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Abstract. It is known that a necessary condition for Gabor systems {EmbTnag}m,n∈Z to yield a frame is that ab6 1

(where a,b are the lattice parameters). In this paper we will characterize and construct Gabor (Weyl-Heisenberg) K-

frames when ab > 1, and windows are in the Weiner algebra. We will show that an oversampling {Em b
q
Tn a

p
g}m,n∈Z

of a K-frame {EmbTnag}m,n∈Z is also a K-frame. Moreover, we will give a concrete example, in the case when

g = χ[0,1), a = 2, b = 1, and we will derive some results.
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1. INTRODUCTION

The notion of a frame for Hilbert spaces was introduced by Duffin and Schaeffer [5]. This

was done while probing into some questions in non-harmonic Fourier series. This idea seemed

to have been unnoticed outside of this area until Daubechies, Grossmann and Meyer [3] brought

it into light in 1986. the latter’s showed that Duffin and Schaeffer’s definition was an abstraction

of the concept introduced by Gabor [6] in 1946 for doing signal analysis. Recently, the frames
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that have been introduced by Gabor are referred to as Gabor frames or Weyl-Heisenberg frames,

and they play a vital role in signal analysis.

Frames are more general than bases; a frame is a set of vectors in a Hilbert space that can

be used to reconstruct each vector in the space from its inner products with the frame vectors.

These inner products are called the frame coefficients of the vector. But unlike an orthonor-

mal basis each vector may have infinitely many different representations in terms of its frame

coefficients.

The aim of Gabor analysis is to represent every signal f as a superposition of elementary

basic functions of the form e2πimag(x− nb), m,n ∈ Z; g is a fixed function and a,b are fixed

numbers in R+. If this is the case, the system {e2πimag(x−nb)}m,n∈Z, is called a Gabor frame.

In this work, we will be interested in when {e2πimag(x−nb)}m,n∈Z is not a frame.

Then, we will be dealing with Gabor K-frame.

K-frames, as a new generalization of frames, have important applications. They help us to

reconstruct elements from a range of a bounded linear operator K in a separable Hilbert space.

The notion of K-frames has been introduced by L.Gǎvruta in order to study the atomic systems

with respect to a bounded linear operator K in a separable Hilbert space H [7]. K-frames are

more general than ordinary frames in the way that the lower frame bound only holds for the

elements of the range of K. Because of the higher generality of K-frames, many properties for

ordinary frames may not hold for K-frames. For instance, the corresponding synthesis operator

for K-frames is not surjective, the frame operator for K-frames is not isomorphic. Our paper

will discus Gabor ( Weyl-Heisenberg ) K-frames and will be organized as follows: Sections 2 ,

3 , 4 and 5 will be devoted to displaying the required concepts for our focal point of study. In

section 6, we will show that:

(i) For a given g ∈W ; a,b > 0 such that ab > 1 and K ∈ B
(
L2(R)

)
{EmbTnag}m,n∈Z is a K-fram if and only if R(K)⊂R(Dg,a,b).

(ii) for a given window g in the wiener space and real a,b > 0 with ab > 1 and for every

h ∈W , {EmbTnag}m,n∈Z is a Kh,g-frame, where Kh,g is the mixed frame operator[2].

iii Every oversampling in the form {Em b
q
Tn a

p
g}m,n∈Z of a Gabor K-frame {EmbTnag}m,n∈Z

is also a Gabor K-frame
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and we will establish some results when g = χ[0,1).

Throughout this paper, we will also adopt the following notations: H is a separable

Hilbert space ; B(H) the space of all bounded linear operators on H; l2(N) = {(an)n∈N ⊂

C/‖(an)‖l2(N) =
(
∑n∈N |an|2

)1/2
< ∞}; L2(R) is the space of all square-integrable functions on

the real line R with the inner product and norm on L2(R) denoted by 〈., .〉 and ‖.‖2 respectively

; The characteristic function of a set E⊂ R is : χE(x) =

 1 : x ∈ E

0 : x 6∈ E
.

The essential supremum of a function f is :

‖ f‖∞ = esssupx∈R| f (x)|= in f{α ∈ R/ f (x)< α a.e}.

RK and NK are the range and the kernel of a bounded operator K : H −→ H, K† is the pseudo-

inverse of K ; Cc(R) is the space of continuous compactly supported functions on R.

