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Abstract. In view of the large limitations of the dual-porosity media seepage model established in the early study,

the elastic external boundary condition is newly presented in this paper, which can treats the idealized assumption

(external boundary constant pressure, closed, infinite) in traditional model as a special case. Based on it, with

considering the influence of well-bore storage, skin factors and external boundary radius on reservoir, an unstable

seepage model under the elastic boundary is established first. then, the Laplace space solution of seepage model

is obtained by using Laplace transform and similar structure theory in turn. Subsequently, by using Stehfest

inversion transformation and the corresponding mapping software, the type curves are drawn, and the impacts of

the main parameters on them are analyzed. The results indicate that the elastic coefficient has negative affect on

the asymptotic rate of the type curve; And the type curves determined by different external boundary radii deviate

during the later period of flow; Further more, the elastic coefficient affects the migration trajectory of the curves.

Numerical simulation further verifies the scientificalness of introducing elastic external boundary conditions. The

model established in this paper and the corresponding data analysis provide a more solid theoretical basis for the

scientific analysis of the influence of reservoir parameters on reservoir pressure, and provide a new idea for the

design and improvement of related well testing software.
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1. INTRODUCTION

The reservoir parameters are reversely calculated after matching actual theoretical curve to

measured pressure curve by using modern well test analysis methods usually. Looking back

to the research results obtained via modern well test analysis methods, we get obviously that

though theoretical pressure type curve is similar to the actual measured, there are large er-

rors with the theoretical [1], which brings about the error of the obtained reservoir parameters

inevitably. How can we reduce such errors?In engineering, in addition to the instrumental mea-

surement errors, the sources of error are mostly the over-idealized assumptions [2, 3]. The ex-

isting well test interpretation models are also based on specific idealized assumptions, including

the ideal external boundary condition(closure, infinity and constant pressure)assumption. Based

on this consideration, the authors contemplate a new external boundary condition (elastic exter-

nal boundary) to decrease the errors of the obtained reservoir parameters.

What is the elastic outer boundary? In fact, the concept of elasticity has been widely used

in economics, physics and engineering theory [4, 5, 6]. Alfred.Marshall, a famous economist,

put forward the concept of elasticity: elasticity means the intensity or sensitivity of the relative

change of dependent variables to the relative changes of independent variables. In 2010, Arthru

P. Boresi (USA) published the ”Elastic Theory” in Engineering Mechanics which describes the

application of elasticity in the branches of mechanics. The significance of putting forward the

concept of elasticity is that elasticity solves the rigidity problem to a great extent in engineering

problems. Hence, in this paper, with the help of the definition of elasticity itself, the elastic func-

tion and the elastic external boundary condition will be defined in the seepage problem, which

will transform three kinds of ”rigid” external boundary conditions (closed, constant pressure,

infinity) considered in the earlier studies into the elastic external boundary condition. Strictly to

say, the elastic external boundary condition defined not only contains the three special boundary

conditions but also extends the ideal outer boundary further, that makes it possible to reduce the

error between theoretical pressure curve and the measured.

This paper focuses on the problem of dual-porosity media reservoirs. The research on dual-

porosity media reservoirs originated in 1960, Barenblatt, Zheltov and Kochina proposed the
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basic concept of fluid motion in fractured rock and based on some special hypothesis, the gen-

eral equation of fluid flow [7] in dual-porosity media was obtained. In1997, E.S. Choi [8], M.

Preshoand S. Wo, V. Ginting [9, 10] et al. established a seepage model under infinite, constant

pressure and closed external boundary conditions for the problem of dual-porosity media and

dual-permeability reservoir.Although the analytical solution was not given, the boundary con-

ditions considered by the model had always been used by contemporary reservoir researchers,

so the work done by the author is still meaningful. On the basis described above, Li Shunchu,

Zheng Pengshe, Chen Liya et al. [11, 12, 13, 14] put forward the similar structure method and

introduced the concept of similar kernel function after the deep study of the bottom hole pres-

sure solution in dual-porosity media reservoir. And the solution of the model under three kinds

of outer boundary conditions in theirs can be expressed as the form of continued fractions, which

simplified and beautified the solution of the model. Shortly thereafter, The reservoir models of

dual porosity medium reservoir under three kinds of external boundary conditions (closed, con-

stant pressure, infinite) are established by Li Shunxhu, Xu Li, Xia Wenwen et al. [15, 16, 17].

