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Abstract. In this paper, we have studied fractional order mathematical model that describes drug resistant tubercu-

losis with two line treatment by using Caputo fractional derivative. The present model has been solved successfully

by applying generalised Euler method (GEM) and matched with the previous results in integer order. The prop-

erties and nature of physical states of these equations have been emphasised more precisely by taking fractional

order. It is to be noted that the nature and kind of any type of tuberculosis is not uniform even though all circum-

stances remain similar. So it is challenging to define a mathematical model which considers the dynamics of its’

class by taking fractional order derivatives. Numerical solutions are prominently demonstrated with the help of

appropriate graphs that depicts practical utility than theoretical considerations.
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1. INTRODUCTION

Recently , the theory of fractional calculus [1], [2] has caught attention of scientists and re-

searchers for analysing the mathematical models in the field of Science and Technology [3]. The

concept of calculus evolved to fractional calculus by considering the fractional order of deriva-

tives and integrals. It can be described in many fields accurately and more extensively as in

Electrical engineering and electrodynamics [4], Physics and astrophysics, [5] Control systems

[6], Signals and systems [7] , digital signal processing [7], Image processing [8], Biomedical

and Biotechnology [9], Economics and Finance [10]. Researchers are now trying to pertain it

to the field of medicine for analysis of epidemic diseases [11]. Fractional order mathematical

model for diverse diseases which govern different factors at various stages has aroused wide

interest among scientists.

Tuberculosis (TB) is caused by group of closely related Mycobacterium tuberculosis bacteria

complex. The bacteria usually attacks lungs but can also attack any part of human body like

kidney, spine and brain. According to WHO (2017) [12], Tuberculosis (TB) is one of the top

10 causes of death from this single infection. In 2017, Tuberculosis (TB) caused 1.3 million

deaths among HIV negative people and additional 3 lack deaths from tuberculosis in HIV pos-

itive people. Among all these, maximum percentage of deaths accounting to 27% occurred in

South Asia region including India [13].

In view of rapid infection rate of tuberculosis (TB), WHO has declared it as a serious world

problem with efforts for eradication of the disease ranging from BCG vaccine in 18th cen-

tury and DOTS strategy in the end of 19th century [14]. To ensure the full impact, these

policies demand not only assistance from the medical fraternity but also the public. To cre-

ate awareness about life threatening effect of tuberculosis on humans in the world, analysis

of mathematical model has become integral part of the treatment. [15], [16],[17]. Previously

fractional order mathematical models of many epidemic diseases under considerable param-

eters and strategies have been analysed by different methods [18], [19]. There are various

methods to get approximate solutions of system of non linear differential equations like Finite

difference method (FDM) [22], Finite element method (FEA) [23], Adomain decomposition
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method (ADM) [24], Variation iteration method (VIM)[25], HE proposed Homotopy perturba-

tion method (HPM)[26], Lio proposed Homotopy analysis method (HAM) [27]. These methods

are effective for small time interval. Also chaotic systems have brought attention to failure of

above methods. However, to some extent researchers have shown keen interest to apply these

methods to get better approximation in versatile system of non linear differential equations in

smaller classes [28].

The present fractional order mathematical model consist of system of non-linear ordinary

differential equations with initial conditions have been operated by applying generalised Euler

method successfully [29]. Classical Euler method has been generalised for the system of non-

linear and linear differential equations of fractional order.

1.1. Basic definitions and some properties of fractional calculus. We give some basic idea

of fractional calculus and properties which are used further [1][2].

1.1.1. Definition. A real function h(t) , t > 0, is said to be in the space Cµ , µ ∈ R if there

exist a real number p(> µ ) such that h( t ) = t ph1(t) where h1(t) ∈ C[0,∞ ] and it is said to be

in the space Cn
µ if and only if hn ∈ Cµ , n ∈ N.

1.1.2. Definition. Riemann-Liouville fractional integral operator (Jα
t ) of order α ≥ 0 of a

function h ∈ Cµ , µ ≥ −1 is defined as

.aJα
t h(t) =

1
Γα

∫ t

a
(t− τ)α−1.h(τ)dτ (α > 0)

Where t ≥ a ≥ 0 and Γ(.) is a well known gamma function.

