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Abstract. Here we have studied the notion of rough I-convergence as an extension work of the idea of rough

convergence in a cone metric space using ideals. We have further introduced the notion of rough I∗-convergence

of sequences in a cone metric space to find the relationship between rough I and I∗-convergence of sequences.
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1. INTRODUCTION

The concept of statistical convergence was given independently by Fast[10] and Steinhaus[27]

as a generalization of ordinary convergence of real sequences. Lot of devolopments were made

in this area after the remakable works done in [11, 21, 26]. The idea of I-convergence was

introduced by Kostyrko et al.[12] as a generalization of statistical convergence using the idea of

an ideal I of subsets of the set of natural numbers. Later many more works were carried out in

this direction [3, 4, 5, 6, 8, 14, 16, 17].

In 2001, Phu [23] introduced the idea of rough convergence and rough Cauchyness of sequences

in a finite dimensional normed linear space. Later in 2003, he studied the same in an infinite

dimensional normed linear space [24]. Using these ideas Aytar[1], in 2008, gave the concept of
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rough statistical convergence of a sequence. In 2014, using the concepts of I-convergence and

rough convergence Dündar et al.[9] introduced the notion of rough I-convergence. Many more

works were done in different direction [2, 19, 20] by several authors using this idea given by

Phu [23].

The idea of cone metric spaces was given by Huang and Xian [18]. In their paper they replaced

the distance between two points by the elements of a real Banach space. Obviously such space

is a generalization of the notion of an ordinary metric space. Since then many more works were

carried out specially in the field of summability theory.

In [7] Banerjee and Mondal studied the idea of rough convergence of sequences in a cone metric

space. In our paper we have studied the notion of rough I-convergence of sequences in a cone

metric space and examine how far several results as valid in [7] are affected. Also we have

introduced here the idea of rough I∗-convergence of sequence in a cone metric space and obtain

the relations between rough I and I∗-convergence of sequences.

2. PRELIMINARIES

First we give the basic ideas of statistical convergence and then ideal convergence of real

sequences and also few definitions and notions related to these ideas which will be needed in

the sequel.

Let K be a subset of the set of positive integers N. Then the natural density of K is given by

δ (K) = lim
n→∞

|Kn|
n

, where Kn = {k ∈ K : k ≤ n} and |Kn| denotes the number of elements in Kn.

Definition 2.1. [10] A sequence {xn} of real numbers is said to be statistically convergent to x

if for any ε > 0 the set {n ∈ N : |xn− x| ≥ ε} have natural density zero.

Note that the idea of statistical convergence of sequences is a generalization ordinary conver-

gence.

A family I ⊂ 2N of subsets of X is said to be an ideal [13] in N if the following conditions holds:

(i)A,B ∈ I⇒ A∪B ∈ I

(ii) A ∈ I,B⊆ A⇒ B ∈ I

I is called a non-trivial ideal in N if I 6= {φ} or N /∈ I. A non-trivial ideal in N is said to be

admissible if {n} ∈ I for each n ∈ N.
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Clearly if I is a nontrivial ideal in N then the family of sets

F(I) = {M ⊂ N : there exists A ∈ I,M = N\A}

is a filter in N. It is called the filter associated with the ideal I .

An admissible ideal I ⊂ 2N is said to satisfy the condition (AP) [12] if for any sequence

{A1,A2, · · ·} of mutually disjoint sets in I, there is a sequence {B1,B2, · · ·} of subsets of N

such that Ai∆Bi (i = 1,2, · · ·) is finite and B = ∪ j∈NB j ∈ I.

Definition 2.2. [12] A sequence {xn} of real numbers is said to be I-convergent to x if for any

ε > 0 the set A(ε) = {n ∈ N : |xn− x| ≥ ε} ∈ I.

Definition 2.3. [9] A sequence {xn} in a normed linear space is said to be I-bounded if there

exists a M(> 0) ∈ R such that the set {n ∈ N : ‖xn‖ ≥M} ∈ I.

We now give the idea of a cone metric space [18] as follows:

Let E be a real Banach space and P ⊂ E. Then P is called a cone if and only if the following

conditions are satisfied:

(i) P is closed, non-empty and P 6= {0} (0 be the zero element of E).

(ii) a,b ∈ R and a,b≥ 0 then x,y ∈ P implies ax+by ∈ P.

(iii) x ∈ P and −x ∈ P implies that x = 0 (zero element of E).

Let E be a real Banach space and P be a cone in E. Then a partial ordering ≤ with respect to

P can be defined by x≤ y if and only if y−x ∈ P, whereas x < y indicates x≤ y and x 6= y, also

x << y stands for y− x ∈ intP, intP denotes the interior P.

The cone P is called normal if there exists a positive real number K such that for all x,y ∈ E,

0≤ x≤ y implies ‖x‖ ≤ K ‖y‖. The least positive number satisfying above is called the normal

constant of P.

Definition 2.4. [18] Let X be a non empty set. Suppose the mapping d : X×X 7→ E satisfies

(i) 0 < d(x,y) for all x,y ∈ X and d(x,y) = 0 if and only if x = y;

(ii) d(x,y) = d(y,x) for all x,y ∈ X ;

(iii) d(x,y)≤ d(x,z)+d(y,z) for all x,y,z ∈ X .

Then d is called a cone metric on X and (X ,d) is called a cone metric space.
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It is obvious that a cone metric space generalizes metric spaces. In [28], it is known that any

cone metric space is a first countable Hausdorff topological space with topology induced by the

open balls defined as usual for each element z ∈ X and for every (0 <<)c ∈ E.

Definition 2.5. [18] Let (X ,d) be a cone metric space. A sequence {xn} in X is said to be

convergent to x if for any c ∈ E with 0 << c there is N ∈ N such that d(xn,x) << c for all

n > N.

