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Abstract. In this paper, Pachpatte’s inequality is employed to discuss the Ulam Hyers stabilities for Volterra 

integrodifferential equations with nonlocal condition in Banach spaces on finite interval. Example is given to show the 

applicability of our obtained result.  
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1. INTRODUCTION 

In 1940, the Mathematician Ulam developed the stability problem pertaining to functional 

equations (see [[6],[7]]). The Ulam problem was stated as Under what conditions there exist an 

additive mapping near an approximately additive mapping. Initially Hyers [9] tried to find answer to 
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the question of Ulam (for the additive mapping) in the case of Banach spaces. Thereafter, Rassias 

[11] extended Ulam–Hyers stability concept by introducing new function variables. In the literature, 

these concepts of stabilities are known asUlam stability, Ulam Hyers stability and Ulam Hyers 

Rassias stability. The basic Ulam stability problem of functional equations has been extended to 

different types of equations. It is observed that the Ulam stability theory plays an important role in 

the study of differential equations, integral equations, difference equations, fractional differential 

equations etc. For any kind of equations, Ulam stability problem is about (see [8, 10]) When should 

the solutions of an equation, differing slightly from a given one, must be close to a solution of the 

given equation? The notion of 'nonlocal' condition has been introduced to extend the study of the 

classical initial value problems. It is more precise for describing nature phenomena than the classical 

condition since more information is taken into account.The study of abstract nonlocal semilinear 

initial-value problems was initiated by L. Byszewski. We motivated by work of Kucche [2]. 

The purpose of this paper is to study Ulam stability problem of functional equations with 

nonlocal Condition of the form: 

 𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝑓(𝑡, 𝑥(𝑡), ∫
𝑡

0
𝑔(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠),    𝑡 ∈ 𝐽 = [0, 𝑏] (1.1) 

 𝑥(0) + 𝐻(𝑥) = 𝑥0 (1.2) 

where 𝐴 is an infintesimal generator of strongly continuous semigroup of bounded linear operator 

T(t) in 𝑋 with domain 𝐷(𝐴), the unknown 𝑥(⋅) takes values in the Banach space 𝑋; 𝑓: 𝐽 × 𝑋 ×

𝑋 → 𝑋 , 𝑔: 𝐶(𝐽 × 𝐽, 𝑋) → 𝑋  ,𝐻: 𝐶(𝐽 × 𝐽, 𝑋) → 𝑋  are appropriate continuous functions and 𝑥0  is 

given element of 𝑋. 

The paper is organized as follows: We discussed  the preliminaries. We dealt with study of 

Ulam Hyers Rassias stablity of VIE with nonlocal condition in Banach space. Finally we gave 

example to illustrate the application of our result. 

 

2. PRELIMINARIES 

In this section, we recall some necessary definitions and theorems which will be used in the 
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sequel see Pazy [1] and Pachpatte[3] 

Definition:- A one parameter family 𝑇(𝑡)𝑡≧0 of bounded linear operators from Banach 

space 𝑋 into 𝑋 is called strongly continuous semigroup (or 𝐶0- semigroup ) of operators on 𝑋 if 

    • 𝑇(0) = 𝐼 the identity operator , 

    • 𝑇(𝑡 + 𝑠) = 𝑇(𝑡)𝑇(𝑠) = 𝑇(𝑠)𝑇(𝑡),    𝑡, 𝑠 ≥ 0, 

    • lim𝑡→0 𝑇(𝑡)𝑥 = 𝑥 ∀𝑥 in X  

Definition:-The infinitesimal generator of the 𝐶0 semigroup 𝑇(𝑡)𝑡≧0 is the linear operator 

𝐴: 𝐷(𝐴) ⊆ 𝑋 → 𝑋 defined by  

 𝐴𝑥 = lim
𝑡→0+

𝑇(𝑡)𝑥−𝑥

𝑡
, for every 𝑥 ∈ 𝐷(𝐴) 

where  

 𝐷(𝐴) = {𝑥 ∈ 𝑋: lim
𝑡→0+

𝑇(𝑡)𝑥−𝑥

𝑡
exist in X } 

Theorem 2.1 ([1])Let 𝑇(𝑡)𝑡≧0 is a 𝐶0 semigroup There exist constant 𝜔 ≥ 0 and 𝑀 ≥ 1 such 

that ∥ 𝑇(𝑡) ∥≤ 𝑀𝑒𝜔𝑡 ,0 ≤ 𝑡 < ∞ 

Pachpatte’s inequality given below plays crucial role in our further analysis. 

