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Abstract: A method based on Gauss-Chebyshev quadrature and barycentric interpolation is used to obtain the 

numerical solution of Cauchy singular integral equations of the first kind with index equal to 1 at non-Chebyshev 

nodes. The unknown function in the equation is first expressed as a product of an appropriate weight function and a 

truncated weighted series of Chebyshev polynomial of the first kind. Some properties of Chebyshev polynomials are 

then used to reduce the equation to a system of linear equations. On solving the linear system, the numerical solution 

of the Cauchy singular integral equation is obtained at Chebyshev nodes, after which barycentric interpolation is used 

to obtain the numerical solution at non-Chebyshev nodes. When the numerical solution obtained is compared with the 

analytical solution and the absolute error computed, the results are found to be satisfactory.  
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1.  INTRODUCTION 

Solving Cauchy singular integral equations of the first kind with index V =1 using regularization 

methods is cumbersome and laborious from the standpoint of numerical analysis [9]. Hence, the 

need for direct computational methods. One of these computational methods uses Gauss-
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Chebyshev quadrature, which only gives numerical solutions at Chebyshev nodes. However, the 

numerical solution at non-Chebyshev nodes may be required in some real-world problems, hence, 

the need for this study. 

The essence of this work is to obtain the numerical solution of Cauchy singular integral equations 

of the first kind with index V=1 at non-Chebyshev nodes using Gauss-Chebyshev quadrature as a 

method and barycentric interpolation as a tool. 

 

2. PRELIMINARIES  

Many problems in science and engineering can be modeled using Cauchy singular integral 

equations [9], [10]. For instance, [1] modeled some problems in fracture mechanics using Cauchy 

singular integral equations, [2] gave an example of Cauchy singular integral equations in neutron 

transport, [3] listed electrodynamics among the fields where Cauchy singular integral equations 

are used to model problems, [4] demonstrated the usefulness of Cauchy singular integral equations 

in hydrodynamics. Hence, the growing need for efficient methods of solving them. Solving these 

equations both numerically and analytically is difficult due to the presence of strong singularity or 

Cauchy singularity when p = s. 

[5] noted that numerical methods for singular integral equations must consider the correct nature 

of the singularity, else, they will either breakdown or converge slowly. Hence, the need to 

incorporate the correct singular behavior into the numerical technique for obtaining the solution 

of the singular integral equation. Many methods for solving Cauchy singular integral equations 

exist. They include: Muskhelishvili–Vekua regularization method, Carleman-Vekua 

regularization method, collocation method, Galerkin method, Gauss-Jacobi quadrature method, 

Gauss-Chebyshev quadrature method, Gauss-Lobatto quadrature method, Lobatto-Chebyshev 

quadrature method, piecewise polynomial collocation method, among others. Most of these 

methods are based on the assumption that the solution is either bounded or it has an integrable 

singularity at the end points. 

If the solution has integrable singularities at both endpoints, then the Cauchy singular integral 

equation has its index as 1. Again, if the solution is bounded at both endpoints, then its index is 

equal to -1. The equation has its index as 0 if the solution is bounded at one endpoint and has an 

integrable singularity at the other endpoint. 



3 

CAUCHY SINGULAR INTEGRAL EQUATIONS 

[6] proposed a method that involves the application of another singular integral of the same form 

on the singular integral. This procedure converts the Cauchy singular integral equation into a 

weakly singular Fredholm integral equation of the second kind. There exists a host of numerical 

algorithms for solving singular Fredholm integral equations with weak singularity and any of these 

algorithms can be used to solve the regularized equation. In terms of computational time, this 

procedure is computationally laborious because the original problem has to be converted to a 

weakly singular Fredholm integral equation before an appropriate numerical technique is used to 

obtain an approximate solution. Also, in practice, the evaluation of the Fredholm kernel in the 

regularized equation is often difficult, even for problems in which the Fredholm kernel of the 

original equation is known in closed form. 

Gauss-Chebyshev quadrature formulas and barycentric interpolating polynomials are useful tools 

in this research work. Gauss-Chebyshev quadrature formula is used to transform the Cauchy-

singular integral equation to a linear system. This linear system is then solved numerically using 

an appropriate algorithm. On solving the linear system, we obtain the numerical solution at 

Chebyshev nodes of the first kind. Subsequently, barycentric interpolation is used to obtain the 

numerical solution at non-Chebyshev nodes. 

 

3.  FORMULATION OF NUMERICAL SCHEME 

Here, we seek to develope a numerical method based on Gauss-Chebyshev quadrature and 

barycentric interpolation for obtaining the numerical solution of Cauchy singular integral 

equations of the first kind having an index v = 1 at non-Chebyshev nodes.  

Proposition:  Let 𝑇𝑛(s) and 𝑈𝑛(s) be Chebyshev polynomials defined as 𝑇𝑛(s) =  cos 𝑛𝜃  and  

𝑈𝑛(s) =
𝑆𝑖𝑛(𝑛+1)Ɵ

𝑆𝑖𝑛Ɵ
  with  cos 𝜃 = 𝑠. If T𝑛(p𝑘)  =  0 and U𝑛−1(s)  =  0, then  

{
∑

𝑇𝑗(𝑝𝑘)

𝑛(𝑝𝑘−𝑠𝑟)
= 0, 𝑗 = 0𝑛

𝑘=1

∑
𝑇𝑗(𝑝𝑘)

𝑛(𝑝𝑘−𝑠𝑟)
= 𝑈𝑗−1(𝑠𝑟), 0 < 𝑗 < 𝑛𝑛

𝑘=1

        (1) 

Gauss-Chebyshev Quadrature Formula for singular integrals with Cauchy kernel: Consider 

the following integral  

𝑄(𝑠) =
1

𝜋
∫

𝑔(𝑝)

𝑝−𝑠

1

−1
𝑑𝑝    ,   − 1 < 𝑠 < 1        (2) 

Let g(p) = w(p)∅(p)                              (3) 

Where ∅(p) is bounded in -1 ≤ p ≤ 1. 
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When the index is 1, 

w(p) = (1 – p2)-1/2                             (4)   

Which is the weight of Chebyshev polynomial of the first kind Tm(p). 