Some of the properties of Riemann -Liouville fractional integral operator have been explained

For h(t) ∈ Cµ , µ ∈ R, µ > −1,

a, α, β ≥ 0 and ν ≥ −1.

1. .aJα
t h(t) .aJβ

t h(t) = .aJα+β

t h(t)

2. .aJα
t h(t) .aJβ

t h(t) = .aJβ

t h(t) .aJα
t h(t)
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3. .aJα
t (t−a)ν = Γν+1

Γα+ν+1(t−a)(α +ν)

1.1.3. Definition. Riemann-Liouville Fractional Derivative:

If f (t) ∈C[a,b] and a < t < b then

(1) 0Dα
t f (t) =

1
Γ(1−α)

d
dt

∫ t

a

f (τ)
(t− τ)α

dτ,

where α ∈ (0,1) is called the Riemann-Liouville fractional derivative of order α .

1.1.4. Definition. The Caputo fractional derivative (.aDα
t ) of h(t) is defined as

.aDα
t h(t) =

1
Γn−α

∫ t

a
(t− τ)n−α−1h(n) (τ)dτ

For n−1 < α ≤ n n ∈ N

t ≥ a ≥ 0 and h ∈ Cn
−1

Some of the properties of Caputo fractional integral are as follows

If n−1 < α ≥ n n ∈ N and h ∈ Cn
µ , µ ≥ −1 then

1. .aDα
t .aJα

t h(t) = h(t)

2. .aDα
t .aJα

t h(t) = h(t)+∑
n−1
j=0 hk(a) (t−a)k

k!

1.1.5. Analysis of generalised Euler method [GEM]. Let’s consider system of fractional or-

der linear differential equations as in [28]

(2) Dα
a yi(t) = f (t,y1(t), y2(t), y3(t), . . . ,yn(t)) 0 < α ≤ 1, t > 0
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with initial conditions yi(0) = yi0, f or i = 1, 2, 3, . . .n

We have to find the solution in finite interval [0, a] . Particularly, in the prescribed method

we will solve the system in ′k′ subintervals of [0, a]by taking h as a width of each interval

such that h = a/k so that node of the interval will be t j = jh for j = 0,1,2,3, . . .k Assume that

yi(t), Dα
a yi(t), D2α

a yi(t) f or all i′s are continuous on [0, a]

Now we can use the generalised Taylor series formula about t0. for each value of t there is a

value ζ1 such that

yi(t) = yi0 +(Dα
a yi(t))(t0)

tα

Γ(α +1)
+
(
D2α

a yi(t)
)
(ζ1)

t2α

Γ(2α +1)
+ . . .(3)

f or all i = 1, 2, 3, . . .n

Let’s take t0 = 0 that gives t = h and so on. By substituting in 3, we get

yi(t0 +h) = yi(t0)+ f (t0,yi(t0))
hα

Γ(α +1)
+
(
D2α

a yi(t0)
)
(ζ1)

h2α

Γ(2α +1)
+ . . .(4)

By taking h sufficiently small, we get the free hand to eliminate the higher power terms from the

series 4. The general formula for generalised Euler method (GEM) for t j+1 = t j +h f or all j =

0, 1 2 3 . . .k is

yi(t j+1) = yi(t j)+ f (t j,yi(t j))
hα

Γ(α +1)
(5)

f or all i = 1,2, . . .n

1.2. Fractional order mathematical model of tuberculosis with twin line treatment.

Tuberculosis being an air-borne disease is transmitted when droplets from infectious individu-

als are inhaled and reach the alveoli of the lung via nasal passages, respiratory tract and bronchi.

On infection, the exposed individual may have a latent period having no symptoms or full blown

symptoms (cough, fever, weight loss, etc.) as in active infection. The individual in this stage

has a large amount of active TB bacteria in the body.

The risk of progression to TB disease is such that infected individuals shall develop TB if

untreated. When infected, if TB treatment is inadequate or transmission is directly from an
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individual having drug resistant tuberculosis, the first line of treatment fails and the person may

develop a multi-drug resistance TB (MDR-TB).Rarely extensively drug resistance TB (XDR-

TB) develops wherein, the second line of treatment also fails.A third type of drug resistance TB

referred to as totally drug resistant TB (XXDR-TB or TDR- TB) has been found.