After making use of the similar structure method and Stehfest numerical inversion method, a

similar structure algorithm is developed to calculate well-bore pressure and pressure deriva-

tive of reservoir percolation model, and the type curves are drawn and analyzed at last, which

provides a new idea for the design of the corresponding well test software.

On the basis of the above-mentioned analysis, in this paper, the elastic outer boundary condi-

tion will be introduced firstly when solving the mathematical model of unstable double porosity

permeable flow, taking the three kinds of external boundary conditions (closure, infinity and

constant pressure) considered in the past as special cases. Second, the similar construction

method is used to solve the seepage model solution, and the numerical inversion method is used

to draw the characteristic curve of bottom hole pressure in real space. But more than those, the

influence of characteristic parameters under elastic boundary condition on the characteristics of

unstable seepage pressure is analyzed, so as to make a more scientific guidance for the actual

situation of oil and gas reservoir in reservoir development.

2. PRELIMINARIES

This paper is based on the following assumptions.
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(1) Consider the shape of the matrix block to be a spherical block.

(2) The flow of a fluid is isothermal.

(3) There is no direct fluid flow between the pores and the well, and the flow sequence is:pore

→ crack→ well.

(4) Fluid flow in the seepage field obeys Darcy’s law.

(5) Do not take the influence of gravity into account.

(6) Only one well to produce.

(7) Inertia force is negligible.

The necessary symbols are as follows

Letter Physical quantity Company

Pi Fluid pressure in real space MPa

PiD Dimensionless fluid pressure in real space dimensionless

PiD Dimensionless fluid pressure in Laplace space dimensionless

rw Well-bore radius m

r Distance from point to well-bore m

rD Dimensionless distance from point to well-bore dimensionless

R Outer boundary radius m

RD Dimensionless outer boundary radius dimensionless

ki Permeability in a fractured system mD

λ Tandem flow coefficient dimensionless

h Reservoir thickness m

ω Storage ratio dimensionless

Q Surface production of wells m3/d

B Volume coefficient of crude oil dimensionless

C Wellbore reservoir coefficient m3/MPa

φ1 Porosity in fracture system dimensionless

φ2 Porosity in matrix system dimensionless

µ fluid viscosity mPa · s
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Note: i=1, 2, w, respectively represent fracture system, matrix system, bottom hole.

2.1 Elasticity in seepage problem. In the process of fluid seepage, the pressure, affected by

time and space, can be expressed as p= p(x1,x2,x3, t), so as to give the pressure drop expression

P = p0− p(x1,x2,x3, t), where p0 is the original formation pressure. In particular, the pressure

drop expressed as P = P(r, t) = p0− p(r, t) is considered to be a function of time and radial

radius in the plane radial flow process.

In solving the issue of unstable seepage pressure dynamics, the state at every moment of the

unstable seepage process can be considered stable. This method is referred to as the steady

state replacement method [18]. Therefore, when defining the concept of elasticity below, the

pressure drop can be considered as a function P(r)related only to the radial radius.

Definition 1:the pressure drop P(r), a function of the fluid for radial radius r, is differentiable

during seepage, then we call εP
r is the elastic function of P(r) on r if εP

r = εP
r (r) = − r

P ·
∂P
∂ r =

−∂ lnP
∂ lnr , and the value of εP

r at the point r0 is the elastic coefficient of εP
r at point r0, recorded as

εP
r0

.

εP
r reflects the relationship between the relative rate of change of the radial radius and the

relative rate of change of the pressure drop, also known as the sensitivity of P to r. For instance,

the value of elastic function (elastic coefficient) is εP
r (r1) when r = r1 at a certain time , Then

the pressure drop is also approximately changed εP
r (r1)% if the radial radius changes 1%.