Suppose that in -1 ≤ p ≤ 1, it is possible to approximate ∅(p) by the series 

∅(𝑝) = ∑ 𝐵𝑚𝑇𝑚(𝑝)

𝑧

𝑚=0

 . 

 (2) becomes 

𝑄(𝑠) = ∑ 𝐵𝑚

𝑧

𝑚=0

1

𝜋
∫

𝑇𝑚(𝑝)

(𝑝 − 𝑠)(1 − 𝑝2)1/2

1

−1

𝑑𝑝 

          = 𝐵𝑜

1

𝜋
∫

𝑇𝑜(𝑝)

(𝑝 − 𝑠)(1 − 𝑝2)1/2

1

−1

𝑑𝑝 + ∑ 𝐵𝑚

𝑧

𝑚=1

1

𝜋
∫

𝑇𝑚(𝑝)

(𝑝 − 𝑠)(1 − 𝑝2)1/2

1

−1

𝑑𝑝 

           = ∑ 𝐵𝑚𝑈𝑚−1(𝑠),
𝑧
𝑚=1          (5) 

where 𝑈𝑚−1(𝑠) is a Chebyshev polynomial of the second kind and according to [7], 

1

𝜋
∫

𝑇𝑚(𝑝)

(𝑝 − 𝑠)(1 − 𝑝2)1/2

1

−1

𝑑𝑝 = 0, 𝑓𝑜𝑟 𝑚 = 0   𝑎𝑛𝑑  

1

𝜋
∫

𝑇𝑚(𝑝)

(𝑝 − 𝑠)(1 − 𝑝2)1/2

1

−1

𝑑𝑝 = 𝑈𝑚−1(𝑠), 𝑓𝑜𝑟 𝑚 > 0 

-1 < s < 1 

 If we set s = sr in (2), we obtain 

𝑄(𝑠𝑟) =
1

𝜋
∫

𝑔(𝑝)

𝑝−𝑠𝑟

1

−1
𝑑𝑝          (6) 

Hence, we have 

𝑄(𝑠𝑟) = ∑ 𝐵𝑚

𝑧

𝑚=0

1

𝜋
∫

𝑇𝑚(𝑝)

(𝑝 − 𝑠𝑟)(1 − 𝑝2)1/2

1

−1

𝑑𝑝 

          = 𝐵𝑜

1

𝜋
∫

𝑇𝑜(𝑝)

(𝑝 − 𝑠𝑟)(1 − 𝑝2)
1
2

1

−1

𝑑𝑝 + ∑ 𝐵𝑚

𝑧

𝑚=1

1

𝜋
∫

𝑇𝑚(𝑝)

(𝑝 − 𝑠𝑟)(1 − 𝑝2)
1
2

1

−1

𝑑𝑝 

⇒ 𝑄(𝑠𝑟) = ∑ 𝐵𝑚
𝑧
𝑚=1 𝑈𝑚−1(𝑠𝑟)         (7) 

𝐵𝑢𝑡  𝑈𝑚−1(𝑠𝑟) = ∑
𝑇𝑚(𝑝𝑘)

𝑛(𝑝𝑘 − 𝑠𝑟)

𝑛

𝑘=1

   , 0 < 𝑚 < 𝑛 

Thus (7) becomes  
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𝑄(𝑠𝑟) = ∑ ∑
𝐵𝑚𝑇𝑚(𝑝𝑘)

𝑛(𝑝𝑘 − 𝑠𝑟)

𝑛

𝑘=1

𝑧

𝑚=1

 

𝑄(𝑠𝑟) = ∑
∅(𝑝𝑘)

𝑛(𝑝𝑘−𝑠𝑟)

𝑛
𝑘=1   ,          (8) 

where 

𝑇𝑛(𝑝𝑘) = 0, 𝑝𝑘 = 𝑐𝑜𝑠 (
2𝑘 − 1

2𝑛
𝜋) , 𝐾 = 1, 2, … , 𝑛 

𝑈𝑛−1(𝑠𝑟) = 0 , 𝑠𝑟 = 𝑐𝑜𝑠 (
𝜋𝑟

𝑛
) , 𝑟 = 1, 2, … , 𝑛 − 1 

Note: pk’s are Chebyshev nodes of the first kind. 

If we compare (8) with the Gauss-Chebyshev quadrature formula 

1

𝜋
∫

∅(𝑝)

(1 − 𝑝2)
1
2

1

−1

𝑑𝑝 = ∑
∅(𝑝𝑘)

𝑛

𝑧

𝑚=1

   , 𝑇𝑛(𝑝𝑘) = 0 

It can be seen that (8) is a Gauss-Chebyshev quadrature formula for the Cauchy singular integral 

(2) valid only at the points s = sr (r = 1, 2… , n-1) and Un-1(sr) = 0. 

Numerical Solution of Cauchy Singular Integral Equation of the First Kind with Index V = 

1 at Chebyshev nodes:   Consider the equation 

1

𝜋
∫

𝑔(𝑝)

𝑝−𝑠

1

−1
𝑑𝑝 + ∫ 𝑘(𝑠, 𝑝)𝑔(𝑝)𝑑𝑝

1

−1
= 𝑦(𝑠) , −1 < 𝑠 < 1      (9) 

Let g(p) = w(p)𝜙(p) 

If the index of (9) is 1, 

w(p) = (1 - p2)-1/2 

Hence, 

g(p) = (1 – p2)-1/2𝜙(p)                      (10) 

Suppose we express 𝜙(p) as a series having the form 

𝜙(𝑝) = ∑ 𝐵𝑚
𝑧
𝑚=𝑜 𝑇𝑚(𝑝)          (11) 

Substituting (10) into (9), yields 

1

𝜋
∫

𝜙(𝑝)

(𝑝−𝑠)(1−𝑝2)1/2

1

−1
𝑑𝑝 + ∫

𝑘(𝑠,𝑝)𝜙(𝑝)

(1−𝑝2)1/2 𝑑𝑝
1

−1
= 𝑦(𝑠)       (12) 

Also, 

When the index is 1, (9) is subject to the compatibility condition  

∫ 𝑔(𝑝)𝑑𝑝
1

−1
= 𝐶           (13) 
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⇒ ∫
𝜙(𝑝)

(1−𝑝2)1/2

1

−1
𝑑𝑝 = 𝐶 ,           (14) 

where c is a constant. 

