (20), we get
e < d(xp, Xm, ) + d(Vn Ym,) + A(Znyr Zim,,) + d(Wnyo Win,,)
< d(xny, Xnp—1) + d(xnp-1, Xm, ) + AW Yrg—1) + dVnp-1, Yy, ) + (20 Zny-1)
+ d(Zne-1,Zm,.) + d(Wn Wi m1) + d(Wnym1, Wi, )

< d(xnk,xnk_l) + d(ynk,ynk_l) + d(an:an—1) + d(wnk,wnk_l) + €
Taking limitas k — oo and using (18), we obtain

lim [d(xnk,xmk) + d(ynk,ymk) + d(znk,zmk) + d(Wnk,wmk)] =¢ (24)

n,m-oo

By triangle inequality, we have
d(xne Xm) + &V Vi) + d(Znyo Zm) + AWy Wi, )
< d(xny, Xng+1) + A(%ne1, Xmpr1) + d(Xmp 41 Xmy, ) +
AV Y1) + dVmpr 1 Ymyer1) + (Vg1 Yimy.) +
d(Zny Zngs1) + A(Zngr1r Zmy+1) + A(Zmy+1,Zmy, ) +
d(Wnp Wnys1) + d(Wnyr 1, Wg1) + (W11, Win, )
= [d(xng Xnr1) + AWy Y1) + A(Zny Zny1) + AWy Wiy 41)]
+ [d(tmp+1, Xmy) + dVimgrrs Yy ) + A(Zmyr1: Zmy, ) + A(Wing 41, Win, )|
+ [d(npr1, Xmper1) + dOnprts Ymgesr) + (21 Zmys1)

+ d(Wnk+1' ka+1)] (25)

By property of ¢, we obtain
$1) < $(8n,) + ¢ (0m,) + ¢ (dCnrs Xmyr1)) + ¢ (dOmrs, Ymerr))

+¢ (d(znk+1,zmk+1)) +¢ (d(Wnk+1,ka+1)) (26)
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Where v, = d(xn,, Xm, ) + d(Vng Yy ) + d(Zngr Zim,,) + d(Wnyo Win,,)
6le = d(xnk'xnk+1) + d()’nkr ynk+1) + d(ZTLkIZTI.k+1) + d(Wnkr Wnk+1)

5mk = d(xmk+1' xmk) + d(ymk+1» Ymk) + d(zmk+lrzmk) + d(ka+1r ka)

Since xn, = X, Yn, = Ympr Zn, = Zm, aNd wy, =< wy,, , using the fact that F is a proximally
quadrupled weak (i, ¢) contraction on A, we get

¢ (d(xnkﬂ; xmk+1))

1
= qu (d(xnk’xmk) + d(ynk'ymk) + d(znk'zmk) + d(Wnk’ka))

_ l/) <d(xnk’xmk) + d(ynk’ymk) + d(an’ka) + d(Wnk’ka)>
4

= 2000~ v (%) @27)

Similarly,
¢ (d(ynk+1r ymk+1))
1
S qu (d(ynk’ymk) + d(znk’zmk) + d(Wnk'ka) + d(xnk'xmk))

— <d(xnk’xmk) + d(ynk'ymk) + d(znk'zmk) + d(Wnk’ka)>
4

= 2000 - (%) (28)

¢ (d(an+1, ka+1))

1
= Z(p (d(znk’zmk) + d(Wnk’ka) + d('xnk’xmk) + d(ynk’ymk))

- <d(xnk’xmk) + d(ynk’ymk) + d(an’ka) + d(Wnk’ka)>

4

= 2000 - v (%) (29)
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and
¢ (d(Wnk+1; ka+1))
1
= Zd) (d(Wnk’ka) + d(xnk’xmk) + d(ynk’ymk) + d(znk’ka))

- <d(xnk’xmk) + d(ynk’ymk) + d(znk’zmk) + d(Wnk’ka)>
4

= 2000~ (%) (30)

Using (27), (28), (29) and (30), we get

147

$(i) < $(8n,) + 3 (Sm) + 6 () — 40 () (31)
Letting k — oo and using (21), (24) and (31), we have
&
$(e) < B(0) +$(0) + (o) — 4w (7) < $(e),

which is a contradiction and hence we can conclude that {x,}, {y,.}, {z,} and {w,,} are Cauchy
sequences. Since A is a closed subset of a complete metric space X, these sequences have limits.
Hence, there exists x,y,z,zw € A such that x, - x,y, = y,z, > zand w,, > w. Then
(% Yro Zny W) = (x,y,z,w) iIn AXAXAXA.
Since F is continuous, we have that F(x,, Vn, Zn, Wy) = F(x,y,2,w), F(, Zn, Wn, Xn) =

F(y,z,w,x), F(z,, Wy, Xn, V) = F(z,w,x,y) and F(W,, X, Vn, Zn) = F(W,x,y, 2).