In this study,we will first extend standard fractional order mathematical model for transmis-

sion of tuberculosis with twin line treatment of Mycobacterium tuberculosis in human host in

which we have considered multi drug resistant(MDR) tuberculosis. To understand the dynamics

of the disease, we have analysed the following system of fractional order ordinary differential

equations which defines the model of Tuberculosis with drug resistant to two line treatment

presuming population remains constant (N).

Assuming the following variables:

Sr. No. Class Description of class

1 S(t) Susceptible individuals

2 E(t) Exposed individuals

3 I(t) Infected individuals

4 R1(t) Resistance to first line of treatment

5 R2(t) Resistance to second line of treatment

6 R(t) Recovered individuals

It is clear that susceptible individuals (S(t)) with recruitment rate in population size N be ’a’

may become infected (I(t)). Let the rates at which an individual shifts from susceptible indi-

viduals (S(t)) to exposed individuals (E(t)) be ’c’,and exposed individuals (E(t)) to infected

individual (I(t)) be ’f’. On infection, the person goes for first line of treatment (R1(t)) or sec-

ond line of treatment (R2(t)) with resistance rates to treatment ’h’ and ’k’ respectively. After

proper and adequate treatment, they shall shift to recovered class (R(t)). However, since there

exist no permanent immunity to TB, the recovered can again be susceptible to the disease at

rate ’d’. Considering the rates of disease roused mortality from class I(t), R1(t),and R2(t) as
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’g’, ’l’, and ’n’ respectively. Rate of natural death ’b’. The resistant classes R1(t) and R2(t) on

convalescence move to recovered class R(t) at the rate ’m’ and ’p’ respectively.

Thus parameters governing the model are as follows

Sr. No. Class Description of class

1 a Recruitment rate in population to susceptible individuals

2 b Rate of natural death

3 c Rate at which susceptible individuals be exposed

4 d Rate at which recovered individuals becomes susceptible again

5 f Rate at which exposed individuals be infected

6 g Rate of diseased roused mortality in I(t)

7 h Resistance to first line of treatment

8 k Resistance to second line of treatment

9 l Rate of diseased roused mortality in R1(t)

10 m Rate of recovery after first line of treatment

11 n Rate of diseased roused mortality in R2(t)

12 p Rate of recovery after second line of treatment

Now we will first extend standard fractional order mathematical model for transmission of

tuberculosis with twin line treatment of mycobacterium tuberculosis in human host in which

we have considered multi drug resistant(MDR) tuberculosis. To understand the dynamics of

the disease, we have analysed the following system of fractional order ordinary differential

equations which defines the model of tuberculosis with drug resistant to two line treatment

presuming population remains constant (N).

0Dα
t S(t) = aN−bs(t)− cS(t)I(t)+dR(t)(6)

0Dα
t E(t) = cS(t)I(t)− (b+ f )E(t)(7)

0Dα
t I(t) = f E(t)− (b+g+h+ k)I(t)(8)

0Dα
t R1(t) = hI(t)− (b+ l +m)R1(t)(9)

0Dα
t R2(t) = kI(t)− (b+n+ p)R2(t)(10)
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0Dα
t R(t) = mR1(t)+ pR2(t)− (b+d)R(t)(11)

where α is real number such that 0 < α ≤ 1 .

1.2.1. Non-negative solutions of mathematical model. Denote R6
+ = {X ∈ R6 /X ≥ 0} and

X(t) = (S, E, I, R1, R2, R) .The following theorem and corollary prove the non negativity of

the solution,

Theorem 1.1. (Mean value theorem in the form of fractional order derivative)[28], [29] Let

f (t) and it’s derivative of order α i.e. Dα f (t) are continuous in C(0, a] for 0 < α ≤ 1 then

f (t) = f (0+)+
tα

Γ(α)
(Dα f )(ϑ )(12)

where 0 ≤ ϑ ≤ t, ∀ t ∈ (0, a].

Corollary 1.1.1. Suppose that f (t) and it’s derivative of order α i.e. Dα f (t) are continuous in

C(0, a] for 0 <α ≤ 1 then by 1.1, if Dα f (t) ≥ 0 f or all t ∈ (0, 1) then f (t) is non decreasing

and if Dα f (t) ≤ 0 f or all t ∈ (0, 1) then f (t) is non increasing for all t ∈ (0, 1).