Lemma 2.1. [18] Let (X ,d) be a cone metric space and P be a normal cone with normal

constant K. Let {xn} be a sequence in X. Then {xn} converges to x if and only if d(xn,x)→ 0

as n→ ∞.

Lemma 2.2. [15] Let (X ,E) be a cone metric space with x ∈ P and y ∈ intP. Then one can find

n ∈ N such that x << ny.

Now we recall some useful results from [7].

Theorem 2.3. [7] Let E be a real Banach space with cone P. If x0 ∈ intP and α(> 0) ∈R then

αx0 ∈ intP.

Theorem 2.4. [7] Let E be a real Banach space and P be a cone in E. If x0 ∈ P and y0 ∈ intP

then x0 + y0 ∈ intP.

Corollary 1. [7] If x0,y0 ∈ intP then x0 + y0 ∈ intP.

Theorem 2.5. [7] Let E be a real Banach space with cone P, then 0 /∈ intP (0 be the zero

element of E).

Definition 2.6. [7] Let {xn} be a sequence in a cone metric space (X ,d). A point c ∈ X is said

to be a cluster point of {xn} if for any (0 <<)ε in E and for any k ∈ N, there exists a k1 ∈ N

such that k1 > k with d(xk1,c)<< ε .

The definition of I-convergent and I∗-convergent of a sequence in a cone metric is as follows:

Definition 2.7. [25] Let (X ,d) be a cone metric space. A sequence {xn} in X is said to be

I-convergent to x if for any c ∈ E with 0 << c the set {n ∈ N : c−d(xn,x) /∈ intP} ∈ I.
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Definition 2.8. [25] Let (X ,d) be a cone metric space. A sequence {xn} in X is said to be

I∗-convergent to x if and only if there exists a set M ∈ F(I), M = {m1 < m2 < · · ·< mk < · · ·}

such that {xn}n∈M is convergent to x i.e., for any c ∈ E with 0 << c, there exists p ∈ N such

that c−d(xmk ,x) ∈ intP for all k ≥ p.

Definition 2.9. [23] Let {xn} be a sequence in a normed linear space (X ,‖.‖) and r(≥ 0) ∈ R.

Then {xn} is said to be rough convergent of roughness degree r to x if for any ε > 0 there exists

a natural number N such that ‖xn− x‖< r+ ε for all n≥ k.

For r = 0, we obtain the definition of ordinary convergence of sequences.

Definition 2.10. [9] A sequence {xn} in a normed linear space is said to be rough I-convergent

of roughness degree r to x∗ for some r≥ 0 if for any ε > 0 the set {n ∈ N : ‖xn− x∗‖ ≥ r+ ε} ∈

I.

We denote this by xn
r−I−−→ x∗.

The definition of I-bounded sequence in a normed linear space has been given in [9] as

follows:

Definition 2.11. [9] A sequence {xn} is said to be I-bounded if there exists a positive real

number M such that {n ∈ N : ||xn|| ≥M} ∈ I.

Definition 2.12. [7] A sequence {xn} in a cone metric space is said to be bounded if for any

fixed x ∈ X there exists a (0 <<)M ∈ E such that d(xn,x)<< M for all n ∈ N.

Now we recall the definition of rough convergence in a cone metric space from [7].

Definition 2.13. [7] Let (X ,d) be a cone metric space. A sequence {xn} in X is said to be rough

convergent of roughness degree r to x for some r ∈ E with 0 << r or r = 0 if for any ε with

(0 <<)ε there exists a m ∈ N such that d(xn,x)<< r+ ε for all n≥ m.

We denote this by xn
r−→ x.

3. MAIN RESULTS

Throughout our discussion (X ,d) will always stands for a cone metric space where d : X ×

X 7→ E is the cone metric, E being a real Banach space. N and R stand for the set of natural
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numbers and the set of real numbers respectively. I is an admissible ideal in N and A{ denotes

the complement of the set A.

Definition 3.1. Let (X ,d) be a cone metric space. A sequence x = {xn} in X is said to be rough

I-convergent of roughness degree r to x∗ ∈ X for some r ∈ E with 0 << r or r = 0 if for any

(0 <<)ε ∈ E the set A(ε) = {n ∈ N : (r+ ε−d(xn,x∗)) /∈ intP} ∈ I.

We denote this by xn
r−I−−→ x∗. For r = 0, the definition reduces to the definition of I-convergence

of sequences in a cone metric space. If a sequence x = {xn} is rough I-convergent of roughness

degree r to x∗ ∈ X then x∗ is called the rough I-limit of x = {xn}. In general, the rough I-limit

of a sequence x = {xn} is not unique which can be seen from the next example. The set of all

rough I-limits of a sequence x = {xn} denoted by I−LIMrx is called the rough I-limit set of a

sequence x = {xn} i.e., I−LIMrx :=
{

x∗ ∈ X : xn
r−I−−→ x∗

}
.

Therefore, a sequence x = {xn} is said to be rough I-convergent in a cone metric space if

I−LIMrx 6= φ

Example 3.1. Let X = R, E = R2, P = {(x,y) ∈ E : x,y≥ 0} ⊂ E and d : X ×X 7→ E be such

that d(x,y) = (|x− y|, |x− y|). Then (X ,d) is a cone metric space. Now let us consider the

ideal in N which consists of sets whose natural density are zero i.e., I = Id . Let us consider

the sequence x = {xn} in X defined by xn =


(−1)n, if n 6= k2(where k ∈ N)

n, otherwise
. Now we can

see that for any r = (r1,r2) ∈ E with 0 << r, if min(r1,r2) = r∗ and r∗ ≥ 1 then I−LIMrx =

[−(r∗−1),(r∗−1)], since for any x∗ ∈ [−(r∗−1),(r∗−1)] with r∗ ≥ 1 we have {n ∈ N : (r+

ε−d(xn,x∗) /∈ intP} ⊂ {12,22,32, · · ·}, therefore {n ∈ N : (r+ ε−d(xn,x∗) /∈ intP} ∈ I, since

the natural density of the set {12,22,32, · · ·} is zero and if r∗ < 1 or r = 0 then I−LIMrx = φ .

