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Abstract. P2p -factorization of a complete bipartite graph for p, an integer was studied by Wang [1].

Further, Beiling [2] extended the work of Wang[1], and studied the P2k -factorization of complete bipar-

tite multigraphs. For even value of k in Pk -factorization the spectrum problem is completely solved [1,

2, 3]. However for odd value of k i.e. P3 , P5, P7 and P9, the path factorization have been studied by a

number of researchers [4, 5, 6, 7]. Again
→
P 3 -factorization of complete bipartite multigraphs and sym-

metric complete bipartite multi-digraphs was studied by Wang and Beiling [8]. In the present paper, we

study
→
P 5-factorization of symmetric complete bipartite multi-digraphs and show that the necessary and

sufficient conditions for the existence of
→
P 5 -factorization of symmetric complete bipartite multi-digraphs

are:

(1) 3m ≥ 2n,

(2) 3n ≥ 2m,

(3) m+ n ≡ 0(mod5),

(4) 5λmn/[2(m+ n)] is an integer.

Keywords: Complete bipartite graph, factorization of graph

2010 AMS Subject Classification: 68R10,05C70

∗Corresponding author

E-mail addresses: rajputbalgovind@gmail.com(U.S. Rajput), rajputbalgovind@gmail.com(S. R. G.

Shukla)

Received December 10, 2011

617



618 U. S. RAJPUT∗ AND BAL GOVIND SHUKLA

1. Introduction

Let
→
P 5 be the directed path on five vertices and K∗m,n be the symmetric complete

bipartite di-graph with partite sets V1 and V2, where |V1| = m and |V2| = n. Further

λK∗m,n is K∗m,n in which every edge is taken λ times. A spanning subgraph
→
F of λK∗m,n

is called a
→
P5-factor if each such factor is isomorphic to

→
P5 . If λK∗m,n is expressed as an

edge disjoint sum of
→
P5-factors, then this sum is called a

→
P5- factorization of λK∗m,n.

In this paper the necessary and sufficient conditions for the existence of a
→
P5-factorization

of the symmetric complete bipartite multi-digraph λK∗m,n are studied.

2. Mathematical Analysis

Theorem 2.1: Let m and n be positive integers. Then λK∗m,n has
→
P5-factorization if

and only if

(1) 3m ≥ 2n,

(2) 3n ≥ 2m,

(3) m+ n ≡ (mod5) and

(4) 5λmn/[2(m+ n)]is an integer.

To prove this theorem the following number theoretic result is used.

Lemma 2.1: Letg, h, p and q be any positive integers. If gcd (p, q) = 1, then gcd

(p.q, p+ g.q) = gcd(p, g). Similarly, if gcd (gp, hq) = 1 then gcd (gp+ hq, pq) = 1.

The following existence theorems (theorem 2.2 and 2.3) will also be used in the proof of

theorem 2.1.

Theorem 2.2: If λK∗m,n has
→
P5-factorization, then λK∗sm,sn has

→
P5-factorization for every

positive integer s.

Proof: Let K(s, s) is 1-factorable [9], and {H1, H2, ..., Hs} be a one factorization of it.

For each i with 1 ≤ i ≤ s , replace every edge of Hi with a λK∗m,n to get a spanning

sub graph Gi of λK∗sm,sn such that the Gis {1 ≤ i ≤ s} are pair wise edge disjoint, and

there sum is λK∗sm,sn. Since λK∗m,n is
→
P5-factorable, therefore Gi is also

→
P5-factorable, and

hence, λK∗sm,sn is also
→
P5-factorable.

Theorem 2.3: If λK∗m,n has a
→
P5-factorization, then λsK∗sm,sn has

→
P5-factorization for
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every positive integer s.

Proof: Let us construct a
→
P5-factorization of λK∗m,n repeatedly s times. Then obviously,

we have a
→
P5-factorization of λsK∗sm,sn.

Now we will prove the main result (theorem 2.1). There are three cases to consider:

Case (I) 3m = 2n: Using conditions (4) of theorem 2.1 with theorem 2.2 and theorem

2.3 we see that λK∗m,n has a
→
P5-factorization.

Case (II) 3n = 2m: Obviously, λK∗m,n has a
→
P5-factorization.

Case III(3m > 2n and 3n > 2m): Let

a = 3n−2m
5

, b = 3m−2n
5

, t = m+n
5

and r = 5λmn
2(m+n)

.

Then from condition (1)-(4) in theorem 2.1, a, b, t and r will be integers, with 0 < a < m

and 0¡ b ¡ n. We get m = 2a+ 3b, n = 3a+ 2b, r = 3(a+ b)λ+ z, where z = λab
2(a+b)

.

Here,

t= the number of copies of
→
P 5 in any factor,

r = the number of
→
P 5 - factors in the factorization,

a = the number of copies of
→
P 5 with its endpoints in Y in a particular

→
P 5 - factor(type

M),

b = the number of copies of
→
P 5 with its endpoints in X in a particular

→
P 5 - factor(type

W),

c = the total number of copies of
→
P 5 in the whole factorization.