Substituting (11) in (12), we get 

∑ 𝐵𝑚

𝑧

𝑚=𝑜

1

𝜋
∫

𝑇𝑚(𝑝)

(𝑝 − 𝑠)(1 − 𝑝2)1/2

1

−1

𝑑𝑝 + ∑ 𝐵𝑚

𝑧

𝑚=𝑜

∫
𝑘(𝑠, 𝑝)𝑇𝑚(𝑝)

(1 − 𝑝2)1/2
𝑑𝑝

1

−1

= 𝑦(𝑠) 

⇒ 𝐵0

1

𝜋
∫

𝑇0(𝑝)

(𝑝 − 𝑠)(1 − 𝑝2)1/2

1

−1

𝑑𝑝 + ∑ 𝐵𝑚

1

𝜋

𝑧

𝑚=1

∫
𝑇𝑚(𝑝)

(𝑝 − 𝑠)(1 − 𝑝2)1/2
𝑑𝑝

1

−1

+ ∑ ∫
𝐵𝑚𝑇𝑚(𝑝)𝑘(𝑠, 𝑝)

(1 − 𝑝2)1/2
𝑑𝑝

1

−1

= 𝑦(𝑠)

𝑧

𝑚=0

 

⇒ ∑ 𝐵𝑚
𝑧
𝑚=1 𝑈𝑚−1(𝑠) +

1

𝜋
∫ 𝜋𝑘(𝑠, 𝑝)

𝜙(𝑝)

(1−𝑝2)1/2

1

−1
𝑑𝑝 = 𝑦(𝑠)      (15) 

If we set s = sr in (15), we get 

∑ 𝐵𝑚
𝑧
𝑚=1 𝑈𝑚−1(𝑠𝑟) +

1

𝜋
∫ 𝜋𝑘(𝑠𝑟 , 𝑝)

𝜙(𝑝)

(1−𝑝2)1/2

1

−1
𝑑𝑝 = 𝑦(𝑠𝑟)      (16) 

 𝐵𝑢𝑡  𝑈𝑚−1(𝑠𝑟) = ∑
𝑇𝑚(𝑝𝑘)

𝑛(𝑝𝑘 − 𝑠𝑟)
, 0 < 𝑚 < 𝑛

𝑛

𝑘=1

  𝑎𝑛𝑑 

1

𝜋
∫

𝜙(𝑝)

(1 − 𝑝2)1/2

1

−1

𝑑𝑝 = ∑
𝜙(𝑝𝑘)

𝑛

𝑛

𝑘=1

 

thus (16) becomes 

∑ ∑
𝐵𝑚𝑇𝑚(𝑝𝑘)

𝑛(𝑝𝑘 − 𝑠𝑟)

𝑛

𝑘=1

𝑧

𝑚=1

+ 𝜋𝑘(𝑠𝑟 , 𝑝𝑘) ∑
𝜙(𝑝𝑘)

𝑛

𝑛

𝑘=1

=  𝑦(𝑠𝑟) 

⇒ ∑
𝜙(𝑝𝑘)

𝑛(𝑝𝑘 − 𝑠𝑟)

𝑛

𝑘=1

+  𝜋𝑘(𝑠𝑟, 𝑝𝑘) ∑
𝜙(𝑝𝑘)

𝑛

𝑛

𝑘=1

=  𝑦(𝑠𝑟) 

hence, 

∑
1

𝑛
[

1

𝑝𝑘−𝑠𝑟
+ 𝜋𝑘(𝑠𝑟 , 𝑝𝑘)]

𝑛
𝑘=1  𝜙(𝑝𝑘) = 𝑦(𝑠𝑟)        (17) 

also, 

(14) becomes 

∑
𝜋

𝑛

𝑛
𝑘=1  𝜙(𝑝𝑘) = 𝐶           (18) 
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(17) gives n-1 linear equations in n unknowns and (18) gives 1 equation in n unknowns. However, 

when they are combined, we obtain a system of n linear equations in n unknowns.    

Hence, we get, 

∑
1

𝑛
[

1

𝑝𝑘 − 𝑠𝑟
+ 𝜋𝑘(𝑠𝑟 , 𝑝𝑘)]

𝑛

𝑘= 1

 𝜙(𝑝𝑘) = 𝑦(𝑠𝑟)   

∑
𝜋

𝑛

𝑛
𝑘=1  𝜙(𝑝𝑘) = 𝐶,          (19) 

where 

𝑇𝑛(𝑝𝑘) = 0, 𝑝𝑘 = cos (
2𝑘 − 1

2𝑛
𝜋) , 𝑘 = 1, 2, … , 𝑛 

𝑈𝑛−1(𝑠𝑟) = 0, 𝑠𝑟 = cos
𝜋𝑟

𝑛
, 𝑟 = 1, 2, … , 𝑛 − 1 

that is, 

 
1

𝑛
[

1

𝑝1−𝑠𝑟
+ 𝜋𝑘(𝑠𝑟, 𝑝1)]𝜙(𝑝1) +

1

𝑛
[

1

𝑝2−𝑠𝑟
+ 𝜋𝑘(𝑠𝑟, 𝑝2)]𝜙(𝑝2) + ⋯ 

+
1

𝑛
[

1

𝑝𝑛−1−𝑠𝑟
+ 𝜋𝑘(𝑠𝑟, 𝑝𝑛−1)]𝜙(𝑝𝑛−1) +

1

𝑛
[

1

𝑝𝑛−𝑠𝑟
+ 𝜋𝑘(𝑠𝑟 , 𝑝𝑛)] 𝜙(𝑝𝑛) = 𝑦(𝑠𝑟), 

𝜋

𝑛
𝜙(𝑝1) +

𝜋

𝑛
𝜙(𝑝2) + ⋯ +

𝜋

𝑛
𝜙(𝑝𝑛−1) +

𝜋

𝑛
𝜙(𝑝𝑛) = 𝐶     (20) 

r = 1, 2, …, n-1. 