Theorem 1.1. [4] Let L1 ∈ B(H1,H), L2 ∈ B(H2,H) be two bounded operators. The following

statements are equivalent:

(i) R(L1)⊂R(L1)

(ii) L1L∗1 ≤ λ 2L2L∗2 for some λ ≥ 0 and

(iii) there exists a bounded operator X ∈ B(H1,H2) so that L1 = L2X.

Definition 1.2. A sequence { fk}k∈N of elements in a separable Hilbert space H is a frame for

H if there exist constants A,B > 0 such that

A‖ f‖2 ≤ ∑
k∈N
|〈 f , fk〉|2 ≤ B‖ f‖2, ∀ f ∈ H.

If { fk}k∈N is a frame only for span{ fk}k∈N, it is called is a frame sequence. The operator

T : l2(N)−→ H, T{ck}k∈N = ∑
k∈N

ck fk

(called the synthesis operator) is well defined and bounded iff { fk}k∈N is a Bessel sequence.

It is well known that ( see[1] Thm 4.1) if { fk}k∈N is a frame then T is bounded; linear and

onto (surjective), and span{ fk}k∈N = H

If { fk}k∈N is a frame sequence then

R(T ) = span{ fk}k∈N.
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2. K-FRAMES

We first recall the concepts of K-frames, the atomic system of K

Definition 2.1. [7]. A sequence { fn}n∈N is called a K-frame for H, if there exist constants

A,B > 0 such that:

(2.1) A‖K∗ f‖2 6 ∑
n∈N
|〈 f , fn〉|2 ≤ B‖ f‖2,∀ f ∈ H.

We call A,B the lower frame bound and the upper frame bound for K-frame { fn}n∈N, respec-

tively. If only the right inequality of (2.1) holds, { fn}n∈N is called a Bessel sequence

Remark 2.2. If K = IH , then K-frames are just the ordinary frames. Hence, K-frames arise

naturally as a generalization of ordinary frames

Example 2.3. Let H =Cn and {e1,e2, ......,en} be an orthonormal basis of H. Define K : H −→

H by : fi = Kei = ei for 16 i6 n−1 , and fn = Ken = en−1

{ fi}n
i=1 is a K-frame for H.

Example 2.4. Suppose that H = l2(N) , let {en}n∈N be the standard ortonormal basis of H ,

{en}n∈N is an ordinary frame for l2(N) . Define K : H −→ H by : gi = Kei = ei+2 for every

i ∈ N.

Clearly, {gi}i∈I is a K-frame for H.

Definition 2.5. [9] A sequence { fn}n∈N is called an atomic system for K, if the following

conditions are satisfied

(i) { fn}n∈N is a Bessel sequence ;

(ii) For any x ∈ H, there exists ax = {ax
n}n ∈ l2(N) such that:

Kx = ∑
n∈N

an fn.

Where ‖ax‖l2(N) ≤C‖x‖, C is a positive constant .

Example 2.6. Let H be a separable Hilbert space, K ∈ B(H), and {hi}i∈I defined by: hi = Kei

where {ei}i∈I is an orthonormal basis of H.
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We can see that: {hn}i∈I is an atomic system for K by letting:

ah := {〈h,ei〉}i∈I ∀h ∈ H.

The proof of the following proposition can be founded in [7] (Theorem 3).

Proposition 2.7. Let { fn}n∈N ⊂ H. Then the following assertions are equivalent

(i) { fn}n∈N is an atomic system for K ;

(ii) { fn}n∈N is a K-frame for H .

3. GABOR FRAMES

Gabor analysis in L2 (R) is based on two classes of operators on L2 (R), namely: Translation

by a ∈ R

(3.1) Ta : L2 (R)−→ L2 (R) ,(Ta f )(x) = f (x−a);

Modulation by b ∈ R

(3.2) Eb : L2 (R)−→ L2 (R) ,(Eb f )(x) = e2πibx f (x).

We begin this section with the following definition.

Definition 3.1. A Gabor frame is a frame for L2 (R) of the form {EmbTnag}m,n∈Z where a,b > 0

and g ∈ L2 (R) is a fixed function. Frames of this type are also called Weyl-Heisenberg frames.

The function g is called the window function or the generator.

Example 3.2. Consider the system {EmTnaχ[0,c)}m,n∈Z.

It is a Gabor frame when a≤ c≤ 1.

