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Abstract. A bijection f : V (G)→{1,2, · · · , |V (G)|} induces an edge labeling f ∗ : E(G)→{0,1} such that for any

edge uv in G, f ∗(uv) = 1 if gcd(S,D) = 1 and f ∗(uv) = 0 otherwise, where S = f (u)+ f (v) and D = | f (u)− f (v)|.

The labeling f is called SD-prime cordial labeling if |e f ∗(0)− e f ∗(1)| ≤ 1. We say that G is SD-prime cordial

graph if it admits SD-prime cordial labeling. In this paper, we prove that certain classes of zero-divisor graphs of

commutative rings are SD-prime cordial graphs.
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1. INTRODUCTION

Let G = (V (G),E(G)) be a simple, finite and undirected graph with vertex set V (G) and edge

set E(G). All notation not defined in this paper can be found in [4]. Graph labeling is currently

an emerging area in the research of graph theory. A graph labeling is an assignment of integers

to the vertices or edges or both subject to certain conditions. The concept of graceful labeling

was introduced by Rosa [10] in 1960’s. For an excellent survey of graph labeling, we refer

the reader to Gallian [3]. Lau et al. have introduced the concepts SD-prime cordial labeling in
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[5]. Further results on SD-prime cordial graphs were discussed in [6, 7, 8, 9]. The idea of a

graph associated to zero-divisors of a commutative ring was introduced by I. Beck [2]. Later

it was modified by D. F. Anderson and P. S. Livingston [1]. Let R be a commutative ring with

non-zero identity, Z(R) its set of all zero-divisors in R and Z∗(R) = Z(R)\{0}. The zero-divisor

graph of R is the simple undirected graph Γ(R) with vertex set Z∗(R) and two distinct vertices

x and y are adjacent if and only if xy = 0. The concept of the coloring of zero-divisor graphs

of commutative ring was introduced by I. Beck [2]. Motivated by this, T. Tamizh Chelvam et

al. [11] were introduced concept of the labeling of zero-divisor graphs of commutative ring.

Also, they have proved that certain classes of zero-divisor graphs of commutative rings are sum

cordial graphs. In this paper, we prove that certain classes of zero-divisor graphs are SD-prime

cordial graphs.

2. PRELIMINARIES

Given a bijection f : V (G)→{1,2, · · · , |V (G)|}, we associate 2 integers S = f (u)+ f (v) and

D = | f (u)− f (v)| with every edge uv in E.

Definition 2.1. [5] A bijection f : V (G)→ {1,2, · · · , |V (G)|} induces an edge labeling f ∗ :

E(G)→ {0,1} such that for any edge uv in G, f ∗(uv) = 1 if gcd(S,D) = 1, and f ∗(uv) = 0

otherwise. The labeling f is called SD-prime cordial labeling if |e f ∗(0)− e f ∗(1)| ≤ 1. We say

that G is SD-prime cordial graph if it admits SD-prime cordial labeling.

Definition 2.2. The join of two graphs G1 and G2 is denoted by G1 +G2 and whose vertex

set is V (G1 +G2) = V (G1)
⋃

V (G2) and edge set is E(G1 +G2) = E(G1)
⋃

E(G2)
⋃
{uv : u ∈

V (G1),v ∈V (G2)}.

Definition 2.3. A bipartite graph is a graph whose vertex set V (G) can be partitioned into two

subsets V1 and V2 such that every edge of G has one end in V1 and the other end in V2. (V1,V2)

is called a bipartition of G.

Definition 2.4. A complete bipartite graph is a bipartite graph with bipartition (V1,V2) such

that every vertex of V1 is joined to all the vertices of V2. It is denoted by Km,n, where |V1| = m

and |V2|= n. A star graph is a complete bipartite graph K1,n.
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Definition 2.5. The complement G of the graph G is the graph with vertex set V (G) and two

vertices are adjacent in G if and only if they are not adjacent in G.

Definition 2.6. The Cartesian product G1×G2 of two graphs is defined to be the graph with

vertex set V1×V2 and two vertices u = (u1,u2) and v = (v1,v2) are adjacent in G1×G2 if either

u1 = v1 and u2 is adjacent to v2 or u2 = v2 and u1 is adjacent to v1.

3. MAIN RESULTS

Theorem 3.1. Let p be a prime number with p > 2 and Γ(Z2p) be the zero-divisor graph of the

commutative ring Z2p. Then Γ(Z2p) is SD-prime cordial graph.