From (20), we get 

𝐹𝛷⃗⃗ = 𝑌⃗ , 

where 𝛷⃗⃗  𝑎𝑛𝑑 𝑌⃗  are the column vectors and F is the coefficient matrix with entries 

𝑓𝑟𝑘 =
1

𝑛
[

1

𝑝𝑘−𝑠𝑟
+ 𝜋𝑘(𝑠𝑟, 𝑝𝑘)]         (21) 

with  p𝑘 = cos (
2𝑘 − 1

2𝑛
𝜋) , 𝑠𝑟 = cos

𝜋𝑟

𝑛
 

when k = 1, 2, …, n; r = 1, 2, …, n-1  

and 

𝑓𝑟𝑘 =
𝜋

𝑛
            (22) 

when k = 1, 2, 3, …, n; r = n 

Thus, we can write (20) as 
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[
 
 
 
 
 
 
 
 

f11       f12…    f1n

f21       f22…     f2n

⋮            ⋮        ⋮
fn-1 1    fn-1 2…   fn-1 n

fn1     fn2  …     fnn ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝜙(𝑝1 ) 

𝜙(𝑝2 )

⋮
𝜙(𝑝𝑛−1)

𝜙(𝑝𝑛) ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
y(s 1 )

y(s 2 )

 

y(sn-1)

y(sn) ]
 
 
 
 
 
 
 
 

        (23) 

where y(sn) = C 

Thus, the problem has been reduced to a problem of solving a system of n linear equations in n 

unknowns 𝜙(p1), 𝜙(p2), …, 𝜙(pn).  

On solving system (23), we obtain the numerical solution of (12) at the Chebyshev nodes of the 

first kind p1, p2, …, pn. 

Numerical Solution of Cauchy Singular Integral equations of the first kind with Index V = 1 

at non-Chebyshev nodes:  Suppose the numerical solution of (12) obtained at Chebyshev nodes 

on solving system (23) are shown in Table 2,  

p 𝝓(p) 

p1 𝜙(p1) 

p2 𝜙(p2) 

p3 𝜙(p3) 

⋮ ⋮ 

p4 𝜙(pn) 

TABLE 2: Numerical solution at Chebyshev nodes   

where p1, p2,.., pn are Chebyshev nodes of the first kind and 𝜙(p1), 𝜙(p2),.., 𝜙(pn) are the numerical 

solutions at p1, p2,..,pn respectively. The numerical solution of (12) at non-Chebyshev nodes may 

be needed in some practical problems. One way to meet this need is to construct an interpolating 

polynomial that fits the data given in Table 2.  

 Suppose we consider the true form of the barycentric interpolating formula defined as  

0

0

( )

( ) ,

n
k

k
k k

n
k

k k

p
p p

p

p p







=

=

−
=

−




   (24)  

where 
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λk =
1

 ∏  k≠j (pk−pj) 
           (25) 

and 

𝜆0

𝑝−𝑝0
= lim

𝜌→∞

𝜆0

𝑝−𝑝0
= 0          (26) 

Using (24), (25) and (26), we obtain the barycentric polynomial interpolant that fits the data given 

in the Table 2 above. This polynomial can be used to obtain the numerical solution of (12) at non-

Chebyshev points. 

In solid mechanics, for instance, the numerical solution of (12) at the endpoint +1 is an important 

quantity called the stress intensity factor of a material at + 1. To obtain this quantity at +1, we apply 

(24) and (25) using only the first three nodes in Table 2 above. 

 

3. IMPLEMENTATION OF THE SCHEME 

For the sake of completeness, a Gauss-Chebyshev quadrature formula for singular integrals 

being developed is used to obtain the numerical solution of a Cauchy singular integral equation 

of the first kind with index equal to 1 at Chebyshev nodes, just the same way it was done by 

Erdogan and Gupta (1986). After this, the true form of the barycentric interpolation formula is 

used to obtain the numerical solution of the Cauchy singular integral equation at non-Chebyshev 

nodes using the numerical solution obtained at the Chebyshev nodes.  

Test Problem 1 

Consider the following integral equation  

1

𝜋
∫

∅(𝑝)

√1 − 𝑝2(𝑝 − 𝑠)
𝑑𝑝

1

−1

= 4𝑠2 − 1      ,     − 1 < 𝑠 < 1 

subject to the compatibility condition 

∫
∅(𝑝)

√1−𝑝2
𝑑𝑝

1

−1
= 0, 

where the exact solution is ∅(p) = 4p3 – 3p. 

(Parihar and Ramachandran, 1999). 

When n = 4, we have that 

𝑝𝑘 = cos (
2𝑘 − 1

8
𝜋) , 𝑘 = 1, 2, 3, 4 

p1 = 0.92, p2 = 0.38, p3 = -0.38, p4 = -0.92 

also, 
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𝑠𝑟 = cos (
𝜋𝑟

4
) , 𝑟 = 1, 2, 3, 

s1 = 0.71, s2 = 0.00, s3 = -0.71 

from (23), we obtain the following matrix 

[
 
 
 
 
 
 
 
f11 f12 f13

f21 f22 f23

f31 f32 f33

    

f14

f24

f34

 f41 f42 f43   f44 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
∅(p 1 ) 

∅(p 2 )

∅(p 3 )

∅(p
4
) ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
y(s 1 ) 

y(s 2 )

y(s 3 )

y(s4) ]
 
 
 
 
 
 
 

         (27) 

hence, 

using the formulae 𝑓𝑟𝑘 =
1

𝑛
[

1

𝑝𝑘−𝑠𝑟
+ 𝜋𝑘(𝑠𝑟 , 𝑝𝑘)]  with 𝑘(𝑠𝑟 , 𝑝𝑘) = 0, k = 1,2,3,4; r = 1,2,3 and 

𝑓𝑟𝑘 =
𝜋

𝑛
   with k = 1,2,3,4; r = 4,  we obtain that  f41= f42 = f43 = f44 = 

𝜋

4
. 