Also, since the sequence is unbounded, LIMrx = φ , for any r.

Note 1. From the above example we can see that in general I− LIMrx 6= φ does not imply

that LIMrx 6= φ . But since I is an admissible ideal, LIMrx 6= φ implies I−LIMrx 6= φ i.e., if

a sequence x = {xn} in (X ,d) is rough convergent of roughness degree r, where r ∈ E with

0 << r or r = 0, then it is also rough I-convergent of same roughness degree r. Therefore if we
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denote the set of all rough convergence sequences in a cone metric space (X ,d) by LIMr and

the set of all rough I-convergent sequences by I−LIMr, then we have LIMr ⊆ I−LIMr.

It is seen in [7] that if a sequence x = {xn} in a cone metric space (X ,d) is bounded then

LIMrx 6= φ for some (0 <<)r ∈ E. So, in view of note 1, the following theorem is evident.

Theorem 3.1. If a sequence x = {xn} in a cone metric space (X ,d) is bounded, then there exists

some r ∈ E with 0 << r such that I−LIMrx 6= φ .

We recall that a sequence {xn} in a metric space (X ,d) is said to be bounded if there exists

x ∈ X and r > 0 satisfying d(xn,x) < r for all n ∈ N. Using this idea we define I-boundedness

of a sequence in a cone metric space as follows:

Definition 3.2. A sequence x = {xn} in a cone metric space (X ,d) is said to be I-bounded if

there exists a y ∈ X and M ∈ E with 0 << M such that {n ∈ N : M−d(xn,y) 6∈ intP} ∈ I.

Let {xn} be bounded sequence in a cone metric space (X ,d), then there exists x ∈ X and

M ∈ E with 0 << M such that d(x,xn) << M for all n ∈ N. This implies that M− d(x,xn) ∈

intP for all n ∈ N. So {n ∈ N : M − d(x,xn) /∈ intP} = φ ∈ I. Hence {xn} is I-bounded.

But the converse may not be true as seen in the example 3.1. For, if we choose y = 2 and

(0 <<)M = (5,6) then we get {n∈N : (M−d(xn,y)) /∈ intP} ⊂ {12,22,32, · · ·}, which implies

that {n ∈ N : M−d(xn,y) /∈ intP} ∈ I. So the sequence considered here is I-bounded although

the sequence is not bounded.

From the example 3.1 it follows that the reverse implication of the theorem 3.1 is not valid,

however the reverse implication is true in case of I-boundedness as seen in the following theo-

rem.

Theorem 3.2. Let I be an admissible ideal of N. Then a sequence x = {xn} in (X ,d) is I-

bounded if and only if there exists some r ∈ E with 0 << r or r = 0 such that I−LIMrx 6= φ .

Proof. Let a sequence x = {xn} be I-bounded. Then there exists a y ∈ X and (0 <<)r ∈ E

such that the set {n ∈ N : r−d(xn,y) 6∈ intP} ∈ I. Let (0 <<)ε ∈ E (i.e., ε ∈ intP). Then
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{n∈N : r+ε−d(xn,y) /∈ intP} ⊂ {n∈N : r−d(xn,y) /∈ intP} ∈ I [For, let n∈ {n∈N : r+ε−

d(xn,y) /∈ intP} ⇒ r+ ε−d(xn,y) /∈ intP. So r−d(xn,y) /∈ intP⇒ n ∈ {r−d(xn,y) /∈ intP}].

Therefore y ∈ I−LIMrx.

Conversely, let I − LIMrx 6= φ for some r ∈ E with 0 << r or r = 0 and x∗ ∈ I − LIMrx.

Therefore for any (0 <<)ε ∈ E (i.e., ε ∈ intP) the set {n ∈ N : r+ ε−d(xn,x∗) /∈ intP} ∈ I.

Now r + ε ∈ intP for any ε ∈ intP. So taking M = r + ε ∈ intP (i.e., 0 << M), we have

{n ∈ N : M−d(xn,x∗) /∈ intP} ∈ I. So the sequence x = {xn} is I-bounded. �

Theorem 3.3. A I-bounded sequence x = {xn} in a cone metric space (X ,d) always contains a

subsequence which is rough I-convergent of roughness degree r for some (0 <<)r ∈ E.

Proof. Let a sequence x = {xn} in a cone metric space (X ,d) be I-bounded. Then there exists

a z ∈ X and (0 <<)M ∈ E such that the set {n ∈ N : M−d(xn,z) /∈ intP} ∈ I. Therefore the

set L = {n ∈ N : M−d(xn,z) ∈ intP} ∈ F(I). Now if we consider the subsequence {xn}n∈L

then this subsequence is bounded. Now as for any bounded sequence x = {xn}, LIMrx 6= φ

for some (0 <<)r ∈ E, so the subsequence {xn}n∈L is rough convergent of roughness degree r

((0 <<)r ∈ E). Hence in view of note 1 {xn}n∈L is also rough I-convergent of same roughness

degree (0 <<)r ∈ E. �

Theorem 3.4. Let {xn} be a sequence in a cone metric space (X ,d) which is I-convergent to x.