Theorem 2.2 ([[3], p. 39]). Let 𝑢(𝑡), 𝑓(𝑡) and 𝑞(𝑡) be nonnegative continuous functions defined 

on ℝ+, and 𝑛(𝑡) be a positive and nondecreasing continuous function defined on ℝ+ for which 

the inequality 

 𝑢(𝑡) ≤ 𝑛(𝑡) + ∫
𝑡

0
𝑓(𝑠)[𝑢(𝑠) + ∫

𝑠

0
𝑞(𝜏)𝑢(𝜏)𝑑𝜏]𝑑𝑠 

hold for 𝑡 ∈ ℝ+ .Then  

 𝑢(𝑡) ≤ 𝑛(𝑡)[1 + ∫
𝑡

0
𝑓(𝑠)exp(∫

𝑠

0
[𝑓(𝑡) + 𝑞(𝜏)]𝑑𝜏)ds] 

for 𝑡 ∈ ℝ+ 

 

3. ULAM HYERS STABILITIES OF SEMILINEAR VIE 

 In this section, we establish Ulam Hyers stabilities of similinear VIE 



239 

RUPESH T. MORE, SHRIDHAR C. PATEKAR, ASHISH P. NAWGHARE 

 𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑓 (𝑡, 𝑥(𝑡), ∫
𝑡

0
𝑔(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠) ,    𝑡 ∈ 𝐽 (3.1) 

 𝑥(0) + 𝐻(𝑥) = 𝑥0, (3.2) 

 in a Banach Space (𝑋, ∥. ∥) where   

    1.  𝐽 = [0, 𝑏] 

    2.  𝐴: 𝑋 → 𝑋 is an infinitesimal generator of 𝐶0-semigroup 𝑇(𝑡)𝑡≧0 in 𝑋;  

    3.  𝑓: 𝐽 × 𝑋 × 𝑋 → 𝑋 and 𝑔: 𝐽 × 𝐽 × 𝑋 → 𝑋 ,𝐻: 𝐶(𝐽 × 𝑋) → 𝑋 are continuous 

functions.  

Definition 3.1 Let T(t)t≧0 is a C0-semigroup of bounded linear operators in X with infinitesimal 

generator A and f ∈ L1(J, X). A function x ∈ C(J, X) given by  

 𝑥(𝑡) = 𝑇(𝑡)[𝑥0 − 𝐻(𝑥)] + ∫
𝑡

0
𝑇(𝑡 − 𝑠)𝑓(𝑠, 𝑥(𝑠), ∫

𝑠

0
𝑔(𝑠, 𝜏, 𝑥(𝜏))𝑑𝜏)𝑑𝑠, 

 is called the mild solution of initial value problem.  

 𝑥′(𝑡) = 𝐴𝑥(t) + 𝑓(𝑡, 𝑥(𝑡), ∫
𝑡

0
𝑔(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠) 

 𝑥(0) + 𝐻(𝑥) = 𝑥0 (3.3) 

Definition 3.2 Equation (3.1)-(3.2) is Ulam Hyers stable if there exists a real number Cf > 0 such 

that for each ε > 0 and for each solution y ∈ C′(J, X) of the inequation The function x ∈ B 

satisfies the integral equation 

 ∥ 𝑦′(𝑡) − 𝐴𝑦(𝑡) − 𝑓(𝑡, 𝑦(𝑡), ∫
𝑡

0
𝑔(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠) ∥≤ 𝜀, 𝑡 ∈ 𝐽 (3.4) 

∃ a mild solution 𝑥: 𝐽 → 𝑋 in 𝐶(𝐽, 𝑋) of (3.1)-(3.2) with  

 ∥ 𝑦(𝑡) − 𝑥(𝑡) ∥≤ 𝐶𝑓𝜀,       𝑡 ∈ 𝐽 (3.5) 

Definition 3.3 Equation (3.1)-(3.2) is Ulam Hyers Rassias stable, with respect to the positive 

non-decreasing continuous function ψ: J ∈ ℝ+,if there exists Cf,ψ > 0 such that for each ε > 0 and 

for each solution y ∈ C1(J, X) of the inequation 

 ∥ 𝑦′(𝑡) − 𝐴𝑦(𝑡) − 𝑓 (𝑡, 𝑦(𝑡), ∫
𝑡

0
𝑔(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠) ∥≤ 𝜀𝜓(𝑡),    𝑡 ∈ 𝐽 (3.6) 

there exists a mild solution 𝑥: 𝐽 → 𝑋 in 𝐶(𝐽, 𝑋) of (3.1)-(3.2) with  
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 ∥ 𝑦(𝑡) − 𝑥(𝑡) ∥≤ 𝐶𝑓,𝜓𝜀𝜓(𝑡),        𝑡 ∈ 𝐽 