Let gcd (2a, 3b) = d and therefore 2a = dp, 3b = dq for some p, q. Where gcd (p, q) = 1,

then z = λdpq
2(3p+2q)

.

These equalities imply the following equalities:

d = 2(3p+2q)z
λpq

, m = 2(p+q)(3p+2q)z
λpq

,

n = (3p+2q)(9p+4q)z
3λpq

, r = (p+q)(9p+4q)z
pq

,

a = p(3p+2q)z
λpq

and b = 2q(3p+2q)z
3λpq

.

Now we established the following lemma (2.2). The aim of this lemma is to discuss the

details of spectrum of
→
P5-factorization in different cases, one of which is further discussed

in lemma (2.3).

Lemma 2.2:



620 U. S. RAJPUT∗ AND BAL GOVIND SHUKLA

Case (1): If gcd (p, 4) = 1 and gcd (q, 9) = 1, then there exist a positive integer s such

that,

m = 6(p+ q)(3p+ 2q)s/λ, n = (9p+ 4q)(3p+ 2q)s/λ,

a = 3p(3p+ 2q)s/λ, b = 3q(4p+ 3q)s/λ and r = 3(p+ q)(9p+ 4q)s.

Case (2): If gcd (p, 4) = 1 and gcd (q, 9) = 3. Let q = 3q1, then there exist a positive

integer s such that

m = 6(p+ 3q1)(p+ 2q1)s/λ, n = 3(3p+ 4q1)(p+ 2q1)s/λ,

a = 3p(p+ 2q1)s/λ, b = 6q1(p+ 2q1)s/λ and r = 3(p+ 3q1)(3p+ 4q1)s.

Case (3): If gcd (p, 4) = 1 and gcd (q, 9) = 9. Let q = 9q2, then there exist a positive

integer s such that

m = 2(p+ 9q2)(p+ 6q2)s/λ, n = 3(p+ 4q2)(p+ 6q2)s/λ,

a = p(p+ 6q2)s/λ, b = 6q2(p+ 6q2)s/λ and r = 18(p+ 4q2)(p+ 9q2)s.

Case (4): If gcd (p, 4) = 2 and gcd (q, 9) = 1. Let p = 2p1, then there exist a positive

integer s such that

m = 6(2p1 + q)(3p1 + q)s/λ, n = 2(9p1 + 2q)(3p1 + q)s/λ,

a = 6p1(3p1 + q)s/λ, b = 2q(3p1 + q)s/λ and r = 3(2p1 + q)(9p1 + 2q)s.

Case (5): If gcd (p, 4) = 2 and gcd (q, 9) = 3. Let p = 2p1, q = 3q1, then there exist a

positive integer s such that

m = 6(2p1 + 3q1)(p1 + q1)s/λ, n = 6(3p1 + 2q1)(p1 + q1)s/λ,

a = 6p1(p1 + q1)s/λ, b = 6q1(p1 + q1)s/λ and r = 18(2p1 + 3q1)(3p1 + 2q1)s.

Case (6): If gcd (p, 4) = 2, and gcd(q, 9) = 9. Let p = 2p1, q = 9q2, then there exist a

positive integer s such that

m = 2(2p1 + 9q2)(p1 + 3q2)s/λ, n = 6(p1 + 2q2)(p1 + 3q2)s/λ,

a = 2p1(p1 + 3q2)s/λ, b = 6q2(p1 + 3q2)s/λ and r = 3(2p1 + 9q2)(p1 + 3q2)s.

Case (7): If gcd (p, 4) = 4 and gcd(q, 9) = 1. Let p = 4p2, then there exist a positive

integer s such that

m = 3(4p2 + q)(6p2 + q)s/λ, n = 2(9p2 + q)(6p2 + q)s/λ,

a = 6p2(6p2 + q)s/lambda, b = q(6p2 + q)s/λ and r = 12(4p2 + q)(9p2 + q)s.

Case (8): If gcd (p, 4) = 4, gcd (q, 9) = 3. Let p = 4p2, q = 3q1, then there exist a positive



→
P 5 - FACTORIZATION OF SYMMETRIC COMPLETE BIPARTITE MULTI-DIGRAPH 621

integer s such that

m = 3(4p2 + 3q1)(2p2 + q1)s/λ, n = 6(3p2 + q1)(2p2 + q1)s/λ,

a = 6p2(2p2 + q1)s/λ, b = 3q1(2p2 + q1)s/λ and r = 3(4p2 + 3q1)(3p2 + q1)s.

Case (9): If gcd (p, 4) = 4 and gcd (q, 9) = 9. Let p = 4p2, q = 9q2, then there exist a

positive integer s such that

m = (4p2 + 9q2)(2p2 + 3q2)s/λ, n = 6(p2 + q2)(2p2 + 3q2)s/λ,

a = 2p2(2p2 + 3q2)s/λ, b = 3q2(2p2 + 3q2)s/λ and r = 3(4p2 + 9q2)(p2 + q2)s.