If {yn} is another sequence in (X ,d) such that d(xn,yn) ≤ r for some (0 <<)r ∈ E and for all

n ∈ N. Then {yn} is rough I-convergent of roughness degree r to x.

Proof. Let {xn} be a sequence in a cone metric space (X ,d) which is I-convergent to x. Then for

(0 <<)ε ∈ E, the set {n ∈ N : ε−d(xn,x) /∈ intP} ∈ I. So {n ∈ N : ε−d(xn,x) ∈ intP} ∈ F(I).

Now d(yn,x)≤ d(yn,xn)+d(x,xn)≤ r+d(xn,x). This implies that r+d(xn,x)−d(yn,x) ∈ P.

Hence if ε − d(xn,x) ∈ intP then (r+ d(xn,x)− d(yn,x))+ (ε − d(xn,x)) = r+ ε − d(yn,x) ∈

intP. Therefore the set {n ∈ N : r+ ε−d(yn,x) ∈ intP} ∈ F(I).

Thus {n ∈ N : r+ ε−d(yn,x) /∈ intP} ∈ I. Hence the results follows. �

Theorem 3.5. Let x = {xn} be a sequence in a cone metric space (X ,d) which is rough I-

convergent of roughness degree r for some (0 <<)r ∈ E. Then there does not exists y,z ∈

I−LIMrx such that mr < d(y,z), where m is a real number grater than 2.
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Proof. Suppose on contrary that there exists such y,z ∈ I−LIMrx for which mr < d(y,z) and

m(∈ R) > 2. Let (0 <<)ε be arbitrarily chosen in E. Now as y,z ∈ I−LIMrx, so each of the

sets M1 =
{

n ∈ N : r+ ε

2 −d(xn,y) /∈ intP
}

and M2 =
{

n ∈ N : r+ ε

2 −d(xn,z) /∈ intP
}

belongs

to I. Then both of M{1 and M{2 belong to F(I). Let p ∈M{1 ∩M{2 . Then r+ ε

2 −d(xp,y) ∈ intP

and r+ ε

2 −d(xp,z) ∈ intP. Hence (r+ ε

2 −d(xp,y))+(r+ ε

2 −d(xp,z)) = 2r+ ε− (d(xp,y)+

d(xp,z)) ∈ intP. Now d(y,z) ≤ d(xp,y)+ d(xp,z). So d(xp,y)+ d(xp,z)− d(y,z) ∈ P. There-

fore, (2r + ε − (d(xp,y)+ d(xp,z)))+ (d(xp,y)+ d(xp,z)− d(y,z)) = 2r + ε − d(y,z) ∈ intP.

Again, by our assumption, d(y,z)−mr∈P. So (2r+ε−d(y,z))+(d(y,z)−mr)= 2r+ε−mr∈

intP i.e., ε− r(m−2) ∈ intP. But choosing ε = r(m−2) we get 0 ∈ intP, which is a contradic-

tion. Hence the result follows. �

Theorem 3.6. Let {xn} be a sequence in (X ,d) which is rough I-convergent of roughness degree

r. Then {xn} is also rough I-convergent of roughness degree r1 for any r1 with r < r1.

Proof. The proof is trivial and so is omitted. �

In view of the theorem 3.6 we have the following corollary.

Corollary 2. Let x = {xn} be a rough I-convergent sequence in (X ,d) of roughness degree r.

Then for a (0 <<)r1 with r < r1, LIMrx⊂ LIMr1x.

Definition 3.3. (cf. [17] ) A point c ∈ X is said to be a I-cluster point of a sequence {xn} in

(X ,d) if for any (0 <<)ε the set {k ∈ N : ε−d(xk,c) ∈ intP} /∈ I.

For 0 << r and a fixed y ∈ X , the closed spheres Br(y) and open spheres Br(y) centred at y

with radius r is defined in [7] as follows:

Br(y) = {x ∈ X : d(x,y)≤ r} and Br(y) = {x ∈ X : d(x,y)<< r}.

Now we have the following theorems.

Theorem 3.7. Let (X ,d) be a cone metric space. c ∈ X and (0 <<)r be such that for any

x∗ ∈ X either d(x∗,c)≤ r or r << d(x∗,c). If c is a I-cluster point of a sequence x = {xn} then

I−LIMrx⊂ Br(c).
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Proof. If possible, assume that there exists a y ∈ I−LIMrx but y /∈ Br(c). Now by our assump-

tion, r << d(y,c). Let (0 <<)ε1 = d(y,c)− r. Then d(y,c) = r+ ε1. Let (0 <<)ε = ε1
2 . Then

we have d(y,c) = r+2ε . Also Br+ε(y)∩Bε(c) = φ . For, if l ∈ Br+ε(y)∩Bε(c) then d(l,y)<<

r+ ε and d(l,c) << ε . Thus r+ ε − d(l,y) ∈ intP and ε − d(l,c) ∈ intP. Therefore (r+ ε −

d(l,y))+ (ε − d(l,c)) = r + 2ε − (d(l,y)+ d(l,c)) ∈ intP→ (i). Now as d(y,c) ≤ d(y, l)+

d(l,c), therefore d(y, l)+ d(l,c)− d(y,c) ∈ P→ (ii). Hence from (i) and (ii) we get r+ 2ε −

(d(l,y)+d(l,c))+d(y, l)+d(l,c)−d(y,c)= r+2ε−d(y,c)= 0∈ intP, a contradiction. Hence

Br+ε(y)∩Bε(c) = φ . As y ∈ I− LIMrx, so the set A = {n ∈ N : r+ ε−d(xn,y) /∈ intP} ∈ I.