Definition 3.4 Equation (3.1)-(3.2) is generalized Ulam Hyers Rassias stable, with respect to the 

positive non-decreasing continuous function ψ: J ∈ ℝ+,if there exists Cf,ψ > 0 such that for each 

solution y ∈ C1(J, X) of the inequation 

 ∥ 𝑦′(𝑡) − 𝐴𝑦(𝑡) − 𝑓 (𝑡, 𝑦(𝑡), ∫
𝑡

0
𝑔(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠) ∥≤ 𝜓(𝑡),   𝑡 ∈ 𝐽 (3.7) 

there exists a mild solution 𝑥: 𝐽 → 𝑋 in 𝐶(𝐽, 𝑋) of (3.1)-(3.2) with  

 ∥ 𝑦(𝑡) − 𝑥(𝑡) ∥≤ 𝐶𝑓,𝜙𝜓(𝑡),        𝑡 ∈ 𝐽 (3.8) 

Remark 3.1  

A function 𝑦 ∈ 𝐶1(𝐽, 𝑋) is a solution of in equation (3.4) if there exists a function ℎ ∈

𝐶(𝐽, 𝑋) (which depends on 𝑦) such that   

    1.  ∥ ℎ(𝑡) ∥≤ 𝜀, 𝑡 ∈ 𝐽. 

    2.  𝑦′(𝑡) = 𝐴𝑦(𝑡) + 𝑓(𝑡, 𝑦(𝑡), ∫
𝑡

0
𝑔(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠) + ℎ(𝑡), 𝑡 ∈ 𝐽 

Remark 3.2  

If 𝑦 ∈ 𝐶1(𝐽, 𝑋) satisfies inequation (3.4) then 𝑦 is a solution of the following integral 

inequation:  

 ∥ 𝑦(𝑡) − 𝑇(𝑡)[𝑦0 − 𝐻(𝑦)] + ∫
𝑡

0
𝑇(𝑡 − 𝑠)𝑓(𝑠, 𝑦(𝑠), ∫

𝑠

0
𝑔(𝑠, 𝜏, 𝑦(𝜏))𝑑𝜏)𝑑𝑠 ∥≤ 𝜀 ∫

𝑡

0
∥ 𝑇(𝑡 − 𝑠) ∥

𝑑𝑠𝑡 ∈ 𝐽  (3.9) 

Indeed, if 𝑦 ∈ 𝐶′(𝐽, 𝑋) satisfies inequation (3.4) by Remark 3.1, we have  

 𝑦′(𝑡) = 𝐴𝑦(𝑡) + 𝑓(𝑡, 𝑦(𝑡), ∫
𝑡

0
𝑔(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠) + ℎ(𝑡), 𝑡 ∈ 𝐽 (3.10) 

 This implies that 

𝑦(𝑡) = 𝑇(𝑡)[𝑦0 − 𝐻(𝑦)] + ∫
𝑡

0
𝑇(𝑡 − 𝑠)[𝑓(𝑠, 𝑦(𝑠), ∫

𝑠

0
𝑔(𝑠, 𝜏, 𝑦(𝜏))𝑑𝜏) + ℎ(𝑠)]𝑑𝑠 (3.11) 

 Therefore  

 ∥ 𝑦(𝑡) − 𝑇(𝑡)[𝑦0 − 𝐻(𝑦)] + ∫
𝑡

0
𝑇(𝑡 − 𝑠)[𝑓(𝑠, 𝑦(𝑠), ∫

𝑠

0
𝑔(𝑠, 𝜏, 𝑦(𝜏))𝑑𝜏)]𝑑𝑠 ∥ 

 ≤ ∫
𝑡

0
∥ 𝑇(𝑡 − 𝑠) ∥∥ ℎ(𝑠) ∥ 𝑑𝑠 (3.12) 



241 

RUPESH T. MORE, SHRIDHAR C. PATEKAR, ASHISH P. NAWGHARE 

 ≤ 𝜀 ∫
𝑡

0
∥ 𝑇(𝑡 − 𝑠) ∥ 𝑑𝑠 (3.13) 

We list the following hypotheses for our convenience: 

For Ulam Hyers stabilities of VIE on 𝑱 = [𝟎, 𝒃] 

We need the following hypothesis to obtain Ulam Hyers stabilities of VIE 

(H1) 