Also, 

y(sr) = 4𝑠𝑟
2 - 1, 𝑟 = 1, 2, 3 

y(s1) = 4(0.71)2 - 1 = 1.0164 

y(s2) = 4(0.00)2 - 1 = 1.0000 

y(s3) = 4(−0.71)2 - 1 = 1.0164 

and  

y(s4) = 0.0000 

Hence (27) becomes 

[
 
 
 
 
 
 
1.1905 -0.7576 -0.2294

0.2717 0.6579 -0.6579

0.1534 0.2294 0.7576

   -0.1534

   -0.2717

   -1.1905

π

4
            

π

4
               

π

4
               

π

4]
 
 
 
 
 
 

[
 
 
 
 
 
 
∅(p 1 ) 

∅(p 2 )

∅(p 3 )

∅(p
4
)

]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
1.0164  

-1.0000

1.0164

0.0000
]
 
 
 
 
 
 

 

 

The above system gives the following results when solved 

∅(p1) = ∅(0.92) = 0.3937, ∅(p2) = ∅(0.38) = -0.9226, ∅(p3) = ∅(-0.38) = 0.9226, ∅(p4) = ∅(-0.92) 

= -0.3937. 

These results are displayed in Table 3   
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𝑝 ∅(𝑝) 

0.92 0.3937 

0.38 -0.9226 

-0.38 0.9226 

-0.92 -0.3937 

TABLE 3: Numerical solution of test problem 1 at Chebyshev nodes when n = 4 

Using (24), (25), (26), the numerical solution of the given problem at non- Chebyshev nodes can 

be obtained by proceeding thus.  

From (24), 

when n = 4, 

∅(𝑝) =

𝜆0

𝑝 − 𝑝0
∅(𝑝0) +

𝜆1

𝑝 − 𝑝1
∅(𝑝1) +

𝜆2

𝑝 − 𝑝2
∅(𝑝2) +

𝜆3

𝑝 − 𝑝3
∅(𝑝3) +

𝜆4

𝑝 − 𝑝4
∅(𝑝4)

𝜆0

𝑝 − 𝑝0
 +  

𝜆1

𝑝 − 𝑝1
+ +

𝜆2

𝑝 − 𝑝2
+

𝜆3

𝑝 − 𝑝3
+

𝜆4

𝑝 − 𝑝4

 

Using (26), we obtain 

∅(𝑝) =

𝜆1
𝑝−0.92

∅(0.92)+
𝜆2

𝑝−0.38
∅(0.38)+

𝜆3
𝑝+0.38

∅(−0.38)+
𝜆4

𝑝+0.92
∅(−0.92)

𝜆1
𝑝−0.92

+
𝜆2

𝑝−0.38
+

𝜆3
𝑝+0.38

+
𝜆4

𝑝+0.92

. 

Again, using (25) yields 

𝜆1 = 0.7742, 𝜆2 = −1.8743, 𝜆3 = 1.8743, 𝜆4 = −0.7742. 

Hence, 

∅(𝑝) =

0.7742

𝑝−0.92
(0.3937)+

1.8743

𝑝−0.38
(0.9226)+

1.8743

𝑝+0.38
(0.9226)+

0.7742

𝑝+0.92
(0.3937)

0.7742

𝑝−0.92
−

1.8743

𝑝−0.38
+

1.8743

𝑝+0.38
−

0.7742

𝑝+0.92

 .    (28) 

Using (28), we obtain  

∅(0.92) = 0.0000, ∅(0.25) = -0.6903, ∅(0.5) = -0.9991, ∅(0.75) = -0.5452. 

To obtain ∅(1), we use only the first three nodes in Table 3 

that is, 

∅(𝑝) =       

𝜆0
𝑝−𝑝0

∅(𝑝0)+
𝜆1

𝑝−𝑝1
∅(𝑝1)+

𝜆2
𝑝−𝑝2

∅(𝑝2)+
𝜆3

𝑝−𝑝3
∅(𝑝3)

𝜆0
𝑝−𝑝0

 + 
𝜆1

𝑝−𝑝1
++

𝜆2
𝑝−𝑝2

+
𝜆3

𝑝−𝑝3

, 

where 

𝜆1 = 1.4245, 𝜆2 = −2.4366, 𝜆3 = 1.0121. 

Hence, 
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∅(𝑝) =

1.4245

𝑝−0.92
(0.3937)+

2.4366

𝑝−0.38
(−0.9226)+

1.0121

𝑝+0.38
(0.9226)

1.4245

𝑝−0.92
−

2.4366

𝑝−0.38
+

1.0121

𝑝+0.38

       (29) 

 using (29), we obtain  ∅(1) = 0.7743. 

When n = 6, we have that 

𝑝𝑘 = cos (
2𝑘 − 1

12
𝜋) , 𝑘 = 1, 2, 3, … , 6 

p1 = 0.97, p2 = 0.71, p3 = 0.26, p4 = - 0.26, p5 = - 0.71, p6 = - 0.97. 

Also, 

𝑠𝑟 = cos (
𝜋𝑟

6
) , 𝑟 = 1, 2, 3, … , 5 

s1 = 0.87, s2 = 0.50, s3 = 0.00, s4 = - 0.50, s5 = - 0.87 . 

From (23), we obtain the following matrix 

[
 
 
 
 
 
 
f11 f12 f13

f21 f22 f23

f31 f32 f33

    

f14 f15 f16

f24 f25 f26

f34 f35 f36

f41 f42 f43 f44 f45 f46

f51 f52 f53 f54 f55 f56

f61 f62 f63 f64 f65 f66]
 
 
 
 
 
 

[
 
 
 
 
 
 
∅(p

1
)

∅(p
2
)

∅(p
3
)

∅(p
4
)

∅(p
5
)

∅(p
6
)]
 
 
 
 
 
 

=

[
 
 
 
 
 
y(s1)

y(s2)

y(s3)

y(s4)

y(s5)

y(s6)]
 
 
 
 
 

 .      (30) 