Therefore, the set A{=N\A∈F(I). Again since c is a I-cluster point of {xn}, so for 0<< ε , the

set {k ∈ N : ε−d(xk,c) ∈ intP} /∈ I. Therefore, the set {k ∈ N : ε−d(xk,c) ∈ intP} can not be

a subset of A. For, if {k ∈ N : ε−d(xk,c) ∈ intP}⊂A then we have {k ∈ N : ε−d(xk,c) ∈ intP}∈

I, which contradicts the fact that c is a I-cluster point of {xn}. We consider an element m ∈ A{.

So m ∈ {k ∈ N : ε−d(xk,c) ∈ intP}. Now m ∈ A{ implies r + ε − d(xm,y) ∈ intP. Hence

d(xm,y)<< r+ ε , which implies xm ∈ Br+ε(y). Also m ∈ {k ∈ N : ε−d(xk,c) ∈ intP} implies

ε − d(xm,c) ∈ intP. Therefore d(xm,c) << ε which further implies that xm ∈ Bε(c). Thus

we see that xm ∈ Br+ε(y)∩Bε(c) which is a contradiction. Hence we can conclude that our

assumption is wrong and y ∈ Br(c). �

Theorem 3.8. Let x = {xn} be a rough I-convergent sequence of roughness degree r in a cone

metric space (X ,d) and {yn} be a I-convergent sequence in I−LIMrx which is I-convergent to

y. Then y ∈ I−LIMrx.

Proof. Let (0 <<)ε be given. Since the sequence {yn} is I-convergent to y, for (0 <<)ε the set

A =
{

n ∈ N : ε

2 −d(yn,y) /∈ intP
}
∈ I. So the set A{=N\A∈ F(I). Choose a p∈ A{. Then ε

2−

d(yp,y)∈ intP and so d(yp,y)<< ε

2 → (i). Also since {yn} is a sequence in I−LIMrx, let yp ∈

I−LIMr. Therefore, the set B =
{

n ∈ N : r+ ε

2 −d(xn,yp) /∈ intP
}
∈ I. Hence its complement

B{ =N\B∈ F(I). Let us choose an element l ∈ B{(∈ F(I)). Therefore, r+ ε

2−d(xl,yp)∈ intP

and so d(xl,yp) << r + ε

2 → (ii). Also for all n ∈ N we have d(xn,y) ≤ d(xn,yp)+ d(yp,y).

So d(xn,yp)+d(yp,y)−d(xn,y) ∈ P for all n ∈N. In particular d(xl,yp)+d(yp,y)−d(xl,y) ∈

P→ (iii). Now by (i) and (ii) using the theorem 2.4 we get ( ε

2−d(yp,y))+(r+ ε

2−d(xl,yp)) =

r+ε−(d(yp,y)+d(xl,yp))∈ intP→ (iv). Applying again the theorem 2.4 we get from (iii) and
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(iv), (d(xl,yp)+d(yp,y)−d(xl,y))+(r+ ε− (d(yp,y)+d(xl,yp))) = r+ ε−d(xl,y) ∈ intP.

Now since l is chosen arbitrarily from B{, the set {l ∈ N : r+ ε−d(xl,y) /∈ intP} ⊂ B and so

{l ∈ N : r+ ε−d(xl,y) /∈ intP} ∈ I. Hence y ∈ I−LIMrx. �

Theorem 3.9. If {xn} and {yn} are two sequence in a cone metric space (X ,d) such that for

any (0 <<)ε the set {n ∈ N : d(xn,yn)> ε} ∈ I. Then {xn} is rough I-convergent of roughness

degree r to x if and only if {yn} is rough I-convergent of same roughness degree r to x.

Proof. Let {xn} be rough I-convergent of roughness degree r to x. Let (0 <<)ε be given.

Then the set
{

n ∈ N : r+ ε

2 −d(xn,x) /∈ intP
}
∈ I→ (i). Also according to our assumption the

set
{

n ∈ N : d(xn,yn)>
ε

2

}
∈ I → (ii). Now the complement of the sets as in (i) and (ii) be-

longs to F(I) and hence their intersection belongs to F(I). Let us choose an element k ∈ N

in that intersection. Therefore, r+ ε

2 − d(xk,x) ∈ intP and d(xk,yk) ≤ ε

2 i.e., ε

2 − d(xk,yk) ∈ P.

So, (r + ε

2 − d(xk,x)) + ( ε

2 − d(xk,yk)) = r + ε − (d(xk,x) + d(xk,yk)) ∈ intP → (iii). Also

for all n ∈ N, d(yn,x) ≤ d(xn,yn) + d(xn,x) i.e., d(xn,yn) + d(xn,x)− d(yn,x) ∈ P. In par-

ticular d(xk,yk) + d(xk,x)− d(yk,x) ∈ P→ (iv). Hence from (iii) and (iv) we get (r + ε −

(d(xk,x)+d(xk,yk)))+(d(xk,yk)+d(xk,x)−d(yk,x)) = r+ ε−d(yk,x) ∈ intP. Therefore the

set {n ∈ N : r+ ε−d(yk,x) /∈ intP}∈ I, which implies that {yn} is rough I-convergent of rough-

ness degree r to x.

Converse part can be proved by interchanging the role of {xn} and {yn}. �

Theorem 3.10. Let C be the set of all I-cluster points of a sequence x = {xn}. Also let (0 <<

)r ∈ E be such that for any x∗ ∈ X and for each c∈C either d(x∗,c)≤ r or r << d(x∗,c). Then

I−LIMrx⊂
⋂

c∈C Br(c)⊂
{

y ∈ X : C ⊂ Br(y)
}

.