(a) Let 𝑓: 𝐽 × 𝑋 × 𝑋 → 𝑋 and there exist 𝐿(. ) ∈ 𝐶(𝐽, ℝ+) Let  

∥ 𝑓(𝑡, 𝑥1, 𝑥2) − 𝑓(𝑡, 𝑦1, 𝑦2) ∥≤ 𝐿(𝑡)(∥ 𝑥1 − 𝑦1 ∥ +|𝑥1 − 𝑦1 ∥) 

          for all 𝑡 ∈ 𝐽 and 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑋 

(b) Let 𝑔: 𝐽 × 𝐽 × 𝑋 → 𝑋 and ∃𝐺(. ) ∈ 𝐶(𝐽, ℝ+) such that  

 ∥ 𝑔(𝑡, 𝑠, 𝑥1) − 𝑔(𝑡, 𝑠, 𝑥2) ∥≤ 𝐺(𝑡)(∥ 𝑥1 − 𝑦1 ∥) 

for all 𝑡, 𝑠 ∈ 𝐽 and 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑋 

(c) There exist positive constant 𝐾1 ∈ ℝ such that  

∥ 𝐻(𝑥) − 𝐻(𝑦) ∥≤ 𝐾1 ∥ 𝑥 − 𝑦 ∥ for every 𝑥, 𝑦 ∈ 𝑋 

(H2)  

The function 𝜓: [0, 𝑏] → ℝ+ is positive, non-decreasing and continuous and there exists 𝜆 > 0 

such that ∫
𝑡

0
∥ 𝑇(𝑡 − 𝑠) ∥ 𝜓(𝑡)𝑑𝑠 ≤ 𝜆𝜓(𝑡). 

Theorem 3.5 Let 𝑓,𝑔,H in (3.1)-(3.2) satisfies hypotheses (H1) − (H2) hold. Then the equation 

(3.1)-(3.2) Ulam Hyers Rassias stable with respect to ψ. 

Proof: Let 𝑦 ∈ 𝐶′([0, 𝑏], 𝑋) satisfies inequation(3.6). Then as discussed in Remark 3.2 and using the 

hypothesis (H2), we have  

 ∥ 𝑦(𝑡) − 𝑇(𝑡)[𝑦0 − 𝐻(𝑦)] + ∫
𝑡

0
𝑇(𝑡 − 𝑠)[𝑓(𝑠, 𝑦(𝑠), ∫

𝑠

0
𝑔(𝑠, 𝜏, 𝑦(𝜏))𝑑𝜏)]𝑑𝑠 ∥ 

 ≤ ∫
𝑡

0
∥ 𝑇(𝑡 − 𝑠) ∥∥ ℎ(𝑠) ∥ 𝑑𝑠 

 ≤ 𝜀 ∫
𝑡

0
∥ 𝑇(𝑡 − 𝑠) ∥ 𝑑𝑠 

 ≤ 𝜀𝜆𝜓(𝑡) (3.14) 

 Let x ∈ 𝐶([0, 𝑏], 𝑋) be mild solution of ivp  
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 𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑓(𝑡, 𝑥(𝑡), ∫
𝑡

0
𝑔(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠)𝑡 ∈ 𝐽 

 𝑥0 + 𝐻(𝑥) = 𝑦0 + 𝐻(𝑦) (3.15) 

 Then we have  

 𝑥(𝑡) = 𝑇(𝑡)[𝑦0 − 𝐻(𝑦)] + ∫
𝑡

0
𝑇(𝑡 − 𝑠)[𝑓(𝑠, 𝑥(𝑠), ∫

𝑠

0
𝑔(𝑠, 𝜏, 𝑥(𝜏))𝑑𝜏)]𝑑𝑠 (3.16) 

 From equation (3.16) ,inequation (3.14) , and (H1) we have 

∥ 𝑦(𝑡) − 𝑥(𝑡) ∥≤∥ 𝑦(𝑡) − 𝑇(𝑡)[𝑦(0) − 𝐻(𝑦)] − ∫
𝑡

0

𝑇(𝑡 − 𝑠)𝑓(𝑠, 𝑥(𝑠), ∫
𝑠

0

𝑔(𝑠, 𝜏, 𝑥(𝜏))𝑑𝑠 ∥ 

 ≤∥ 𝑦(𝑡) − 𝑇(𝑡)[𝑦0 − 𝐻(𝑦)] − ∫
𝑡

0
𝑇(𝑡 − 𝑠)𝑓(𝑠, 𝑥(𝑠), ∫

𝑠

0
𝑔(𝑠, 𝜏, 𝑥(𝜏))𝑑𝑠 

 + ∫
𝑡

0
𝑇(𝑡 − 𝑠)𝑓(𝑠, 𝑦(𝑠), ∫

𝑠

0
𝑔(𝑠, 𝜏, 𝑦(𝜏))𝑑𝑠 

 − ∫
𝑡

0
𝑇(𝑡 − 𝑠)𝑓(𝑠, 𝑦(𝑠), ∫

𝑠

0
𝑔(𝑠, 𝜏, 𝑦(𝜏))𝑑𝑠 ∥ (3.17) 