Proof. Let p be a prime number and p > 2. Then the vertex set of Γ(Z2p) is Z∗(Z2p) =

{2,4, . . . ,2(p− 1), p} = {v1, . . . ,vp−1,vp} and the edge set of Γ(Z2p) is E(Γ(Z2p)) = {vivp :

1≤ i≤ p−1}. Therefore,
∣∣Z∗(Z2p)

∣∣= p and
∣∣E(Γ(Z2p))

∣∣= p−1. We define f : V (Γ(Z2p))→

{1,2,3, . . . , p} by f (vi) = i+1 for 1≤ i≤ p−1 and f (vp) = 1. Here we have e f ∗(0) = e f ∗(1) =
p−1

2 . Hence Γ(Z2p) is SD-prime cordial graph for p is a prime number and p > 2. �

Theorem 3.2. Let p be a prime number with p≥ 2 and Γ(Z3p) be the zero-divisor graph of the

commutative ring Z3p. Then Γ(Z3p) is SD-prime cordial graph.

Proof. If p = 2 then Γ(Z6). Therefore, Z∗(Z6) = {2,3,4} and Γ(Z6) being a path on three

vertices is obviously SD-prime cordial graph.

If p = 3 then Γ(Z9). Therefore, Z∗(Z9) = {3,6} and Γ(Z9) being a path on two vertices is

obviously SD-prime cordial graph.

Let Γ(Z3p) be a zero-divisor graph of Z3p, where p is a prime number and p > 3. Then

the vertex set of Γ(Z3p) is Z∗(Z3p) = {p,2p}
⋃
{3,6, . . . ,3(p−1)}= {u1,u2}

⋃
{v1, . . . ,vp−1}

and the edge set of Γ(Z3p) is E(Γ(Z3p)) = {u1vi,u2vi : 1≤ i≤ p−1}. Therefore,
∣∣Z∗(Z3p)

∣∣=
p+1 and

∣∣E(Γ(Z3p))
∣∣= 2p−2. We define the labeling f : V (Γ(Z3p))→ {1,2,3, . . . p+1} as

follows: f (u1) = 1, f (u2) = 2 and f (vi) = i+2 for 1≤ i≤ p−1. Here we have e f ∗(0) = p−1

and e f ∗(1) = p−1. Hence Γ(Z3p) is SD-prime cordial graph. �

Theorem 3.3. Let p be a prime number with p≥ 2 and Γ(Z4p) be the zero-divisor graph of the

commutative ring Z4p. Then Γ(Z4p) is SD-prime cordial graph.
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Proof. If p = 2 then Γ(Z8). Therefore, Z∗(Z8) = {2,4,6} and Γ(Z8) being a path on three

vertices is obviously SD-prime cordial graph.

Let Γ(Z4p) be a zero-divisor graph of Z4p, where p is a prime number and p ≥ 3. Here the

vertex set of Γ(Z4p) is partitioned into two sets V1 and V2, where V1 = {p,2p,3p}= {u1,u2,u3}

and V2 = {2,4, . . . ,2(p− 1),2(p+ 1), . . . ,2(2p− 1)} = {v1,v2, . . . ,vp−1,vp+1, . . . ,v2p−1} and

the edge set of Γ(Z4p) is E(Γ(Z4p)) = {u1v2,u1v4, . . . ,u1vp−1,u1vp+1, . . . ,u1v2p−2,u2v1,u2v2,

u2v3, . . . ,u2vp−1, u2vp+1, . . . ,u2v2p−1,u3v2,u3v4, . . . ,u3vp−1,u3vp+1, . . . ,u3v2p−2}. Therefore,

|Z∗(Z4p)|= 2p+1 and |E(Γ(Z4p))|= 4p−4. We define f : V (Γ(Z4p))→{1,2,3, . . . ,2p+1}

is as follows: f (u1) = 1; f (u2) = 2; f (u3) = t, where t be a largest prime number ≤ 2p+ 1;

f (v j) = j+2 for 1≤ j ≤ p−1; f (v j) = j+1 for p+1≤ j ≤ t−2 and

f (v j) =


j+3 if j is even and t−2 < j ≤ 2p−1

j+1 if j is odd and t−2 < j ≤ 2p−1.
Here e f ∗(0) = 2p− 2 and e f ∗(1) = 2p− 2. Therefore |e f ∗(0)− e f ∗(1)| ≤ 1. Hence Γ(Z4p) is

SD-prime cordial graph. �

Theorem 3.4. Let p be a prime number with p > 2 and Γ(Z2p)+Γ(Z4) be the zero-divisor

graph of the commutative ring Z2p +Z4. Then Γ(Z2p)+Γ(Z4) is SD-prime cordial graph.