Proof. From the theorem 3.7 we can say that I − LIMrx ⊂
⋂

c∈C Br(c)(⊂ Br(c)). To prove

the part
⋂

c∈C Br(c)⊂
{

y ∈ X : C ⊂ Br(y)
}

, let us take a z ∈
⋂

c∈C Br(c). So z ∈ Br(c) for each

c∈C and therefore d(z,c)≤ r for every c∈C . This implies that c∈ Br(z) for each c∈C . Thus

we get C ⊂ Br(z). Hence
⋂

c∈C Br(c)⊂
{

y ∈ X : C ⊂ Br(y)
}

. Hence the results follows. �

Definition 3.4. A sequence x = {xn} in a cone metric space (X ,d) is said to be rough I∗-

convergent of roughness degree r to x∗ if there exists a set M = {m1 < m2 < · · ·< mk < · · ·} ∈
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F(I) such that the subsequence {xn}n∈M is rough convergent of roughness degree r to x∗ for

some (0 <<)r ∈ E or r = 0 i.e., for any ε with (0 <<)ε there exists a k ∈ N such that

d(xmp ,x
∗)<< r+ ε for all p≥ k. Here x∗ is called the rough I∗-limit of the sequence {xn}.

We denote this by xn
r−I∗−−→ x∗.

Note 2. For r = 0, we have the definition of ordinary I∗-convergence of sequences in a cone

metric space. Clearly the rough I∗-limit of a sequence in general not unique. We shall denote

the set of all rough I∗-limits of a sequence x = {xn} by I∗−LIMrx =
{

x∗ ∈ X : xn
r−I∗−−→ x∗

}
of

roughness degree r.

Theorem 3.11. If a sequence {xn} is rough I∗-convergent of roughness degree r to x then it is

also rough I-convergent of same roughness degree r to x.

Proof. Let us assume that a sequence {xn} is rough I∗-convergent of roughness degree r to x.

Therefore, by the definition, there exists a set M = {m1 < m2 < · · ·< mk < · · ·} ∈ F(I) such

that {xn}n∈M is rough convergent of roughness degree r to x i.e., for any (0 <<)ε there exists a

p∈N such that d(xmk ,x)<< r+ε for all k≥ p. Now the set {n ∈ N : r+ ε−d(xn,x) /∈ intP}⊂

N\M∪{m1,m2, · · · ,mp−1}. As N\M∪{m1,m2, · · · ,mp−1} ∈ I therefore the set

{n ∈ N : r+ ε−d(xn,x) /∈ intP} ∈ I. Hence the sequence {xn} is rough I-convergent of rough-

ness degree r to x. This proves the theorem. �

It may happen that a sequence {xn} in a cone metric space (X ,d) is rough I-convergent of

roughness degree r to x ∈ X without being rough I∗-convergent of same roughness degree r to

x. Following example is such one in support of our claim.

Example 3.2. Let N=
∞⋃

j=1

D j be a decomposition of N such that D j =
{

2 j−1(2s−1) : s = 1,2, · · ·
}

.

Then each D j is infinite and Di∩D j = φ for i 6= j. Let I be the class of all A ⊂ N such that

A intersects with only a finite numbers of D j’s. Then it is easy to see that I is an admissible

ideal in N. Let X =R, E =R2 and P = {(x,y) : x,y≥ 0} ⊂R2 be a cone. Define d : X×X→ E

be such that d(x,y) = (|x− y|, |x− y|). Then (X ,d) is a cone metric space. Define a sequence

x = {xn} in (X ,d) such that xn = 1
j if n ∈ D j. Let r = (r1,r2) ∈ intP and min(r1,r2) = r∗.

Let (0 <<)ε = (ε1,ε2) be arbitrary and min(ε1,ε2) = ε∗. Then by Archimedean property of
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R, there exists a l ∈ N such that ε∗ > 1
l . Then it is easy to see that [−r∗,r∗] ⊂ I−LIMrx, as

{n ∈ N : r + ε − d(xn,x∗) /∈ intP} ⊂ D1 ∪D2 ∪ ·· · ∪Dl for any x∗ ∈ [−r∗,r∗]. Therefore the

sequence defined above is rough I-convergent.

If possible let this sequence be rough I∗-convergent of roughness degree r = (r1,r2) to x∗ =
r∗
2 , where r∗ = min(r1,r2). Then there exists a set M = {m1 < m2 < · · ·< mk < · · ·} ∈ F(I)

such that {xmk} is rough convergent of roughness degree r. Now obviously N \M = H ∈ I .

So there exists a p ∈ N such that H ⊂ D1 ∪D2 ∪ ·· · ∪Dp and Dp+1 ⊂ N \H = M. Hence we

have xmk =
1

p+1 for infinitely many k’s. Let us take (0 <<)r ∈ E in such a way that r∗ = 1
3(p+1) .

Let (0 <<)ε = (ε1,ε2) ∈ E be chosen such that (ε1,ε2) = ( 1
10(p+1) ,

1
10(p+1)). Then r + ε −

d(xmk ,x
∗) /∈ intP for infinitely many k’s. Therefore, the sequence is not rough I∗-convergent to

x∗ = r∗
2 for this chosen r although the sequence is rough I-convergent to x∗ = r∗

2 for the same r.

Remark 1. The sequence in the example 3.2 may be rough I∗-convergent of different roughness

degree to different limit with respect to the same ideal defined in that example. For, if we chose

say r = (5,5) and l = 1
p+1 , then for any M = {m1 < m2 < · · ·< mk < · · ·} ∈ F(I), d(xmk , l)<<

r+ ε for all k’s. Therefore the subsequence {xn}n∈M is rough convergent and so {xn} is rough

I∗-convergent of roughness degree r.

Rough I-limit and rough I∗-limit are same for a sequence {xn} in a cone metric space if the

ideal I has the property (AP). To prove this we need the following lemma.