But from (8), (9), (10) and (11), we know that the sequences {d(xn11, F (Xn, Yo, Zn, wi))},
{d(Yn+1fF(yn' Zn' Wn' xn))}1 {d(zn+1’F(Zn' Wn' xn' yn))} and {d(wn+1'F(Wn'xn' yn' Zn))} are
constant sequences with the value dist(A,B). Therefore, d(x,F(x,y,z,w)) = dist(4,B),

d(y,F(y, Z,W, x)) = dist(A,B), d(z,F(z, w, X, y)) = dist(A,B) and d(W,F(W, Xy, z,)) =

dist(A, B). This completes our proof.

Corollary 1. Let (X,d, <) be a partially ordered complete metric space. Let A be a non empty
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closed subset of the metric space (X,d). Let F:AxAxAx A — A satisfy the following
conditions:
1. F is continuous having proximal mixed monotone property and proximally quadrupled
weak (1, @) contraction on A.
2. There exists (xg,Vo,Zo,Wo) and (xq,y1,21,w;) in AXAXAXA such that x; =
F(xo,¥0, 20, Wp) With xo <x; , y; = F(yo,20,Wp, %) With YoZ Y1, Z1=

F(Zo, Wy, xO,yo) Wlth Zy =< Zq and wq = F(WOIXO' Yo, Zo) Wlth Wo = Wq.

Then there exists (x,y,z,w) € A X A X A X A such that d(x,F(x, v, Z, w)) =0,

d(y,F(y, Z, W,x)) =0, d(Z,F(Z, W,x,y)) =0 and d(w,F(w,x,y,z,)) = 0.

We also note that theorem 1 is still valid for F not necessarily continuous if A has the following

property that

{x,} is anon decreasing sequence in Asuch that x,, — x, then x,, < x, (32)
{yn} is anon decreasing sequence in A such that y,, — y, then y, >y, (33)
{z,} is anon decreasing sequence in A such that z, — z, then z, < z, (34)
and

{w,} is a non decreasing sequence in A such that w,, » w, thenw,, > w, (35)

Theorem 2. Assume the conditions (32), (33), (34) and (35) and A, is closed in X instead of
continuity of F in Theorem 1, then the conclusion of Theorem 1 holds.
Proof. Proceeding similar to Theorem 1, we claim that there exists sequences  {x,}, {vn}, {z}

and {w,} in Asatisfying the following conditions:

d(xn+1,F(xn, Yo Zn,Wn)) = dist(A4,B) with x,, < x,,1,VNn EN, (36)
d(yn+1,F(yn, Zp, W, xn)) = dist(A,B) with y, > y,,1,Vn €N, (37)
d(zn41, F(Zn, Wy, X, yn)) = dist(4,B) with z, < z,,1,Vn €N, (38)

d(Wys1, F(Wn, X, Yo, 2n) ) = dist(4,B) with w, < w1,V n €N, (39)
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Moreover, x, = x,y, = ¥,z, = z and w, = w. From (32), (33), (34) and (35), we get x, <
X, Yn =Y, zZp 2z and w, > w respectively. Note that the sequence {x,}, {v.}, {z,} and
{w,} are in A, and A, is closed. Therefore, (x,y,z,w) € Ay X Ay X Ay X Ay. Since
F(Ay X Ay X Ay X Ay) S B, , there exists F(x,y,z,w), F(y,z,w,x), F(z,w,x,y) and

F(w,x,y,z) in By. Therefore, there exists (x*,y*,z*,w*) € Ay X Ay X Ay X Ay such that
d(x*,F(x, v, 2, W)) = dist(A,B),d(y*,F(y, ZwW, x)) = dist(A,B),d(z*,F(z, w, X, y)) =
dist(A,B) and d(w*, F(w,x,y, Z)) = dist(A, B).