2.2 Elastic external Boundary in the seepage problem of dual-porosity media. In this paper,

we only need to establish the elastic function of the pressure drop P1(r) related to the radial

radius r in the fracture system in view that fluid flows into the well-bore only through fractures

in the process of formation seepage of dual-porosity media.

Let the external boundary Γ : r = R, according to the definition of elastic coefficient, the

elastic coefficient of its boundary can be described as

(2.2.1) ε
P1
Γ

= ε
P1
R =−∂ lnP1

∂ lnr
|r=R

Three kinds of external boundary conditions (closed, constant pressure, infinite) are consid-

ered in the study of early petroleum engineering as follows.
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(1) The equation ∂P1
∂ r |r=R = 0 is established when the outer boundary is closed, and we get

ε
P1
Γ

= 0 at this time.

(2) The equation P1|r=R = 0 is established when the outer boundary pressure is constant

and we get ε
P1
Γ
→+∞ at this time.

(3) The equation P1|r→+∞ = 0 is established when the outer boundary is infinite and we get

R→+∞ at this time.

Therefore the following definition can be given.

Definition 2:Let the pressure drop of the fracture system be P(r) as a function of the radial

radius r and the outer boundary radius is R, then

(2.2.2) [εP1
Γ

P1 + r
∂P1

∂ r
]r=R = 0

is called the elastic outer boundary condition of the fluid.

3. MAIN RESULTS

3.1 basic assumptions and mathematical models. Combined with the initial condition and

boundary condition, the seepage model of dual-porosity medium can be established as fol-

lows [19, 20, 21]

(3.1.1)



∂ 2P1
∂ r2 + 1

r
∂P1
∂ r −

µ

k1
q = φ1c1µ

k1

∂P1
∂ t

∂ 2P2
∂ r2 + 2

r
∂P2
∂ r = φ2c2µ

k2

∂P2
∂ t

∂P2
∂ r |r=0 = 0

P2(r, t)|r=r1 = P1

q = 3
r1

k2
µ

∂P2
∂ r |r=r1

P1(r,0) = P2(r,0) = 0

Pw(t) = [P1−Sr ∂P1
∂ r ]|r=rw

r ∂P1
∂ r |r=rw = 141.2µ

k1h [−BQ+C dP1
dt ]

(εP1
Γ

P1 + r ∂P1
∂ r )r=R = 0(the external boundry condition)

3.2 Transformation and solution of the model.
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3.2.1 Dimensional seepage model of matrix system under elastic boundary. To facilitate

the solution, the following dimensionless quantities are introduced.

r2D = r
r1
,PiD = k1h

141.2BQµ
Pi(i = 1,2)

CD = C
1.191(φ1c1+φ2c2)hr2

w

tD = 2.637×10−4

(φ1c1+φ2c2)µr2
w

k1t

ω = φ1c1
φ1c1+φ2c2

,λ = 15( rw
r1
)k2

k1

Based on the assumption of 3.1.1, the dimensionless seepage model of matrix system is

obtained by dimensionless treatment of the variables in the seepage model of matrix system.

(3.2.1)



∂ 2P2D
∂ r2

2D
+ 2

r2D

∂P2D
∂ r2D

= 3.9555×103(1−ω)
λ

∂P2D
∂ tD

P2D(r2D, tD)|r2D=1 = P1D

∂P2
∂ r = 0

P2(r, t)|r=r1 = P2

For (3.2.1), taking the Laplace transform as follows on dimensionless time tD.

P2D =
∫

∞

0
e−ztDP2DdtD

Where z is a parameter, and then we get

(3.2.2)


d2P2D
dr2

2D
+ 2

r2D

dP2D
dr2D

=W 2P2D

P2D(r2D,z)|r2D=1 = P1D

dP2D
dr2D

= 0

Where W= 3.9555×103(1−ω)z
λ

.Its easy to obtained the answer(derivation details are included

in Appendix A)

(3.2.3)
dP2D

dr2D
|r2D=1 = (W coth(W )−1)P1D
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3.2.2 Dimensional seepage model of fracture system under elastic boundary. On the basis

of section 3.2.1, the following dimensionless quantities are introduced.


r1D = r

rw
,R1D = R

rw

PwD = k1h
141.2BQµ

Pw

The dimensionless mathematical model of fluid seepage in fracture system is obtained as

follows.