 Add and subtract ∫
𝑡

0
𝑇(𝑡 − 𝑠)𝑓(𝑠, 𝑦(𝑠), ∫

𝑠

0
𝑔(𝑠, 𝜏, 𝑦(𝜏))𝑑𝑠 in equation (3.17),we get  

 ∥ 𝑦(𝑡) − 𝑥(𝑡) ∥≤   𝜖𝜆𝜓(𝑡) + ∫
𝑡

0
𝑀𝑒𝑤(𝑡−𝑠)𝐿(𝑠) × (∥ 𝑦(𝑠) − 𝑥(𝑠) ∥ + ∫

𝑠

0
𝐺(𝜏)[∥ 𝑦(𝜏) − 𝑥(𝜏) ∥]𝑑𝜏)𝑑𝑠 

 ≤   𝜖𝜆𝜓(𝑡) + ∫
𝑡

0
𝑀𝑒𝑤(𝑏−𝑠)𝐿(𝑠) × (∥ 𝑦(𝑠) − 𝑥(𝑠) ∥ + ∫

𝑠

0
𝐺(𝜏)[∥ 𝑦(𝜏) − 𝑥(𝜏) ∥]𝑑𝜏)𝑑𝑠 

  (3.18) 

 And using pachpatte's inequality given in theorem (2.2) to equation (3.18) with  

𝑢(𝑡) =∥ 𝑦(𝑡) − 𝑥(𝑡) ∥, 𝑛(𝑡) = 𝜖𝜆𝜓(𝑡),𝑓(𝑡) = 𝑀𝐿(𝑡)𝑒𝑤(𝑏−𝑡) and 𝑞(𝑡) = 𝐺(𝑡).  

we obtain  

 ∥ 𝑦(𝑡) − 𝑥(𝑡) ∥≤ 𝜖𝜆𝜓(𝑡)[1 + ∫
𝑡

0
𝑀exp𝑤(𝑏−𝑠)𝐿(𝑠)𝑒𝑥𝑝(∫

𝑠

0
[𝑀𝐿(𝜏)𝑒𝑤(𝑏−𝜏) + 𝐺(𝜏)]𝑑𝜏)𝑑𝑠]  (3.19) 

 ≤ 𝜖𝜆𝜓(𝑡)[1 + ∫
𝑏

0
𝑀exp𝑤(𝑏−𝑠)𝐿(𝑠)𝑒𝑥𝑝(∫

𝑠

0
[𝑀𝐿(𝜏)𝑒𝑤(𝑏−𝜏) + 𝐺(𝜏)]𝑑𝜏)𝑑𝑠] (3.20) 

by putting 

 𝐶𝑓,𝜓 = 𝜆[1 + ∫
𝑏

0
𝑀exp𝑤(𝑏−𝑠)𝐿(𝑠)𝑒𝑥𝑝(∫

𝑠

0
[𝑀𝐿(𝜏)𝑒𝑤(𝑏−𝜏) + 𝐺(𝜏)]𝑑𝜏)𝑑𝑠] 

we get 

∥ 𝑦(𝑡) − 𝑥(𝑡) ∥≤ 𝜀𝐶𝑓𝜓𝜓(𝑡)∀𝑡 ∈ [0, 𝑏] 

This proves that (3.1)-(3.2) is Ulam Hyers Rassias stable with respect to the function 𝜓. 
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Corrollary 3.4. let 𝑓, 𝑔 and 𝐻 in (3.1)-(3.2)satisfy the condition in hypothesis(H1) − (H2).Then 

Equation (3.1)-(3.2)is generalized Ulam Hyers Rassias stable with respect to the function 𝜓. 

Proof :-Taking 𝜀 = 1 in the proof of Main Theorem we obtain  

 ∥ 𝑦(𝑡) − 𝑥(𝑡) ∥≤ 𝐶𝑓,𝜙𝜓(𝑡), 𝑡 ∈ 𝐽 

 which proves that (3.1)-(3.2) is generalized Ulam Hyers Rassias stable, with respect to function 𝜓. 

Corrollary 3.5 If 𝑓, 𝑔 in (3.1)-(3.2) satisfy the condition in hypothesis (H1) .Then Equation 

(3.1)-(3.2) is Ulam Hyers Rassias stable. 