Since x, 2 x, Yy, = y,2z, <z and w, > w, by using the fact that F is a proximally

quadrupled weak (y, ¢) contractionon A and using (36), (37), (38) and (39), we get
¢(d(xns1,x9))

< 20(dCo ) + O Y) + Az, 2) + Ay, W)

_y <d(xn, xX) + d(yn, y) + d(2y, 2) + d(wy,, W)

2 ),foralln

Similarly,
P(dWns1,¥"))

< —¢(d(ym, ¥) + d(zp, 2) + d(wy, W) + d(x,, %))

NI

<d(Yn' J’) + d(ZnﬂZ) + d(Wn'W) + d(xn,x)

2 ) ,foralln

<

¢(d(Zn+1, Z*))

< qb(d(zn, z) +d(w,,w) + d(x,,x) + d(yn,y))

AN

(Zn, 2) + d(wp, w) + d(xp, x) + d(Yn, y)
_¢< .

) Jforalln

and
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¢(d(wn, w*))

< —p(dwp,w) + d(xp, x) + d(vy, ) + d(zp,2))

B

(d(wn, w) +d(xp, x) + d(Vp, y) + d(z,,2)
—_ lp 4

>,f0r all n

Since x, = x, ¥, = ¥, 2z, = zand w, - w by taking the limit on the above inequalities, we

get x=x", y=y', z=2z" and w=w". Hence, we get that d(x,F(x, v, Z, W)) =
dist(A,B),d(y,F(y, z,Ww, x)) = dist(A,B),d(z,F(z, w, X, y)) = dist(4, B) and

d(w,F(w,x,y,2)) = dist(4, B). This complete the proof.

EXAMPLE 1. Let X={(0,0,0,1), (1,0,0,0), (-1,0,0,0), (0,0,0,-1)}€ R*  and consider the usual
order

(x,y,zzw) 2 (p,qrd) x=<py=<qz=rw=<s.
Thus, (X, <) is a partially ordered set. Besides, (X,d,) isacomplete metric space. Considering
d, the Euclidean metric. Let A = {(0,0,0,1),(1,0,0,0)} and B = {(0,0,0,—1),(—1,0,0,0)}

be closed subsets of X.

Then dist(A,B) =v2, A=A, and B=B, Let F:AxAxAXxA— B be defined as

F ((x1,x2' x3'x4), (3’1,3’2'3’3,3’4)' (21,22'23,24)' (W1,W' W3,W4)):(—x4, — X3, —xz,—x1)-

Then, one can see that F is continuous such that F(Ay, X Ay X Ay X Ay) € B,. Only
comparable pairs of points in A are x < x for x € A. Hence the proximal mixed monotone
property and the proximally quadrupled weak (y,¢) contraction on A are obviously
satisfied. However, F has many quadrupled best proximity points such as
(0,0,0,1),(0,0,0,1), (0,0,0,1), (0,0,0,1); (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1);

(1,0,0,0), (1,0,0,0), (1,0,0,0), (1,0,0,0) etc. Hence not unique.

However, we can prove that the quadrupled best proximity points is in fact unique, provided that
the product space A X A x A X A endowed with the partial ordered mentioned above has the

following property:
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Every pair of elements has either a lower bound or an upper bound.
This condition is equivalent to the following statement.
For every pair of (x,y,z,w), (x*,y",z",w*) E AX A XA XA , there exists

(a,b,c,d) € Ax A x A XA which is comparable to (x,y,z w) and (x*,y*, z*,w").
Theorem 3. In addition to the hypothesis of Theorem 1 (resp. Theorem 2), suppose that for any
two elements (x,y,z,w)and (x*,y*,z",w*) in A, XAy XAy XA, there exists
(21,25,23,24) € Ag X Ag X Ag X Ay such  that (z,23,23,24) IS comparable to
(x,y,z,w) and (x*,y*, z*,w™), then F has a unique quadrupled best proximity point.
Proof: From Theorem 1 (resp. Theorem 2), the set of quadrupled best proximity points of F
is non empty. Suppose that there exists (x,y,z,w) and (x*,y*,z",w*) in AXAXAXA

which are quadrupled best proximity points. That is

d(x,F(x, v, Z, W)) = dist(A, B)
d(y,F(y, zZ,w, x)) = dist(A, B)
d(z,F(z, w, X, y)) = dist(A, B)
d(W,F(W, X, Z)) = dist(A, B)
and
d(x*, F(x*,y*,z",w")) = dist(4, B)
d(y*, F(y*,z*,w*,x*)) = dist(A, B)
d(z*,F(z*,w*,x*,y*)) = dist(4, B)
d(w*,F(w*,x*,y",2z")) = dist(A,B)
We consider two cases:

Case I: Suppose (x,y,z,w) is comparable. Let (x,y,z w) is comparable to (x*,y*,z*,w™)

with respect to the ordering A X A X A X A. Using the fact that F is a proximally quadrupled

weak (1,¢) contractionon 4 to  d(x, F(x,y,z,w)) = dist(A, B)
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and (x*,F(x*,y*,z*,w*)) = dist(A, B), we get

¢p(d(x,x*) < %d)(d(x,x*) +d(y,y*)+d(z,z*) + d(w,w")

—y <d(x,x*) +d(y,y*) Zd(z,z*) + d(w,w*)) (40)
Similarly, we get
1
ddQ,y’) < Z¢(d(%y*) +d(z,z") +d(w,w*) + d(x,x"))
_ (d(y,y*) +d(z,z%) -I;Ld(w,w*) + d(x,x*)) (41
Also,
¢(d(z,z") < %d)(d(z,z*) + d(w,w*) +d(x,x*) + d(y,y*))
_y <d(z,z*) + d(w,w*) Z— d(x,x*) + d(y,y*)) 42)
And
p(d(w,w*) < %qb(d(w,w*) +d(x,x*)+d(y,y") + d(z,z*))
. (d(w,w*) + d(x,x*);— d(y,y") + d(z,z*)) 43)
Adding (40), (41), (42) and (43), we get
o(d(x,x%)) + ¢(d(y,y)) + d(d(z,2z9)) + p(d(w,w"))
< ¢(d(x,x") +d(y,y*) +d(z,z") + d(w,w"))
1 (qb(d(x,x*) + d(y,y*)4+ d(z,z*) + d(w,w*)) (44)

By the property (iii) of ¢, we obtain
P(d(x,x9) + ¢(d(, ) + ¢(d(z 2)) + p(d(w,w"))

< ¢(d(x,x*) +d(y,y*) +d(z,z") + d(w,w*)) (45)
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From (44) and (45), we get
P(d(x,x9) + ¢(d(, ) + ¢(d(z z)) + p(d(w,w"))

< ¢(d(x,x"),d(y,y"),d(z,z"),d(w,w*))

4y (qf)(d(x,x*) +d(y,y*) +d(z,z") + d(w,w*))

7 (46)
This implies that
d(x,x*) +d(,y") +d(z,z") +d(w,w*
41/)( ( ) S 2 (z.27) (w, w )> < 0.Using the property of i, we get

d(,x*) +d(y,y") +d(z,z*") + d(w,w*) = 0. Hence d(x,x*)=d(y,y")=d(z,z") =
dlw,w*) =0. So, x =x",y=y",z=zandw = w".
Case II: Suppose (x,y,z,w) is not comparable. Let (x,y,z,w) be not comparable to
(x*,y*,z*,w"), then there exists (p;,q1,71,51) € Ay X Ay X Ay X Ay, which is comparable to
(x,y,z,w)and (x*,y",z",w*) . Since F(AyXAyXAyXxXA,) €SB, , there exists

(p2,q2,12,83) € Ag X Ag X Ay X Ay such that
d(p2, F(p1,41,71,51)) = dist(4, B)
d(qz F(q1,71,51,p1)) = dist(4, B)
d(rz,F(rl,sl,pl, ql)) = dist(A, B)

d(s2, F(s1,p1,q1,11)) = dist(4, B)
Without loss of generality, assume that (p;,q1,71,51) 2 (x,y,zw) (lle x =p, Yy q1, z=

r,w =<s;) .Notethat (p1,q,711,51) < (x,v,z,w) implies that (y,z,w,x) < (q1,71, 51, P1).

From Lemma 1, 2, 3 and 4, we get
P1x,qu=y,ryzands; > w
d(pz,F(pl,ql,rl,sl)) = dist(A,B),d(x,F(x, Y, 2, w)) = dist(A, B) implies thatp, < x.

pi<xandgq =y
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d(q2,F(q1,11,51,p1)) = dist(4,B),d(y, F(y,z,w,x)) = dist(4, B)implies thatq, > y. q; =
yandr; < z
d(rZ,F(rl,sl,pl,ql)) = dist(A,B),d(z,F(z, w, X, y)) = dist(A, B)implies thatr, < z. 1 <
zands; = w

d(sy, F(s1,p1,q1,11)) = dist(A, B),d(w,F(w,x,y,2)) = dist(4, B)implies that s, > w.