Proof. Let G = Γ(Z2p) + Γ(Z4). Let V (G) = {2,4, . . . , p − 1, p}
⋃
{x : x = 2 ∈ Z4} =

{u1, . . . ,up,x} and E(G) = {uiup,uix,upx : 1 ≤ i ≤ p− 1}. Therefore, |V (G)| = p + 1 and

|E(G)|= 2p−1. Define f : V (G)→{1,2,3, . . . , p+1} by f (up) = 1, f (x) = 2 and f (ui) = i+2

for 1≤ i≤ p−1. Clearly e f ∗(0) = p−1 and e f ∗(1) = p and |e f ∗(0)− e f ∗(1)| ≤ 1. Hence G is

SD-prime cordial graph. �

Theorem 3.5. Let p be a prime number with p > 2 and Γ(Z2p)+Γ(Z9) be the zero-divisor

graph of the commutative ring Z2p +Z9. Then Γ(Z2p)+Γ(Z9) is SD-prime cordial graph.

Proof. Let G=Γ(Z2p)+Γ(Z9). Let V (G) = {2,4, . . . ,2(p−1), p}
⋃
{x,y : x= 3,y= 6∈Z9}=

{u1, . . . ,up,x,y} and E(G) = {uiup,uix,uiy,upx,upy,xy : 1 ≤ i ≤ p− 1}. Therefore, |V (G)| =

p+ 2 and |E(G)| = 3p. We define the vertex labeling f : V (G)→ {1,2,3, . . . , p+ 2} is as

follows: f (x) = 1; f (y) = 2; f (up) = t, where t be a largest prime number≤ p+2; f (ui) = i+2

for 1≤ i≤ t−3 and
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f (ui) =


i+4 if i is odd and t−3 < i≤ p−1

i+2 if i is even and t−3 < i≤ p−1.

Clearly, e f ∗(0) =
3p−1

2 and e f ∗(1) =
3p+1

2 and |e f ∗(0)− e f ∗(1)| ≤ 1. Hence Γ(Z2p)+Γ(Z9) is

SD-prime cordial graph. �

Corollary 3.6. Let p be a prime number with p > 2 and Γ(Zp2)+Γ(Z4) be the zero-divisor

graph of the commutative ring Zp2 +Z4. Then Γ(Zp2)+Γ(Z4) is SD-prime cordial graph.

Proof. Since the graph Γ(Zp2)+Γ(Z4)∼=Γ(Z2p), by Theorem 3.1, Γ(Zp2)+Γ(Z4) is SD-prime

cordial graph. �

Theorem 3.7. Let p be a prime number with p > 2 and Γ(Zp2)+Γ(Z6) be the zero-divisor

graph of the commutative ring Zp2 +Z6. Then Γ(Zp2)+Γ(Z6) is SD-prime cordial graph.

Proof. Let G = Γ(Zp2) + Γ(Z6). Let V (G) = {u1, . . . ,up−1}
⋃
{x,y,z : x = 2,y = 3,z = 4 ∈

Z6}= {u1, . . . ,up−1,x,y,z} and E(G)= {uix,uiy,uiz,xy,yz : 1≤ i≤ p−1}. Therefore, |V (G)|=

p+2 and |E(G)|= 3p−1. Define the vertex labeling f : V (G)→{1,2, . . . , p+2} by f (x) = 1;

f (z) = 2; f (y) = t, where t be largest prime number ≤ p+2; f (ui) = i+2 for 1≤ i≤ t−3 and

f (ui) =


i+4 if i is odd and t−3 < i≤ p−1

i+2 if i is even and t−3 < i≤ p−1.

Here we have e f ∗(0) =
3p−1

2 and e f ∗(1) =
3p−1

2 . Thus |e f ∗(0)− e f ∗(1)| ≤ 1. Hence G is SD-

prime cordial graph. �

Theorem 3.8. Let p be a prime number with p > 2 and Γ(Zp2)+Γ(Z9) be the zero-divisor

graph of the commutative ring Zp2 +Z9. Then Γ(Zp2)+Γ(Z9) is SD-prime cordial graph.