Proof :- In the view of Theorem 2.1 there exists 𝑀 ≥ 1 such that ∥ 𝑇(𝑡) ∥≤ 𝑀, ∀𝑡 ∈ [0, 𝑏] .Define 

𝜓(𝑡) = 1 ∀𝑡 ∈ [0, 𝑏] Then  

 ∫
𝑡

0
∥ 𝑇(𝑡 − 𝑠) ∥ 𝜓(𝑠)𝑑𝑠 ≤ 𝑀𝑏, ∀𝑡 ∈ [0, 𝑏] 

Hence the assumption (𝐻2) holds clearly .By taking 𝜓(𝑡) = 1 in the proof of main theorem, we 

obtain ∥ 𝑦(𝑡) − 𝑥(𝑡) ∥≤ 𝜀𝐶𝑓 , ∀𝑡 ∈ [0, 𝑏] This proves that (3.1)-(3.2) is Ulam Hyers stable. 

 

4. EXAMPLE 

Consider the nonlinear VIEs  

𝑥′(𝑡) =
−3

2
+ 2cos(𝑥(𝑡)) + 2sin(𝑥(𝑡)) + ∫

𝑡

0
{sin(𝑥(𝑠)) − cos(𝑥(𝑠))}𝑑𝑠, 𝑡 ∈ [0,10] (4.1) 

 𝑥(0) +
𝑥

80+𝑥
= 0 (4.2) 

Consider the Banach space (ℝ, ∥·∥) and the real Banach space and 𝐶([0,10], ℝ) with supremum 

norm. For each 𝑡 ≥ 0, define 𝑇(𝑡): ℝ → ℝ by 𝑇(𝑡)𝑥 = e𝑡𝑥 , 𝑥 ∈ ℝ. Then 𝑇(𝑡)𝑡≧0  forms the 

family of bounded linear operators from ℝ to ℝ that satisfy   

              𝑇(0) = 1 

𝑇(𝑡 + 𝑠) = 𝑇(𝑡)𝑇(𝑠)∀𝑡, 𝑠 ≥ 0 ;  

lim𝑡→0𝑇(𝑡)𝑥 = 𝑥, ∀𝑥 ∈ ℝ.  

Therefore, 𝑇(𝑡)𝑡≧0  forms 𝐶0  semigroup of bounded linear operators on ℝ .The infinitesimal 

generator of this 𝐶0semigroup is  
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𝐴𝑥 = lim𝑡→0+
𝑇(𝑡)𝑥−𝑥

𝑡
= lim𝑡→0+

𝑒𝑡−1

𝑡
𝑥 = 𝑥,𝑥 ∈ ℝ. 

Thus 𝐴 = 1.Note that Equations(4.1)-(4.2)  can be written as 

𝑥′(𝑡) = 𝐴𝑥(𝑡) −
3

2
− 𝑥(𝑡) + 2𝑐𝑜𝑠(𝑥(𝑡)) + 2𝑠𝑖𝑛(𝑥(𝑡)) 

 + ∫
t

0
sin(𝑥(𝑠)) − cos(𝑥(𝑠))𝑑𝑠, 𝑡 ∈ [0,10] (4.3) 

 = 𝐴𝑥(𝑡) + 𝑓(𝑡, 𝑥(𝑡), ∫
𝑡

0
𝑔(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠) (4.4) 

 𝑥(0) +
𝑥

80+𝑥
= 0 (4.5) 

where 𝑔: [0,10] × [0,10] × ℝ → ℝ 

is defined as 𝑔(𝑡, 𝑠, 𝑥((𝑠))) = sin(𝑥(𝑠)) − cos(𝑥(𝑠)) 

and 𝑓: [0,10] × ℝ × ℝ → ℝ 

is defined as 𝑓(𝑡, 𝑥(𝑡), ∫
𝑡

0
𝑔(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠) 

=
3

2
− (𝑡) + 2𝑐𝑜𝑠(𝑥(𝑡)) + 2𝑠𝑖𝑛(𝑥(𝑡)) + ∫

𝑡

0

sin(𝑥(𝑠)) − 𝑐𝑜𝑠(𝑥(𝑠))𝑑𝑠. 