From the above four inequalities, we obtain (p,, g2, 13,52) = (x,y,z,w). Continuing this

process, we get sequences {p,}, {g.}, {r,}and {s,} such that
d(Pns1, F (P Gns Ty Sn)) = dist (4, B)
d(Gns+1, F(Gns T, S, Pn)) = dist(4, B)
d(Ts1, F (G Sp P Gn)) = dist(4, B)

d(5n+1: F(Sn' Py qn Tn)) = dist(A, B)

with (pn, G T Sn) = (x,y,z,w), Vn € N. By using the fact that F is a proximally quadrupled

weak (1, ¢) contractionon A, we get p, <x, ¢, =y, 1, 2z ands, > w.

d(pn+1,F(pn, qn> T Sn)) =d(A,B), d(x,F(x, v, Z, W)) = d(A, B) implies that

¢(d(pn+11 X)
1
< 20(d(Pn %) + d(qn,y) + d(1, 2) + d(sp, W)

Ly <d(pn, %) + d(gny) + d(r 2) + d(sn,w>>

: (47)

Similarly, we can have

Y=qn Z=Ty w=s, and x = py,.

d(qn+1,F(qn, T Sp pn)) = dist(A,B),d(y,F(y, zZw, x)) = dist(A, B) implies that
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1
¢(d(@n+1,y) < Z¢(d(qm30 +d (1, 2) + d(sp, w) + d(pp, X))

d(qn y) + d(1, 2) + d(sp, W) + d(pn, x)
| ; )

(48)

1,2 S, =W, ppxand q, = y.

d(rn+1,F(rn, Sn> P qn)) = dist(A,B),d(z,F(z, w, X, y)) = dist(A, B) implies that

1
¢(d(z,141) < Zqﬁ(d(z, 1) + dWw,5,) + d(x, pn) + d(¥, qn))

v <¢>(d(z, 1) +dw,sn) +d(x,pa) +d0, %)))
4

(49)
and w < s, X Zp,, Y2 q, and z = 1y,
d(sn+1, F(Sn Py Gno 1)) = dist(A, B), d(w, F(w, x,y,2)) = dist(4, B) implies that
1
¢(d(WJ STL+1) S qu(d(w, Sn) + d(x' pn) + d(% Qn) + d(Zl rn))

v (fb(d(w, sn) +d(x,pa) +d(, qa) +d(z, rn))>
4

(50)

Adding (47), (48), (49) and (50), we obtain
¢(d(pn+11 X) + ¢(d(q1’l+1' J’) + ¢(d(Tn+1,Z) + ¢(d(sn+lrw)

< ¢(d(pn, %) + d(qn, y) + d(1, 2) + d(sp, W)

w <d<pn, x) + d(gny) + d(2) + d(sa w)) -

4
By the property (iii) of ¢, we get
¢(d(pn+1,X) + d(qn+1' y) + d(rn+1'z) + d(sn+1' W))

< ¢(dPns1,0)) + ¢(d(@n+1,9)) + $(d (41, 2)) + (d(5p41,W)) (52)

From (51) and (52), we obtain
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¢(d(pn+1,3€)) + ¢(d(Qn+1i y)) + ¢(d(rn+1,z)) + ¢(d($n+1,W))

< ¢(d(pp, %) + d(qn, y) + d (1, 2) + d(sp, W)

a4y <d(pn,x) +d(qn y) Z d(r, z) + d(sn,w)> (53)
This implies that
$(dPn+1,0)) + $(d(@ne1,3)) + $(d(s1,2)) + ¢(d(Sps1, W)
< ¢(d(Pn, ) + d(qn, ¥) + d(13,2) + d(s5p, W) (54)
Using the fact that ¢ is non decreasing, we get
d(Pn+1,%) + d(@ps1, ) + A4, 2) + d(Sps1, W)
< d(Pp, x) + d(qn, y) + d (1, 2) + d(sp, w) (55)

This means that the sequence {d(pni1,%) +d(qni1,y) + Ay, 2) +d(Speq, W)} S

decreasing. Therefore, there exists a = 0 such that
lim [d(pn, x) + d(qn,y) + d(r, 2) + d(sp, W) | = @ (56)

We show that @ = 0. Suppose, to the contrary, that a > 0. Taking the limit as n — oo in (53),

we have that

$(a) < ¢(a)_4rllijlgow<d(pn,x)+d(qn,y);rd(rn.2)+d(sn,W)) < (@),
This is a contradiction. Thus a = 0, that is
lim [d(pn, x) + d(qn,y) + d (1, 2) + d(sp,w) ] = 0 (57)

So we have that
Pn = X, qn, = Y, = z and s, — w. Analogously, we can prove that p, - x*, q, = y*, 1, =

z* and s, - w*. Therefore, x =x*,y=y*,z=z"and w =w".
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