Theorem 1.2. [28] Existence and uniqueness of solution of system of fractional order differ-

ential equations with initial conditions in (0, ∞) Now, We show that R6
+ is positive invariant

domain as

0Dα
t S(t) = aN−bs(t)− cS(t)I(t)+dR(t) ≥ 0

0Dα
t E(t) = cS(t)I(t)− (b+ f )E(t) ≥ 0

0Dα
t I(t) = f E(t)− (b+g+h+ k)I(t) ≥ 0

0Dα
t R1(t) = hI(t)− (b+ l +m)R1(t) ≥ 0

0Dα
t R2(t) = kI(t)− (b+n+ p)R2(t) ≥ 0

0Dα
t R(t) = mR1(t)+ pR2(t)− (b+d)R(t) ≥ 0

where α is a real number such that 0 < α ≤ 1

It is to be noted that by corollary 1.1.1, the solution will remain in R6
+
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1.2.2. Equilibrium points and stability of mathematical model. The equilibrium points of the

integer order system [21], [22], [23], i. e. for α = 1 . To evaluate equilibrium points of the

fractional order system 6 to 11 are A1 =
(aN

b , 0, 0, 0, 0, 0
)

and epidemic equilibrium points are

A2
(
S̄, Ē, Ī, R̄1, R̄2, R̄

)
are expressed as

S̄ =
(b+ f )(b+g+h+ k)

c f
Ē =

cS̄(b+d)(aN−bS̄)
(b+ f )(cS̄(b+d)−ρ)

Ī =
(b+d)(aN−bS̄)

cS̄(b+d)−d
R̄1 =

h(b+d)(aN−bS̄)
(b+ l +m)(cS̄(b+d)−ρ)

R̄2 =
k(b+d)(aN−bS̄)

(b+n+ p)(cS̄(b+d)−ρ)
R̄ =

(aN−bS̄)ρ
(cS̄(b+d)−ρ)d

where ρ = d
(

hm
b+ l +m

+
pk

b+n+ p

)
The local asymptotic stability of the equilibrium points have sufficient condition as the Jaco-

bian of matrix A1 and A2 having eigen values λi for i= 1, 2, 3, 4, 5, 6 such that |arg.(λi)| ≥ α
π

2 .

These sufficient conditions extends the stability of fractional order system by taking an integer

order (i. e. α = 1).

1.3. Numerical results of mathematical model. We have solved fractional ordered math-

ematical model by using general Euler method(GEM). The graphical results for α = 1 have

been examined by taking initial conditions S(0) = 1, E(0) = 2, I(0) = 1, R1(0) = 1, R2(0) =

1, R(0) = 1 . It has been observed that in this particular state, the results of the model matches

exactly as [23]. In these graphical results, Susceptible population increases up the limit point

and then takes steady state. The remaining classes of population decrease in various fashion and

take constant value as time increases. This endorses that both first and second line of treatments

are useful to control Mycobacterium tuberculosis. It has to be noted that the graph of Recovered

individuals returns to zero under appropriate and effective treatment as time progresses .

Now we fix all parameters and initial conditions in the present model and numerical simu-

lations of the model have been studied by varying order of fractional differential equations so

that it interprets as change in varied classes. Thereby alteration in order produces a modifica-

tion in nature of graph that can be investigated. The numerical solution for present fractional
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FIGURE 1. Mathematical model of S(t), E(t), I(t), R1(t), R2(t), R(t), at

a=0.015, N=1000, b=0.7, c=0.398, d=0.4, e=1, f=0.0998, g=0.008, h=0.4, k=0.5,

l=0.4, m=1, p=1.2, n=0.3 and α = 1

order mathematical model has been illustrated by two dimensional graph in two types of initial

conditions and values of parameters as in figure. 2 and figure 3. In figure 2(a), Susceptible

population decrease until some period of time, thereafter there is an increment followed by

steady state. Figure 2(b) gives the graph of Exposed population. It is to be noted that on ac-

count of first line treatment and second line treatment there occurs a decrement in number of