(3.2.4)



∂ 2P1D
∂ r2

1D
+ 1

r1D

∂P1D
∂ r1D
− λ

5 (W coth(W )−1)P1D = 2.637×10−4ω
∂P1D
∂ tD

PwD = [P1D−Sr1D
∂P1D
∂ r1D

]|r1D=1

(CD
∂PwD
∂ tD
− r1D

∂P1D
∂ r1D

)|r1D=1 = 1

(εP1D
Γ

P1D +RD
∂P1D
∂ r1D

)r1D=RD = 0

For (3.2.4), the Laplace transformation for dimensionless time tD is obtained

(3.2.5)



d2P1D
dr2

1D
+ 1

r1D

dP1D
dr1D

= [λ

5 (W coth(W )−1)+2.637×10−4ωz]P1D

PwD = [P1D−Sr1D
dP1D
Dr1D

]|r1D=1

(CDzPwD− r1D
dP1D
dr1D

)|r1D=1 =
1
z

(εP1D
Γ

P1D +RD
dP1D
dr1D

)r1D=RD = 0

Then assuming f (z) = ω + λ

5z(W coth(W )−1), (3.2.5) could be simplified as follows.

(3.2.6)


d2P1D
dr2

1D
+ 1

r1D

dP1D
dr1D
− z f (z)P1D = 0

(−kCDzP1D +(1+ kCDzS)dP1D
dr1D

)|r1D=1 =
1
z

(εP1D
Γ

P1D +RD
dP1D
dr1D

)r1D=RD = 0

where k = 141.2×1.191×2.637×10−4.

3.2.3 Similarity Construction Theory for Boundary value problems of differential equa-

tions. Theorem 1: In the form of
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(3.2.8)


y
′′
+ 1

x y
′−Ay = 0,x > 0

y
′|x=a =−1

(Ey+Fy
′
)x=b = 0

this boundary value problem of ordinary differential systems have the following form of solution

where a,b, A,E,F are the real constant and A > 0,E2 +F2 6= 0,0 < a < b:

(3.2.9) y = Φ(x) =
1√
A

Eϕ0,0(x,b,
√

A)+F
√

Aϕ0,1(x,b,
√

A)

Eϕ1,0(a,b,
√

A)+F
√

Aϕ1,1(a,b,
√

A)

here

(3.2.10) ϕm,n(x,y,z) = Km(xz)In(yz)+(−1)m−n+1Im(xz)Kn(yz)

Where Kl(•), Il(•) are the first and second order variant Bessel functions respectively (deriva-

tion details are included in Appendix B).

In order to solve the problem of definite solution (3.2.7), it is necessary to further improve

the formula (3.2.8) and generalize the boundary conditions x = a. For this reason, the following

theorem is given.

Theorem 2:In the form of

(3.2.11)


y
′′
+ 1

x y
′−Ay = 0,x > 0

[By+(1+BC)y
′
]|x=a = D

(Ey+Fy
′
)x=b = 0

this boundary value problem of ordinary differential systems have the following form of solution

where a,b, A,B,C,D,E,F are the real constant and A > 0,E2 +F2 6= 0,0 < a < b (derivation

details are included in Appendix C):

(3.2.12) y = D · 1
B+ 1

C−Φ(a)

· 1
C−Φ(a)

· (−Φ(x))

In fact, Φ(x) in (3.2.9) can be considered as a similar kernel function of the boundary value

problem (3.2.11), and (3.2.12) is a similar structural formula of the solution of the boundary

value problem (3.2.10). Therefore, in order to obtain the solution of the boundary value problem
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(3.2.11), it can be completed according to the similar structure method [13]. The method steps

are as follows:

Step1:The function is constructed from the parameter A and the independent variable x in the

solution equation and its value a,b on the boundary are as follows:

ϕ0,0(x,b,
√

A),ϕ0,1(x,b,
√

A),ϕ1,0(x,b,
√

A),ϕ1,1(x,b,
√

A)

then calculate the value of ϕ1,0(a,b,
√

A) and ϕ1,1(a,b,
√

A)

Step2:From the constant E,F of the boundary condition (Ey+Fy
′
)x=b = 0, according to the

formula (3.2.8) too, a similar kernel functionΦ(x) is obtained and the value Φ(a) is calculated.