Lemma 3.12. [22] Let {An}n∈N be a countable family of subsets of N such that An ∈ F(I) for

each n, where F(I) is the filter associated with an admissible ideal I with the property (AP).

Then there exists a set B⊂ N such that B ∈ F(I) and the sets B\An is finite for all n.

Theorem 3.13. If an ideal I has the property (AP) then a sequence x = {xn} in a cone metric

space (X ,d) which is rough I-convergent of roughness degree r to x∗ ∈ X is also rough I∗-

convergent of same roughness degree r to x∗.

Proof. Let I be an ideal in N which satisfy the property (AP). Let a sequence x = {xn} be rough

I-convergent of the roughness degree r to x∗. Then for any (0 <<)ε the set
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{n ∈ N : r+ ε−d(xn,x∗) /∈ intP} ∈ I. Therefore, the set {n ∈ N : r+ ε−d(xn,x∗) ∈ intP} ∈

F(I). Let (0 <<)l ∈ E. Now define Ai =
{

n ∈ N : d(xn,x∗)<< r+ l
i

}
, where i = 1,2, · · · . It

is clear that Ai ∈ F(I) for all i = 1,2, · · · . Since I has the property (AP), therefore there exists

a set B ⊂ N such that B ∈ F(I) and B \Ai is finite for i = 1,2, · · · . Now let (0 <<)ε ∈ E,

then by lemma 2.2, there exists j ∈ N such that l
j << ε . As B \A j is finite, so there exists a

k = k( j) ∈ N such that n ∈ B∩A j for all n ≥ k. Therefore d(xn,x∗) << r+ l
j << r+ ε for all

n ∈ B and n ≥ k. Thus the subsequence {xn}n∈B is rough convergent of roughness degree r to

x∗. Hence the sequence {xn} is rough I∗-convergent of roughness degree r to x∗. Hence the

theorem. �

Corollary 3. Let {xn} be a sequence in a cone metric space (X ,d). Then rough I-limit set of

{xn} equals with rough I∗-limit set of {xn} of roughness degree r if and only if I has the property

(AP).

Proof. In view of theorem 3.11 and theorem 3.13 the result follows. �

Theorem 3.14. If y = {xnk} be a subsequence of the sequence x = {xn}, then I− LIMrx ⊂

I−LIMry.

Proof. If possible let x∗ ∈ I − LIMrx. Then for any (0 <<)ε ∈ E the set {n ∈ N : r + ε −

d(xn,x∗) /∈ intP} ∈ I. Now for the subsequence y = {xnk}, as {nk ∈ N : r + ε − d(xnk ,x
∗) /∈

intP} ⊂ {n ∈ N : r+ ε−d(xn,x∗) /∈ intP} and {n ∈ N : r+ ε−d(xn,x∗) /∈ intP} ∈ I, so {nk ∈

N : r+ε−d(xnk ,x
∗) /∈ intP} ∈ I. Hence the set L = {nk ∈N : r+ε−d(xnk ,x

∗) ∈ intP} ∈ F(I).

Let us write L = {m1 < m2 < m3 < · · ·}. Then {xmk}mk∈L is a subsequence of y. So for the

subsequence {xmk}mk∈L we have d(xmk ,x
∗)<< r+ ε for all mk’s and hence {xmk}mk∈L is rough

convergent of roughness degree r to x∗. Therefore the subsequence y = {xnk} is rough I∗-

convergence of roughness degree r to x∗. So y = {xnk} is also rough I-convergent of roughness

degree r to x∗, by theorem 3.11. Hence x∗ ∈ I−LIMry. �

We now recall following two lemmas from [7].

Lemma 3.15. [7] Let (X ,d) be a cone metric space with normal cone P and normal constant

K. Then for any ε(> 0) ∈ R, we can choose c ∈ E with c ∈ intP and K||c||< ε .
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Lemma 3.16. [7] Let (X ,d) be a cone metric space with normal cone P and normal constant

K. Then for each c ∈ E with 0 << c, there is a δ > 0 such that ||x||< δ implies c− x ∈ intP.

Theorem 3.17. Let (X ,d) be a cone metric space with normal cone P and normal constant K.

Let I be an ideal in N which has the property (AP). Then a sequence {xn} in (X ,d) is rough I-

convergent of roughness degree r to x if and only if {d(xn,x)− r} is I-convergent to 0, provided

that {d(xn,x)− r} is a sequence in P.

Proof. First, let us assume that {xn} is rough I-convergent of roughness degree r to x. Since I

has the property (AP), by theorem 3.13, the sequence {xn} is also rough I∗-convergent of rough-

ness degree r to x. So, there exists a set M = {m1 < m2 < · · ·< mk < · · ·} ∈ F(I) such that the

subsequence {xn}n∈M is rough convergent of roughness degree r to x. Let (0 <)ε ∈R be given.

Then according to lemma 3.15, we have an element (0 <<)c ∈ E with K ‖c‖ < ε . Now since

the subsequence {xn}n∈M is rough convergent of roughness degree r to X , so for this (0 <<)c

we have an element l ∈ N such that d(xmk ,x) << r+ c for all k ≥ l i.e., d(xmk ,x)− r << c for

all k≥ l. Now as P is normal cone with normal constant K, therefore we have ‖d(xmk ,x)− r‖ ≤

K ‖c‖< ε for all k≥ l. Since this is true for any arbitrary (0 <)ε ∈R, by lemma 2.1 we see that

the subsequence {d(xn,x)− r}n∈M converges to 0. This implies that the sequence {d(xn,x)− r}

is I∗-convergent to 0 and hence it is also I-convergent to 0.