Using the formulae  𝑓𝑟𝑘 =
1

𝑛
[

1

𝑝𝑘−𝑠𝑟
+ 𝜋𝑘(𝑠𝑟, 𝑝𝑘)]   with 𝑘(𝑠𝑟, 𝑝𝑘) = 0, k = 1,2,3,…,6; r = 1,2,3,…,5  

and  

𝑓𝑟𝑘 =
𝜋

𝑛
    with k = 1,2,3,…,6; r = 6, 

we obtain that 

f61 = f62 = f63 = f64 = f65 = f66 =
𝜋

6
 

Also, 

y(𝑠𝑟) = 4𝑆𝑟
2 − 1, 𝑟 = 1, 2, 3, 4, 5 

y(𝑠1) = 4(0.87)2 − 1 = 2.0276 

y(𝑠2) = 4(0.50)2 − 1 = 0.0000 

y(𝑠3) = 4(0.00)2 − 1 = −1.0000 

y(𝑠4) = 4(−0.50)2 − 1 = 0.0000 

y(𝑠5) = 4(−0.87)2 − 1 = 2.0276 

and 

y(𝑠6) = C = 0.0000 

Hence, (30) becomes 
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[
 
 
 
 
 
 
1.6667 −1.0417 −0.2732
0.3546 0.7937 −0.6944
0.1718 0.2347 0.6410

   
−0.1475 −0.1055 −0.0906
−0.2193 −0.1377 −0.1134
−0.6410 −0.2347 −0.1718

0.1134 0.1377    0.2193     
0.0906 0.1055    0.1475     

𝜋

6

𝜋

6

𝜋

6

   

0.6944 −0.7937 −0.3546
0.2732    1.0417 −1.6667

𝜋

6

𝜋

6

𝜋

6 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
∅(p

1
)

∅(p
2
)

∅(p
3
)

∅(p
4
)

∅(p
5
)

∅(p
6
)]
 
 
 
 
 
 

=

[
 
 
 
 
 

2.0276

0.0000

−1.0000
0.0000

2.0276

0.0000 ]
 
 
 
 
 

 

Solving the last system yields 

∅(𝑝1) = ∅(0.97) = 0.7184 

∅(p
2
)=∅(0.71)= -0.7223 

∅(p
3
)=∅(0.26)= -0.7081 

∅(p
4
)=∅(-0.26)=0.7081 

∅(p
5
)=∅(-0.71)=0.7223 

∅(𝑝6) = ∅(−0.97)=-0.7184 

These results are displayed in the Table 4  

𝑝 ∅(𝑝) 

0.97 0.7184 

0.71 -0.7223 

0.26 -0.7081 

-0.26 0.7081 

-0.71 0.7223 

0.97 - 0.7184 

TABLE 4: Numerical Solution of test problem 1 at Chebyshev nodes when n = 6 

Using (24), (25), (26), the numerical solution of the given problem at non-Chebyshev nodes can 

be obtained by proceeding thus 

from (24), we obtain that  

∅(𝑝) =

𝜆0
𝑝−𝑝0

∅(𝑝0)+
𝜆1

𝑝−𝑝1
∅(𝑝1)+

𝜆2
𝑝−𝑝2

∅(𝑝2)+
𝜆3

𝑝−𝑝3
∅(𝑝3)+

𝜆4
𝑝−𝑝4

∅(𝑝4)+
𝜆5

𝑝−𝑝5
∅(𝑝5)+

𝜆6
𝑝−𝑝6

∅(𝑝6)

𝜆0
𝑝−𝑝0

 + 
𝜆1

𝑝−𝑝1
++

𝜆2
𝑝−𝑝2

+
𝜆3

𝑝−𝑝3
+

𝜆4
𝑝−𝑝4

+
𝜆5

𝑝−𝑝5
+

𝜆6
𝑝−𝑝6

    (31) 

It follows that 

𝜆1 = 1.3513, 𝜆2 = −3.6936, 𝜆3 = 5.0449, 𝜆4 = −5.0449, 𝜆5 = 3.6936, 𝜆6 = −1.3513. 

and 
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Ø(0) = 0.0000, Ø(0.25) = - 0.6858, Ø(0.5) = - 1.0083, Ø(0.75) = - 0.5889. 

To obtain Ø(1), only the first three nodes in Table 4 will be used. 

That is, 

Ø(𝑝) =

𝜆0

𝑝 − 𝑝0
∅(𝑝0) +

𝜆1

𝑝 − 𝑝1
∅(𝑝1) +

𝜆2

𝑝 − 𝑝2
∅(𝑝2) +

𝜆3

𝑝 − 𝑝3
∅(𝑝3)

𝜆0

𝑝 − 𝑝0
 +  

𝜆1

𝑝 − 𝑝1
+ +

𝜆2

𝑝 − 𝑝2
+

𝜆3

𝑝 − 𝑝3

 

where, 

𝜆1 = 5.4171, 𝜆2 = −8.5470, 𝜆3 = 3.1299. 

Hence,  

∅(𝑝) =

5.4171

𝑝−0.97
(0.7184)−

8.5470

𝑝−0.71
(− 0.7223)+

3.1299

𝑝−0.26
(−0.7081)

5.4171

𝑝−0.97
−

8.5470

𝑝−0.71
+

3.1299

𝑝−0.26

       (32) 

and using (32), we obtain Ø(1) = 0.9529. 

When n = 8 

𝑝𝑘 = cos (
2𝑘 − 1

16
𝜋) , 𝑘 = 1, 2, … , 8 

p1 = 0.98, p2 = 0.83, p3 = 0.56, p4 = 0.20, p5 = - 0.20, p6 = - 0.56, p7 = - 0.83, p8 = - 0.98 

also, 

𝑠𝑟 = cos (
𝜋𝑟

8
) , 𝑟 = 1, 2, … , 7 

s1 = 0.92, s2 = 0.71, s3 = 0.38, s4 = 0.00, s5 = -0.38, s6 = -0.71, s7 = - 0.92 

From (23), we obtain the following matrix 

[
 
 
 
 
 
 
 
 
f11 f12 f13

f21 f22 f23

f31 f32 f33

    

f14 f15 f16

f24 f25 f26

f34 f35 f36

f41 f42 f43 f44 f45 f46

f51 f52 f53 f54 f55 f56

f61 f62 f63 f64 f65 f66

f71 f72 f73 f74 f75 f76

f81 f82 f83 f84 f85 f86]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
∅(p