(i) For any 𝑡, 𝑠 ∈ [0,10]and 𝑥1, 𝑦1 ∈ ℝ,we have  

 ∥ 𝑔(𝑡, 𝑠, 𝑥1) − 𝑔(𝑡, 𝑠, 𝑦1) ∥≤∥ sin(𝑥1) − sin(𝑦1) ∥ +∥ cos𝑥1 − cos𝑦1 ∥ 

 ≤∥ 𝑥1 − 𝑦1 ∥ +∥ cos𝑥1 − cos𝑦1|| (4.6) 

 Let any 𝑥, 𝑦 ∈ ℝ with 𝑥 < 𝑦. Applying mean value theorem to the function cos𝑥 on [𝑥, 𝑦], there 

𝜎 ∈ (𝑥, 𝑦) such that 
cos𝑥−cos𝑦

𝑥−𝑦
= −𝑠𝑖𝑛(𝜎) 

Therefore, 

 ∥ cos𝑥 − cos𝑦 ∥≤∥ 𝑥 − 𝑦 ∥, 𝑥, 𝑦 ∈ ℝ. (4.7) 

 From (4.6) and (4.7), we obtain ∥ 𝑔(𝑡, 𝑠, 𝑥1) − 𝑔(𝑡, 𝑠, 𝑦1) ∥≤ 2 ∥ 𝑥1 − 𝑦1 ∥. 

(ii) Let any 𝑡 ∈ [0,10] and 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ ℝ.Then 

∥ 𝑓(𝑡, 𝑥1, 𝑥2) − 𝑓(𝑡, 𝑦1, 𝑦2) ∥≤∥ 𝑥1 − 𝑦1 ∥ +2 ∥ cos𝑥1 − cos𝑦1 ∥ +2 ∥ sin𝑥1 − sin𝑦1 ∥ +∥ 𝑥2 − 𝑦2 ∥ 

 ≤∥ 𝑥1 − 𝑦1 ∥ +2 ∥ 𝑥1 − 𝑦1 ∥ +2 ∥ 𝑥1 − 𝑦1 ∥ +2 ∥ 𝑥1 − 𝑦1 ∥ +∥ 𝑥2 − 𝑦2 ∥ 

 ≤ 5(∥ 𝑥1 − 𝑦1 ∥ +∥ 𝑥2 − 𝑦2 ∥) (4.8) 
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 (iii) ∥ 𝐻(𝑥) − 𝐻(𝑦) ∥≤∥
𝑥

80+𝑥
−

𝑥

80+𝑦
∥ 

 ≤ 80
∥𝑥−𝑦∥

∥(80+𝑥)(80+𝑦)∥
 

 ≤
80

640
∥ 𝑥 − 𝑦 ∥ 

 ≤
1

8
∥ 𝑥 − 𝑦 ∥ (4.9) 

 Thus, 𝑓,𝑔 ,𝐻 in Equation (4.3) with (4.5) satisfy the hypothesis  (H1) Therefore, by Corollary 

(3.4) , Equation (4.3) is Ulam Hyers stable. Next, we illustrate the Ulam Hyres stability of Equation 

(4.3) by providing the mild solution to Equation (4.3) corresponding to given values of 𝜀 > 0 and 

the given solution of the inequation  

 ∥ 𝑦′(𝑡) − 𝐴𝑦(𝑡) − 𝑓(𝑡, 𝑦(𝑡), ∫
𝑡

0
𝑔(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠) ∥< 𝜀 (4.10) 

By using Definition (3.1), the mild solution of Equation (4.3) with the initial condition (4.5) 

is given by 

𝑥(𝑡) = 𝑇(𝑡)[0 −
𝑥

80 + 𝑥
] + ∫

𝑡

0

𝑇(𝑡 − 𝑠)𝑓(𝑡, 𝑦(𝑡), ∫
𝑠

0

𝑔(𝑠, 𝜏, 𝑥(𝜏))𝑑𝜏)𝑑𝑠 

𝑥(𝑡) = ∫
𝑡

0

exp𝑡−𝑠(
−3

2
− 𝑥(s) + 2cos𝑥(𝑠) + 2 sin(𝑥(𝑠))) 

                                                    + ∫
𝑠

0
(sin(𝑥(𝜏)) − cos(𝑥(𝜏)))𝑑𝜏)𝑑𝑠                (4.11) 

By actual substitution we see that 𝑥(𝑡) =
𝑡

2
 ,𝑡 ∈ [0,10] is solution of Equation (4.11) which 

is also a classical solution of Equation (4.3) with the initial condition Equation (4.5) . 