Step3:From the constants B,C,D in the boundary condition [By+(1+BC)y
′
]|x=a =D at x= a

in (3.2.10), according to the formula (3.2.11) too, the solution of the boundary value problem

(3.2.10) is obtained.

3.3 Solution of Seepage Model. By comparing the boundary value problems (3.2.7) and

(3.2.11), it is not difficult to find that the two boundary value problems are consistent when

the parameters and variables are replaced by table 1.

Therefore, a similar kernel function, which is easy to obtain the solution of the (3.2.6) model,

is as follows.

(3.3.1) Φ(r1D) =
ε

P1D
Γ

ϕ0,0(r1D,RD,
√

z f (z))+RD
√

z f (z)ϕ0,1(r1D,RD,
√

z f (z))√
z f (z)[εP1D

Γ
ϕ1,0(1,RD,

√
z f (z))+RD

√
z f (z)ϕ1,1(1,RD,

√
z f (z))]

and the Laplace space solution of dimensionless pressure of the crack system can be obtained

as follows .

(3.3.2) P1D(r1D,z) =
1
z
· 1

kCDz+ 1
S+Φ(1)

· 1
S+Φ(1)

· (−Φ(r1D))

Owing to PwD = [P1D−Sr1D
dP1D
dr1D

]|r1D=1, the Laplace space solution of dimensionless bottom-

hole pressure can be obtained as follows.

(3.3.3) PwD =
1
z
· 1

kCDz+ 1
S+Φ(1)
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TABLE 1. Parameter and variable replacement table

Parameters and variables Parameters and variables

in Boundary value in Boundary value

problem (3.2.11) problem (3.2.7)

x r1D

y P1D

a 1

b RD

A z f (z)

B −kCDz

C −S

D 1
z

E ε
P1D
Γ

F RD

4. SENSITIVITY ANALYSIS

By using Stehfest numerical inversion method, the Laplace space solution of dimensionless

bottom hole pressure is inversed into real space. Through the numerical simulation of the map-

ping software and the analysis of the influence of typical parameters on the bottom hole pressure

and pressure derivative under the elastic outer boundary, the law of the bottom hole pressure and

pressure derivative changes with time under the elastic boundary is obtained finally.
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FIGURE 1. Effect of CD for the type curves

4.1 Effect of ε
P1D
Γ

and CD for the type curves. Fig.1 shows the variation of dimensionless bot-

tom hole pressure with time under the action of well-bore reservoir CD. The figure firstly shows

that the well-bore reservoir mainly affects the initial stage of fluid flow.Secondly, the larger the

well-bore reservoir is, the smaller the dimensionless bottom hole pressure well be. Thirdly, the

dimensionless bottom hole pressure increases at a relatively stable rate for a period of time.

When the matrix system fluid flows to the fracture system, the growth rate of the curve appears

to be transiently stable, and then continues to increase. The characteristic curve determined by

different well-bore reservoir coefficients eventually asymptotically follows a curve.

FIGURE 2. Effect of ε
P1D
Γ

and CD for the type curves
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Fig.2 shows the variation of dimensionless bottom hole pressure with time under the inter-

action of elastic boundary and well-bore reservoir. It is easy to see from the figure that in the

initial stage of mining, the curves with the same coefficient of elasticity for different well-bore

reservoirs almost coincide. At this time, well-bore reservoir is the main influencing factor of

dimensionless bottom-hole pressure. When the characteristic curve shows asymptotic phenom-

enon, the elastic boundary becomes the main factor affecting the curve; the elastic coefficient

is positively correlated with the inclination rate of the asymptotic curve, that is, the larger the

elastic coefficient is , the faster the dimensionless bottom hole pressure increase rate will be.