Proof. Let G = Γ(Zp2) + Γ(Z9). Let V (G) = {u1, . . . ,up−1}
⋃
{x,y : x = 3,y = 6 ∈ Z9} =

{u1, . . . ,up−1,x,y} and E(G) = {uix,uiy,xy : 1 ≤ i ≤ p− 1}. Therefore, |V (G)| = p+ 1 and

|E(G)|= 2p−1. Define the vertex labeling f : V (G)→{1,2, . . . , p+1} by f (x) = 1, f (y) = 2

and f (ui) = i+2 for 1≤ i≤ p−1. Clearly e f ∗(0) = p−1 and e f ∗(1) = p. Therefore∣∣e f ∗(0)− e f ∗(1)
∣∣≤ 1. Hence G is SD-prime cordial graph. �
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Theorem 3.9. Let p be a prime number with p > 2 and Γ(Zp2)+Γ(Z9) be the zero-divisor

graph of the commutative ring Zp2 +Z9. Then Γ(Zp2)+Γ(Z9) is SD-prime cordial graph.

Proof. Let G = Γ(Zp2) + Γ(Z9). Let V (G) = {u1, . . . ,up−1}
⋃
{x,y : x = 3,y = 6 ∈ Z9} =

{u1, . . . ,up−1,x,y} and E(G) = {uix,uiy : 1 ≤ i ≤ p− 1}. Therefore, |V (G)| = p + 1 and

|E(G)| = 2p− 2. The labeling pattern is analogous to that of the Theorem 3.8. Clearly,

e f ∗(0) = p− 1 and e f ∗(1) = p− 1. Thus
∣∣e f ∗(0)− e f ∗(1)

∣∣ ≤ 1. Hence G is SD-prime cordial

graph. �

Theorem 3.10. Let p be a prime number with p > 2 and Γ(Zp2)+Γ(Z6) be the zero-divisor

graph of the commutative ring Zp2 +Z6. Then Γ(Zp2)+Γ(Z6) is SD-prime cordial graph.

Proof. Let G = Γ(Zp2) + Γ(Z6). Let V (G) = {u1, . . . ,up−1}
⋃
{x,y,z : x = 2,y = 3,z = 4 ∈

Z6}= {u1, . . . ,up−1,x,y,z} and E(G) = {uix,uiy,uiz : 1≤ i≤ p−1}. Therefore, |V (G)|= p+2

and |E(G)|= 3p−3. The labeling pattern is analogous to that of the Theorem 3.7. Therefore,

e f ∗(0) =
3p−3

2 and e f ∗(1) =
3p−3

2 . Thus |e f ∗(0)− e f ∗(1)| ≤ 1. Hence G is SD-prime cordial

graph. �

Theorem 3.11. Let p be a prime number with p > 2 and Γ(Z2p)+Γ(Z9) be the zero divisor

graph of the commutative ring Z2p +Z9. Then Γ(Z2p)+Γ(Z9) is SD-prime cordial graph.

Proof. Let G=Γ(Z2p)+Γ(Z9). Let V (G)= {2,4, . . . ,2(p−1), p}
⋃
{x,y : x= 3,y= 6∈Z9}=

{u1, . . . ,up,x,y} and E(G) = {uiup,uix,uiy,upx,upy : 1≤ i≤ p−1}. Therefore, |V (G)|= p+2

and |E(G)| = 3p− 1. The labeling pattern is same as in the Theorem 3.5. From the labeling,

we get e f ∗(0) =
3p−1

2 and e f ∗(1) =
3p−1

2 and also |e f ∗(0)−e f ∗(1)| ≤ 1. Hence Γ(Z2p)+Γ(Z9)

is SD-prime cordial graph. �

Theorem 3.12. Let p be a prime number with p > 2 and Γ(Z2p)×Γ(Z4) be the zero-divisor

graph of the commutative ring Z2p×Z4. Then Γ(Z2p)×Γ(Z4) is SD-prime cordial graph.

Proof. Since the graph Γ(Z2p)×Γ(Z4)∼=Γ(Z2p), by Theorem 3.1, Γ(Z2p)×Γ(Z4) is SD-prime

cordial graph. �
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