Conversely, suppose that the sequence {d(xn,x)− r} is I-convergent to 0. Since the ideal I

has the property (AP) and any cone metric space is first countable, the sequence {d(xn,x)− r}

is also I∗-convergent to 0. Thus there exists a set M = {m1 < m2 < · · ·< mk < · · ·} ∈ F(I) such

that {d(xn,x)− r}n∈M is convergent to 0. Let c ∈ E with 0 << c. Then by lemma 3.16, there

exists a δ > 0, such that ‖x‖ < δ implies c− x ∈ intP→ (i). Now since {d(xn,x)− r}n∈M

is convergent to 0, so for this δ there exists a k ∈ N such that
∥∥d(xmp,x)− r

∥∥ < δ for all

p ≥ k. So by (i), c− (d(xmp,x)− r) ∈ intP for all p ≥ k. Thus d(xmp,x) << r+ c for all p ≥

k. Therefore {n ∈ N : r+ c−d(xn,x) /∈ intP} ⊂ N \M ∪ {m1 < m2 < · · ·< mk−1} and hence

{n ∈ N : r+ c−d(xn,x) /∈ intP} ∈ I. Therefore {xn} is rough I-convergent of roughness degree

r to x. �
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Theorem 3.18. Let (X ,d) be a cone metric space with normal cone P and normal constant K.

Also let {xn} and {yn} be two sequences in (X ,d) which are rough I-convergent of roughness

degree 1
4K+2r to x and y respectively. Then the sequence {zn} in E is rough I-convergent to

d(x,y) of roughness degree ||r|| where zn = d(xn,yn) for all n ∈ N.

Proof. Let ε > 0 be given and x ∈ intP. Then c = εx
2‖x‖(4K+2) ∈ intP. Obviously ‖c‖< ε

2(4K+2) .

Now as {xn} and {yn} both are rough I-convergent of same roughness degree 1
4K+2r to x and

y respectively, so for (0 <<)c ∈ E the sets A1 =
{

n ∈ N : c+ 1
4K+2r−d(xn,x) /∈ intP

}
and

A2 =
{

n ∈ N : c+ 1
4K+2r−d(yn,y) /∈ intP

}
both belongs to I. Therefore, the set A{1 = N \A1

and A{2 = N \A2 both belongs to F(I). So, M = A{1 ∩A{2 ∈ F(I). Let us choose an element

m ∈ A{1∩A{2. Hence (c+ 1
4K+2r)−d(xm,x) ∈ intP→ (i) and (c+ 1

4K+2r)−d(ym,y) ∈ intP→

(ii). From (i) and (ii) we get (c+ 1
4K+2r)−d(xm,x)+(c+ 1

4K+2r)−d(ym,y) = 2(c+ 1
4K+2r)−

(d(xm,x)+d(ym,y)) ∈ intP→ (iii).

Again d(x,y)≤ d(xm,x)+d(xm,y) i.e., d(xm,x)+d(xm,y)−d(x,y)∈P→ (iv). Also as d(xm,y)≤

d(xm,ym)+ d(ym,y), so d(xm,ym)+ d(ym,y)− d(xm,y) ∈ P→ (v). Thus from (iv) and (v) we

get d(xm,x)+d(ym,y)+d(xm,ym)−d(x,y)∈P→ (vi). Also as d(x,ym)≤ d(x,y)+d(y,ym) i.e.,

d(x,y)+d(y,ym)−d(x,ym)∈ P and as d(xm,ym)≤ d(xm,x)+d(x,ym) i.e., d(xm,x)+d(x,ym)−

d(xm,ym)∈P, so their sum also belongs to P i.e., d(x,y)+d(y,ym)+d(xm,x)−d(xm,ym)∈P→

(vii). Now from (iii) and (vii) we get 2(c+ 1
4k+2r)+d(x,y)−d(xm,ym) ∈ intP→ (viii). Again

from (iii) and (vi) we have 2(c+ 1
4K+2r)+d(xm,ym)−d(x,y)∈ intP i.e., 4(c+ 1

4K+2r)−(2(c+
1

4K+2r)+d(x,y)−d(xm,ym)) ∈ intP. This implies that 2(c+ 1
4K+2r)+d(x,y)−d(xm,ym) <<

4(c+ 1
4K+2r). Also from (viii) we have 2(c+ 1

4K+2r)+ d(x,y)− d(xm,ym) ∈ intP. Again we

have 0<< 4(c+ 1
4K+2r). Now as P is normal, therefore, ||2(c+ 1

4K+2r)+d(x,y)−d(xm,ym)|| ≤

K||4(c+ 1
4K+2r)|| → (ix). Also ||d(x,y)−d(xm,ym)|| = ||d(x,y)−d(xm,ym)+2(c+ 1

4K+2r)−

2(c+ 1
4K+2r)|| ≤ ||d(x,y)−d(xm,ym)+2(c+ 1

4K+2r)||+2||(c+ 1
4K+2r)|| → (x). Thus from (x)

using (ix) we get ||d(x,y)−d(xm,ym)|| ≤ 4K||(c+ 1
4K+2r)||+2||(c+ 1

4K+2r)||= (4K+2)||(c+
1

4K+2r)|| ≤ (4K+2)||c||+(4K+2) 1
4K+2 ||r||=

ε

2 + ||r||< ε + ||r|| → (xi). Since the inequality

in (xi) holds for any arbitrary m ∈ M, therefore, {n ∈ N : ||d(xn,yn)−d(x,y)|| ≥ ε + ||r||} ⊂

N \M. Hence the set {n ∈ N : ||d(xn,yn)−d(x,y)|| ≥ ε + ||r||} ∈ I. Hence the sequence {zn}

in E is rough I-convergent to d(x,y) ∈ E of roughness degree ||r||. �
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