FIGURE 3. Effect of CD for the type curves

Fig.3 shows the effect of well-bore reservoir on dimensionless bottom-hole pressure deriv-

ative. It can be seen from the figure that the dimensionless pressure derivative increases con-

tinuously in the initial stage of production. When the matrix system fluid flows to the fracture

system, the dimensionless pressure derivative becomes smaller in a short time and then con-

tinues to increase, and finally characteristic curve is asymptotic to a curve. The value of the

well-bore storage coefficient is positively correlated with the time it takes for the peak to ap-

pear, that is, the smaller the CD, the earlier the peak appears.
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FIGURE 4. Effect of ε
P1D
Γ

and CD for the type curves

Fig.4 shows the variation of dimensionless bottom derivative with time under the interaction

of elastic boundary and well-bore reservoir. It can be seen from the diagram that at the beginning

of production, although the elastic outer boundary has little effect on the dimensionless pressure

derivative of well-bore reservoir, the smaller the CD value, the greater the bottom-hole pressure

of dimensionless hole. The characteristic curve has peaks and wave troughs, and after the peak

appears, the elastic boundary plays a leading role. The elastic coefficient is inversely related to

the dimensionless pressure derivative at the trough and positively correlated with the asymptotic

time of the curve.

FIGURE 5. Effect of S for the type curves
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4.2 Effect of ε
P1D
Γ

and S for the type curves. Fig.5 shows the variation of dimensionless bottom

hole pressure with time under the action of epidermal factor S. It can be seen from the diagram

that the characteristic curves determined by different epidermal factors are significantly differ-

ent in the middle period of fluid flow, and the epidermal factors are positively correlated with the

dimensionless bottom hole pressure, and in the early and late stages, the characteristic curves

are asymptotically at a certain curve at a relatively stable rate.

FIGURE 6. Effect of ε
P1D
Γ

and S for the type curves

Fig.6 shows the variation law of the pressure of the dimensionless well bottom over time

under the interaction of elastic boundary and skin factor. As can be seen from the figure , the

characteristic curve shows a remarkable difference after the pressure of the dimensionless well

bottom is increased to a certain value at a relatively stable speed, and the characteristic curve of

the same elastic coefficient is asymptotic to a curve after a period of relative stable period. The

elastic coefficient is negatively correlated with the asymptotic velocity and positively correlated

with the pressure derivative at the asymptotic point.
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FIGURE 7. Effect of S for the type curves

Fig.7 shows the variation of dimensionless pressure derivatives over time under the influence

of epidermis effect. It can be seen from the diagram that the overall change of the characteristic

curve is hump, the dimensionless pressure derivative is positively correlated with the epidermal

factor in the middle period of fluid flow, and the characteristic curve is finally asymptotically in

a curve.

FIGURE 8. Effect of ε
P1D
Γ

and S for the type curves

Fig.8 shows the variation of the dimensionless bottom-hole pressure derivative over time with

the elastic boundary and the skin factor. It can be seen from the figure that the characteristic

curve with the same elastic coefficient is finally asymptotic to a curve. The characteristic curves

determined by different skin factors are different. The total length of the segments is different.
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The elastic coefficient is positively correlated with the total length of the significant difference,

negatively correlated with the asymptotic velocity of the curve, and negatively correlated with

the pressure derivative when the curve is asymptotic.

FIGURE 9. Effect of RD for the type curves

4.3 Effect of ε
P1D
Γ

and RD for the type curves. Fig.9 shows the variation of the dimensionless

bottom hole pressure over time under the outer boundary radius. It can be seen from the figure

that the outer boundary radius mainly affects the late stage of fluid flow; at the same time, the

smaller the dimensionless bottom hole pressure is with the larger the outer boundary radius.