Let 𝜀 = 10 and 𝑦1(𝑡) = 0,𝑡 ∈ [0,10]. Then  

 ∥ 𝑦′1(𝑡) − 𝐴𝑦1(𝑡) − 𝑓(𝑡, 𝑦1(𝑡), ∫
𝑡

0
𝑔(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠) ∥ 

 =∥ 𝑦′1(𝑡) +
3

2
− 2cos(𝑦1(𝑡)) − 2sin(𝑦1(𝑡)) − ∫

𝑡

0
[sin(𝑦1(𝑠)) − 𝑐𝑜𝑠(𝑦1(𝑠))]𝑑𝑠 ∥ 

 =
19

2
 

 < 𝜀 (4.12) 

 and we have a solution 𝑥(𝑡) =
𝑡

2
 , 𝑡 ∈ [0,10] of Equation (4.3) and constant 𝐶 = 1 such that ∥
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𝑦1(𝑡) − 𝑥(𝑡) ∥=∥ 0 −
𝑡

2
∥≤ 5 < 𝐶𝜀 

𝜀 = 15 and 𝑦2(𝑡) =
𝑡

3
, 𝑡 ∈ [0,10] 

we have  

 ∥ 𝑦′2(𝑡) − 𝐴𝑦2(𝑡) − 𝑓(𝑡, 𝑦2(𝑡), ∫
𝑡

0
𝑔(𝑡, 𝑠, 𝑦2(𝑠))𝑑𝑠) ∥ 

 =∥ 𝑦′2(𝑡) +
3

2
− 2cos(𝑦2(𝑡)) − 2sin(𝑦2(𝑡)) − ∫

𝑡

0
[sin(𝑦2(𝑠)) − 𝑐𝑜𝑠(𝑦2(𝑠))]𝑑𝑠 ∥ 

 ≤
1

3
+

3

2
+ 2 + 2+∥ ∫

10

0
[−sin(

𝑠

3
) + cos(

𝑠

3
)]𝑑𝑠 ∥ 

 = 5.833+∥ 3(cos(
10

3
) − 1) + 3sin

10

3
∥ 

 < 𝜀 (4.13) 

 Corresponding to the pair 𝜀 = 15 and the solution 𝑦2(𝑡) =
𝑡

3
, 𝑡 ∈ [0,10] of inequation (4.10) we 

have solution 𝑥(𝑡) =
𝑡

2
 ,𝑡 ∈ [0,10] of Equation (4.1) and constant 𝐶 =

1

6
 

such that ∥ 𝑦2(𝑡) − 𝑥(𝑡) ∥=∥
𝑡

3
−

𝑡

2
∥=

𝑡

6
≤ 2 < 𝐶𝜀 

This proves Ulam Hyres stability. 

 

ACKNOWLEDGMENTS 

The authors thanks to Dr.K. D. Kucche,Dr. C.T. Aage for their constructive comments and 

suggestions which improved the quality of the paper.  

 

CONFLICT OF INTERESTS 

The authors declare that there is no conflict of interests. 

 

REFERENCES 

[1] Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, 

1983.  

[2] Kishor D. Kucche and Pallavi U. Shikhare,Ulam–Hyres stability of integrodifferential equations in banach spaces via 



247 

RUPESH T. MORE, SHRIDHAR C. PATEKAR, ASHISH P. NAWGHARE 

Pachpatte's inequality, Asian-Eur. J. Math. 11(2) (2018), 1850062. 

[3] Pachpatte, Inequalities for Differential and Integral Equations, Academic Press, New York, 1998.  

[4] Byszewski L.; Theorems about the existence and uniquess of solutions of a semilinear evolution nonlocal Cauchy 

problem, J. Math. Anal. Appl., 162 (1991), 494-505.  

[5] H.L. Tidke and R.T. More ; Existence and uniqueness of mild solutions of nonlinear difference - integrodifferential 

equation with nonlocal condition, J. Adv. Math. 9 (3) (2014), 2415-2430. 

[6] S. M. Ulam, Problems in Modern Mathematics, Chapter 6, John Wiley and Sons, New York, 1960.  

[7] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960. 

[8] L. P. Castro and R. C. Guerra, Hyers–Ulam–Rassias stability of Volterra integral equation within weighted spaces, 

Libertas Math. 33(2) (2013), 21–35.  

[9] H. Hyers, On the stability of the linear functional equation, Natl. Acad. Sci. U.S.A. 27 (1941), 222–224.  

[10] S. M. Jung, A fixed point approach to the stability of a Volterra integral equations, Fixed Point Theory Appl. 2007 

(2007), Article ID 57064.  

[11] T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. 

[12] R.T. More, S.C. Patekar, V.B. Patare, Existence and Uniqueness of Solution of Integrodifferential Equation of Finite 

Delay in Cone Metric Space, Int. J. Appl. Eng. Res. 13 (23) (2018), 16460-16467. 