1
)

∅(p
2
)

∅(p
3
)

∅(p
4
)

∅(p
5
)

∅(p
6
)

∅(p
7
)

∅(p
8
)]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
y(s1)

y(s2)

y(s3)

y(s4)

y(s5)

y(s6)

y(s7)

y(s8)]
 
 
 
 
 
 
 
 

       (33) 

Using the formulae  𝑓𝑟𝑘 =
1

𝑛
[

1

𝑝𝑘−𝑠𝑟
+ 𝜋𝑘(𝑠𝑟, 𝑝𝑘)]    with 𝑘(𝑠𝑟, 𝑝𝑘) = 0, k = 1,2,3,…,8; r = 1,2,3,…,7  

and  

𝑓𝑟𝑘 =
𝜋

𝑛
   with k = 1,2,3,…,8; r = 8,  we obtain  

f81 = f82 = f83 = f84 = f85 = f86 = f87 = f88 = 
𝜋

8
. 

Also, 
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y(sr)=4s
r

2
-1, r=1, 2, 3, …, 7  yields   

y(s1)=4(0.92)
2
-1=2.3856, y(s2)=4(0.71)

2
-1=1.0164, 

y(s3)=4(0.38)
2
-1=-0.4224, y(s4)=4(0.00)

2
-1=-1.0000,  

y(s5)=4(-0.38)
2
-1=-0.4224, y(s6)=4(-0.71)

2
-1=1.0164, y(s7)=4(-0.92)

2
-1=2.3856. 

and 

y(𝑠8) = c = 0.0000 

Hence, (33) becomes 

[
 
 
 
 
 
 
 
 
2.0834 −1.3889 −0.3472
0.4630       1.0417 −0.8333
0.2083    0.2778   0.6944
0.1276   0.1506   0.2232 
0.0919   0.1033  0.1330
0.0740   0.0812 0.0984
0.0658   0.0714  0.0845  

𝜋

8

𝜋

8

𝜋

8

   

−0.1736 −0.1116 −0.0845
−0.2451 −0.1374 −0.0984
−0.6944 −0.2155 −0.1330
   0.6250 −0.6250 −0.2232
   0.2155 0.6944 −0.6944
  0.1374 0.2451    0.8333
  0.1116  0.1736       0.3472 

𝜋

8

𝜋

8

𝜋

8

   

−0.0714 −0.0658
−0.0812 −0.0740
−0.1033 −0.0919
−0.1506 −0.1276
−0.2778 −0.2083
−1.0417 −0.4630
   1.3889   −2.0833

𝜋

8

𝜋

8

 

]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
∅(p

1
)

∅(p
2
)

∅(p
3
)

∅(p
4
)

∅(p
5
)

∅(p
6
)

∅(p
7
)

∅(p
8
)]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
   2.3856
   1.0164
−0.4224
−1.0000
−0.4224
   1.0164
   2.3856
   0.0000]

 
 
 
 
 
 
 

 

Solving the system yields 

∅(p
1
) = ∅(0.98) = 0.8334, ∅(p

2
)= ∅(0.83) = − 0.2200, ∅(p

3
)= ∅(0.56) = − 1.0296, 

∅(p
4
)= ∅(0.20) = − 0.5494 

∅(p
5
)= ∅( − 0.20) = 0.5494, ∅(p

6
)= ∅( − 0.56) = 1.0296, ∅(p

7
)= ∅( − 0.83) = 0.2200, 

∅(p
8
)= ∅( − 0.98) = − 0.8334 

These results are displayed in Table 5  

𝑝 ∅(𝑝) 

0.98 0.8334 

0.83 -0.2200 

0.56 -1.0296 

0.20 -0.5494 

-0.20 0.5494 

-0.56 1.0296 

-0.83 0.2200 

-0.98 -0.8334 

TABLE 5: Numerical solution of test problem 1 at Chebyshev nodes when n = 8 
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Using (24), (25), (26), the numerical solution at non-Chebyshev nodes can be obtained. 

From (24), we have that 

∅(𝑝) =

𝜆0

𝑝 − 𝑝0
∅(𝑝0) +

𝜆1

𝑝 − 𝑝1
∅(𝑝1) +

𝜆2

𝑝 − 𝑝2
∅(𝑝2) +

𝜆3

𝑝 − 𝑝3
∅(𝑝3) +

𝜆4

𝑝 − 𝑝4
∅(𝑝4) +

𝜆5

𝑝 − 𝑝5
∅(𝑝5) +

𝜆6

𝑝 − 𝑝6
∅(𝑝6)

+
𝜆7

𝑝 − 𝑝7
∅(𝑝7) +

𝜆8

𝑝 − 𝑝8
∅(𝑝8)

𝜆0

𝑝 − 𝑝0
 +  

𝜆1

𝑝 − 𝑝1
+ +

𝜆2

𝑝 − 𝑝2
+

𝜆3

𝑝 − 𝑝3
+

𝜆4

𝑝 − 𝑝4
+

𝜆5

𝑝 − 𝑝5
+

𝜆6

𝑝 − 𝑝6
+

𝜆7

𝑝 − 𝑝7
+

𝜆8

𝑝 − 𝑝8

 

 ∅(𝑃) can be obtained from (26). 

Using (25), we get 

𝜆1 = 3.1567 ,  𝜆2 = −9.1110 , 𝜆3 = 13.4437 ,  𝜆4 = −15.2992 ,  𝜆5 = 15.2992 , 𝜆6 =

−13.4437, 𝜆7 = 9.1110,    𝜆8 = −3.1567 

hence, 

∅(𝑃) =

3.1567

𝑝−0.98
(0.8334)+

9.1110

𝑝−0.83
(0.2200)−

13.4437

𝑝−0.56
(1.0296)+

15.2992

𝑝−0.20
(0.5494)+

15.2992

𝑝+0.20
(0.5494)

+
13.4437

𝑝+0.56
( 1.0296)+

9.1110

𝑝+0.83
(0.2200)+

3.1567

𝑝+0.98
(0.8334)

3.1567

𝑝−0.98
−

9.1110

𝑝−0.83
+

13.4437

𝑝−0.56
−

15.2992

𝑝−0.20
+

15.2992

𝑝+0.20
−

13.4437

𝑝+0.56
+

9.1110

𝑝+0.83
−

3.1567

𝑝+0.98

    (34) 

 Using (34), we obtain 

  Ø(0) = 0.0000, Ø(0.25) = - 0.6714, Ø(0.5) = - 0.9895, Ø(0.75) = - 0.6082. 