FIGURE 10. Effect of ε
P1D
Γ

and RD for the type curves

Fig.10 shows the variation of the dimensionless bottom hole pressure over time under the

interaction of the elastic boundary and the outer boundary radius. It can be seen from the figure
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that the elastic outer boundary condition does not affect the overall trend of the characteristic

curve determined by RD. characteristic curve in the later stage of flow appears to be offset.

When the outer boundary radius is the same, the larger the inclination of the characteristic

curve is with the larger the elastic coefficient.

FIGURE 11. Effect of RD for the type curves

Fig.11 shows the variation of dimensionless bottom-hole pressure derivatives over time under

the effect of RD. It can be seen from the figure that the dimensionless pressure derivative

increases briefly at the initial stage of flow and then decreases briefly. After a period of relative

stability, the dimensionless pressure derivative continues to increase: the smaller the RD, the

earlier the characteristic curve deviates the steady state.

FIGURE 12. Effect of ε
P1D
Γ

and RD for the type curves
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Fig.12 shows the variation of the dimensionless bottom hole pressure with time under the

interaction of the elastic boundary and the outer boundary radius. It can be seen from the figure

that different elastic boundaries and different outer boundary radii play different roles in the

later stage of the flow; the difference of the elastic coefficients affects the offset trajectory of the

curve, and does not affect the time when the characteristic curve appears to be offset.

FIGURE 13. Effect of ε
P1D
Γ

for the type curves

4.4 Effect of ε
P1D
Γ

for the type curves. Fig.13 shows the influence of elastic boundary on

dimensionless bottomhole pressure when other parameters are not changed. The curve shows

that the greater the elastic coefficient, the more gentle the pressure change in the middle period

of flow, that is, the greater the elastic coefficient is, the smaller the dimensionless bottom hole

pressure is at the same time.
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FIGURE 14. Effect of ε
P1D
Γ

for the type curves

Fig.14 shows the effect of the elastic boundary on the dimensionless pressure derivative when

other parameters are fixed. No matter what value the elastic coefficient takes, the curve falls

between the curves determined by the elastic coefficient ε
P1D
Γ

= 0 and ε
P1D
Γ

= in f , which further

verifies the scientificity of introducing the elastic outer boundary condition.

5 Conclusions

Considering the influence of well-bore storage, skin factors and external boundary radius

on reservoir pressure, an unsteady seepage model under elastic boundary is established. The

unsteady seepage systems in dual-porosity media is obtained by using Laplace transformation

and initial boundary conditions. Using the similar construction theory, the expression of the

dimensionless pressure solution of the matrix system and the fracture system under the elastic

boundary is obtained.

In view of the limitation of the traditional model in describing the percolation law, the elas-

tic coefficient and the elastic outer boundary conditions are defined based on the steady-state

displacement method. The variation law of bottom hole pressure and pressure derivative is

obtained through comprehensive analysis of well-bore reservoir, skin factor, outer boundary

radius and elastic boundary. The research shows that under the wellbore reservoir effect, the

characteristic curve will have extreme points. When the value of CD is smaller, picture shows

that the inflection point and extreme point appear earlier. The smaller the S value in the middle
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phase of the flow is, the smaller the bottom hole pressure and pressure derivative in the same

period. The smaller the RD in the later stage of fluid flow, the earlier migration occurs in the

characteristic curve. When the RD is fixed, the elastic coefficient affects the asymptotic time of

the characteristic curve. The larger the elastic coefficient, the longer the asymptotic time is. The

greater the medium-term elastic coefficient, the more gradual the pressure changes. When CD

and S are fixed, the elastic coefficient affects the deviation of the curve steady state trajectory.

the elastic external boundary condition defined not simply take the external boundary con-

ditions (closed, infinite and constant pressure) considered in the past are regarded as special

cases but can solve more complex boundary seepage problem with taking difference elastic co-

efficient. Therefore, the introduction of elastic outer boundary makes it possible to reduce the

error looking from the type curve between theoretical pressure curve and the measured. At the

same time, the model and corresponding data analysis established in this paper provide a solid

theoretical basis for the scientific analysis of the influence of reservoir coefficient on reservoir

pressure, and provide a new idea for the design and improvement of the corresponding well

testing software.
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