Exposed individuals followed by constant value.These individuals emerge as part of Recovered

individuals (R(t)). Figure 2(c) suggests an increase in Infected individuals upto certain level

until the number comes down gradually to steady level. Figure2(d) and figure 2(e) on Resistant

individuals to first line of treatment R1(t) and to second line of treatment R2(t) supports the as-

sumption that line one treatment and line two treatments efficiently control the Mycobacterium

tuberculosis. Whereas figure 2(f) exposes the considerable decrease in Recovered population

(R(t). This elicits the fact that immunity is temporary and individuals from class R(t) may shift

to class S(t). It is observed that in all the cases,there is gradual variation in asymptotic nature of

the classes as the order of derivatives changes.

In figure 3, We have changed the initial conditions to observe therein the nature of classes of

fractional order model keeping all parameters uniform. The model is set to equilibrium while
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varying the relative initial conditions as in [23]. This is to survey the alteration in numerical

results by variation in initial conditions and comparing it with the previous case.
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(c) 2D plot for I(t)
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(d) 2D plot for R1(t)
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(e) 2D plot for R2(t)
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FIGURE 2. Fractional order mathematical model taking initial conditions

S(0) = 1, E(0) = 2, I(0) = 1, R1(0) = 1, R2(0) = 1, R(0) = 1, at a=0.0007,

N=1000, b=0.07, c=0.7, d=0.75, f=0.998, g=0.008, h=0.07, k=0.55, l=0.00004,

m=0.008, p=0.0095, n=0.3 and α = 1.05, 1, 0.95, 0.9
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(a) 2D plot for S(t)
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(b) 2D plot for E(t)
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(c) 2D plot for I(t)
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(d) 2D plot for R1(t)
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(e) 2D plot for R2(t)
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FIGURE 3. Fractional order mathematical model with initial conditions S(0) =

100, E(0) = 20, I(0) = 5, R1(0) = 5, R2(0) = 5, R(0) = 5, at a=0.0015,

N=1000, b=0.7, c=0.398, d=0.4, f=0.008, g=0.008, h=0.4, k=0.5, l=0.4, m=1,

p=1.2, n=0.3 and α = 1.05, 1, 0.95, 0.9

Here in figure 3(a), Susceptible class shows decrement to steady state while exposed popula-

tion shows a slight increase and then slowly decrease as in figure 3(b). The Infected population,
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class of population who are Resistant to line one and two treatment and Recovered individuals

show reflection of current treatments’ effect. Since this phenomenon is a natural phenome-

non, we must consider possible variation in the population. The graphs for fractional order

mathematical model reflect dynamic nature of the classes under same initial conditions and pa-

rameters.

2. CONCLUSION

In view of the current scenario, integrated patient centred care and prevention, early diag-

nosis, systematic screening, preventive treatment of patients with high risk and vaccinations

against tuberculosis is imperative. Bold policies and supportive systems, political commitment

with adequate resources, engagement of communities universal health coverage policies cou-

pled with intensified research and innovation will be critical in ending the tuberculosis epidemic

[15]. With the WHO coming up with the ”End TB” , strategy owing to the global TB epidemic

that can cause serious public health consequences, the relevance of such models has greatly

increased.

Fractional order mathematical model for tuberculosis considering two line treatment has been

handled successfully by using generalised Euler method [GEM]. The results obtained by gener-

alised Euler method [GEM] match with [23] for α = 1. By taking suitable values of parameters

and initial conditions for all classes, Fractional order mathematical model gives an identical

configuration of graphs with proper distinctive orientation on account of change in order of

derivatives.

Proposed fractional order mathematical model provides a useful insight into the transmission

and further treatment of the disease for a variable population size and time varying state. It is

to be noted that while applying the model practically we may not get exact results in the output

of the integer order model,while a variety of possible illustrations may be obtained by changing

order of system of ordinary differential equations in mathematical model. Further, it is firmly

stated that fractional order mathematical model satisfies the hypothesis more accurately with-

out changing initial conditions and values of parameters. It is predicted that the proposed model

based on fractional calculus gives a wide scope to analyse the disease scientifically. It is clear
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that general Euler method [GEM] is a powerful, efficient and reliable method for investigation

of fractional mathematical model.
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