Proof : Here we are giving the proof of case (1). If gcd (p, q) = 1, gcd (p, 4) = 1 and

gcd (q, 9) = 1, then gcd (9p+ 4q, 3) = gcd(3p+ 2q, 3) = 1 and gcd (9p, 4) = gcd(3p, 2) =

gcd(9p+ 4q, 2) = 1 hold. Hence, gcd(9p + 4q, pq) = gcd(3p + 2q, pq) = 1 (lemma 2.1).

Since n = (9p+4q)(3p+2q)z
3λpq

is an integer, hence we observe that z
3λpq

(call it s) will be an

integer. Then the equalities in (1) hold.

The proofs of other equalities of lemma (2.2) in different cases are similar to (1). Now we

will establish the value of m and n for
→
P5-factorization. We observe that cases (1) and

(9), (2) and (8), (3) and (7), and (4) and (6) are symmetrical. Therefore, we are giving

the direct construction of case ( 1 ) only, others will be similar. Here we are taking s = 1.

Lemma 2.3: For any positive integer p and q let m = 6(p + q)(3p + 2q)/λ, and

n = (9p+ 4q)(3p+ 2q)/λ. Then λK∗m,n has
→
P 5 -factorization.

Proof : Let a = 3p(3p+ 2q)/λ, and b = 2q(3p+ 2q)/λ. It implies r = 3(p+ q)(9p+ 4q) =

r1.r2( say). With r1 = 3(p+ q) and r2 = (9p+ 4q). Also m0 = m/r1 = 2(3p+ 2q)/λ and

n0 = n/r2 = (3p+ 2q)/λ.

Let X, Y be two partite sets of λK∗m,n such that

X = {xi,j; 1 ≤ i ≤ r1, 1 ≤ j ≤ m0},

Y = {yi,j; 1 ≤ i ≤ r2, 1 ≤ j ≤ n0}.

Where first subscript of xi,j’s and yi,j’s taken addition modulo r1 and r2. The second

subscript of xi,j’s and yi,j’s taken addition modulo m0 and n0.

For constructing a
→
P 5 -factor of λK∗m,n, we need t = (m+ n)/5 = (3p+ 2q)2/λ number of

vertex disjoint copies of
→
P 5. In these copies, there are a = 3p(3p+ 2q)/λ number of type

M,
→
P 5-factor and b = 2q(3p+ 2q)/λ number of type W

→
P 5-factor. Here type M denotes
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→
P 5-factor with its end points in Y, and type W denotes

→
P 5-factor with its end points in

X.

Type M copies of
→
P 5;

Now for each 1 ≤ i ≤ 3p, let

Ei =
{
xi+1,j+(3p+2q)u, y3(i−1)+u+v+1,j+(i−1)+u : 1 ≤ j ≤ (3p+ 2q)/λ, 0 ≤ u, v ≤ 1

}
.

Type W copies of
→
P 5;

Again for each 1 ≤ i ≤ q, let

E3p+i ={x3p+3(i−1)+u+v,j+(3p+2q)w, y9p+4(i−1)+2w+u,j+3p+2(i−1)+u+v+w−1

: 1 ≤ j ≤ (3p+ 2q)/λ, 1 ≤ u ≤ 2, 0 ≤ v, w ≤ 1}.

Let
→
F= U1≤i≤3p+2qEi gives the total

→
P 5-factors. Obviously

→
F contains t = (m + n)/5 =

(3p + 2q)2/λ = (3p + 2q)n0 vertex disjoint and edge disjoint
→
P 5 components and span

λK∗m,n. Define a bijection σ : X ∪ Y
→
onto X ∪ Y in such a way that σ(xi,j) = xi+1,j and

σ(yi,j) = yi+1,j. Where i ∈ (1, 2, ..., r1) and each j ∈ (1, 2, ..., r2), let
→
F i,j=

{
σi(x)σj(y) : x ∈ X, y ∈ Y, xy ∈

→
F
}

.

It is easy to show that the digraph,
→
F i,j {1 ≤ i ≤ r1, 1 ≤ j ≤ r2},are edge disjoint

→
P 5

-factor of λK∗m,n and its union is also λK∗m,n.

Thus
{→
F i,j: 1 ≤ i ≤ r1, 1 ≤ j ≤ r2

}
is a

→
P 5 -factorization of λK∗m,n.

This is the proof of lemma(2.3), similarly we give the proof of other cases in lemma (2.2).

Proof : By using theorem 2.2 and theorem (2.3) with lemma 2.3, it can be seen that

when the parameters m and n satisfy condition (1)-(4) in theorem 2.1, the symmetric

complete bipartite multi - digraph λK∗m,n has
→
P 5 -factorization. This completes the proof

of theorem 2.1.
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