             To obtain Ø(1), we use only the first three nodes in Table 5. 

             That is, 

               Ø(𝑝) =

𝜆0

𝑝 − 𝑝0
∅(𝑝0) +

𝜆1

𝑝 − 𝑝1
∅(𝑝1) +

𝜆2

𝑝 − 𝑝2
∅(𝑝2) +

𝜆3

𝑝 − 𝑝3
∅(𝑝3)

𝜆0

𝑝 − 𝑝0
 + 

𝜆1

𝑝 − 𝑝1
+ +

𝜆2

𝑝 − 𝑝2
+

𝜆3

𝑝 − 𝑝3

 

                where, 

                   𝜆1 = 15.8730, 𝜆2 = −24.6914, 𝜆3 = 8.8183. 

                Hence, 

           Ø(𝑝) =

15.8730

𝑝−0.98
(0.8334)+

24.6914

𝑝−0.83
(0.2200)+

8.8183

𝑝−0.56
(1.0296)

15.8730

𝑝−0.98
−

24.6914

𝑝−0.83
+

8.8183

𝑝−0.56

       (35) 

           Using (35), we obtain 

               Ø(1) = 1.0064. 
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p Ø(p) 

 n = 4 n = 6 n = 8 

0.00 0.0000 0.0000 0.0000 

0.25 -0.6903 -0.6858 -0.6714 

0.50 -0.9991 -1.0083 -0.9895 

0.75 -0.5452 -0.5889 -0.6082 

1.00 0.7743 0.9529 1.0064 

 

 TABLE 6: Numerical Solution of test problem 1 at some non-Chebyshev nodes 

 

 

p 

Ø(p) 

 Exact Solution 

4p3 – 3p 

Numerical 

Solution 

Absolute Error 

0.00 0.0000 0.0000 0.0000 

0.25 -0.6875 -0.6714 1.61 x 10-2 

0.50 -1.0000 -0.9895 1.05 x 10-2 

0.75 -0.5625 -0.6082 4.57 x 10-2 

1.00 1.0000 1.0064 6.4 x 10-3 

 

TABLE 7: Numerical results at some non-Chebyshev nodes when n = 8 

 

Gerasoulis and Srivastav (1994) solved this problem using Piecewise linear functions. The 

numerical solution they obtained when n = 9 is in Table 8 and a comparison between their solution 

and the exact solution can also be found in Table 8. 
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p Ø(p) 

 Exact Solution  

4P3 – 3P 

Numerical 

Solution 

Absolute Error 

0.00 0.0000 0.0000  

0.25 -0.6875 -0.7172 2.97 x 10-2 

0.50 -1.0000 -1.0588 5.88 x 10-2 

0.75 -0.5625 -0.6504 8.79 x 10-2 

1.00 1.0000 0.9147 8.53 x 10-2 

 

TABLE 8: numerical results of Gerasoulis and Srivastav when n = 9 

 

The piecewise linear method was proposed by Gerasoulis and Srivastav (1994) for the purpose of 

improving on the accuracy of the numerical solution obtained using the Gauss-Chebyshev method. 

However, a closer look at Table 7 and Table 8 reveals that when barycentric interpolation is 

implemented on the numerical solution obtained using the Gauss-Chebyshev quadrature method 

for this problem, a better numerical solution is obtained at non-Chebyshev nodes. 

 

Test Problem 2 

 Consider the following integral equation 

1

𝜋
∫

∅(𝑝)𝑑𝑝

(𝑝 − 𝑠)√1 − 𝑝2
−

1

−1

1

3
∫

∅(𝑝)𝑑𝑝

√1 − 𝑝2
= 1,     − 1 < 𝑆 < 1

1

−1

 

  Subject to the compatibility condition 

                         ∫
∅(𝑝)

√1 − 𝑝2
𝑑𝑝

1

−1

= 0 

              The exact solution is ∅(𝑝) = 𝑝 

               Source: Gori, 1995 

Using (3.21), (22), (23), (24), (25) and (26), the numerical results in Table 9 are obtained when n 

= 6 

     



19 

CAUCHY SINGULAR INTEGRAL EQUATIONS 

p Ø(p) 

 Exact Solution 

p 

Numerical 

Solution 

Absolute Error 

0.00 0.0000 0.0000  

0.25 0.2500 0.2472 2.8 x 10-3 

0.50 0.5000 0.5011 1.1 x 10-3 

0.75 0.7500 0.7583 8.3 x 10-3 

1.00 1.0000 0.9982 1.8 x 10-3 

 

Table 9: Numerical results for test problem 2 when n = 6            

 

4. CONCLUSION 

In this research work, a numerical technique based on Gauss-Chebyshev Quadrature and 

Barycentric interpolation for obtaining the numerical solution of Cauchy Singular integral 

equations of the first kind with index v = 1 at non-Chebyshev nodes has been developed. We 

sought an approximate solution to 

1

𝜋
∫

𝑔(𝑝)

𝑝 − 𝑠
 𝑑𝑝 + ∫ 𝐾(𝑠, 𝑝)𝑔(𝑝)𝑑𝑝 = 𝑦(𝑠), −1 < 𝑠 < 1 

1

−1

1

− 1

 

and obtained the numerical solution of it with index v = 1 at non-Chebyshev nodes using Gauss-

Chebyshev Quadrature as a method and at the non-Chebyshev nodes using Gauss-Chebyshev 

Quadrature method and Barycentric Interpolation tool. The results show that the numerical 

solution obtained by the Gauss-Chebyshev Quadrature-Barycentric Interpolation method were 

satisfactory when compared with the exact solution. 
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