Theorem 3.3. [2] (Theorem 11.3.1). Let g ∈ L2 (R) and a,b > 0 be given, such that ab > 1.

Then {EmbTnag}m,n∈Z is not a frame for L2 (R).

Remark 3.4. We can assume that either the translation parameter or the modulation parameter

in a Gabor frame is equal to 1. This can be obtained by a scaling of g, (in an arbitrary Gabor

frame {EmbTnag}m,n∈Z) i.e., by replacing g with a function of the type

(3.3) Dcg(x) =
1√
c

g
(x

c

)
.
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Proposition 3.5. [2] Let g ∈ L2 (R) and a,b,c > 0 be given, and assume that {EmbTnag}m,n∈Z

is a frame (Bessel sequence respectively). Then, with gc := Dcg, the Gabor family{
Emb/cTnacgc

}
m,n∈Z is a frame (Bessel sequence respectively) with the same frame bounds as

{EmbTnag}m,n∈Z.

4. PSEUDO-INVERSE

The Pseudo-inverse Operator exist in the literature as a type of generalized inverses.

Lemma 4.1. [2](Lemma 2.5.1). Let H, K be Hilbert spaces, and suppose that U : K −→H is a

bounded operator with closed range RU . Then there exists a bounded operator U† : H −→ K

for which

(4.1) UU†x = x,∀x ∈RU .

Remark 4.2. The operator U† is called the pseudo-inverse of U . And it is the unique operator

satisfying that:

(4.2) NU† = R⊥U ,RU† = N ⊥
U ,and,UU†x = x,∀x ∈RU .

Example 4.3. Let K be as in example 2.4.

It is easy to see that : NK = span{e0,e1} ; RK = span{ei}i≥2 , and K† is defined by :

K†(ei) =

 ei−2 : i≥ 2

0 : i = 0,1
.

5. THE WIENER SPACE W

Our reference for this section is [2] .

Definition 5.1. Given a > 0 , the Wiener space is defined by:

W := {g : R−→ C/gismesurableand, ∑
k∈Z
‖gχ[k,k+1)‖∞ < ∞}.(5.1)

the space W is also called a Wiener amalgam space and is often denoted by W (L∞, l1).
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W is a Banach space with respect to the norm

‖g‖W,a = ∑
k∈Z
‖gχ[ka,(k+1)a)‖∞.

The space W is independent of the choice of a, and different choices give equivalent norms.

S ⊂S0 ⊂W , where S is the Schwartz space and S0 is Feichtingeŕs algebra.

W ⊂ L1(R)∩L2(R), and W is a dense subspace of L2(R).

Proposition 5.2. [2] (Prop 11.5.2) If g ∈W, then {EmbTnag}m,n∈Z is a Bessel sequence for any

choice of a,b > 0.

6. MAIN RESULTS

Let us define the analysis operator Cg : L2 (R) −→ l2 (Z2) and the synthesis operator Dg :

l2 (Z2)−→ L2 (R) associated with {EmbTnag}m,n∈Z by :

(6.1) Cg( f ) = {〈 f ,EmbTnag〉}m,n∈Z

and

(6.2) Dg(c) = ∑
m,n∈Z

cm,nEmbTnag.

Let {em,n}m,n∈Z be an orthonormal basis of l2(Z2). One can see that

Dg(em,n) = EmbTnag.

The operators Dg and Cg are bounded iff {EmbTnag}m,n∈Z is a Bessel sequence, and Dg is the

adjoint of Cg. Moreover:

(6.3) ‖Cg( f )‖2
l2(Z2) = ∑

m,n∈Z
|〈 f ,EmbTnag〉|2, f ∈ L2(R).

Definition 6.1. The operator defined by composing analysis and synthesis operators from dif-

ferent systems will be noted Kh,g:

(6.4) Kh,g( f ) = Dg ◦Ch( f ) = ∑
m,n∈Z

〈 f ,EmbTnah〉EmbTnag.

Theorem 6.2. Let g ∈W and a,b > 0 such that ab > 1, let K ∈ B
(
L2(R)

)
. Then the following

holds:
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(i) If R(K)⊆R(Dg) then {EmbTnag}m,n∈Z is a K frame for L2(R).

(ii) If R(Dg) R(K) then {EmbTnag}m,n∈Z is not a K frame for L2(R).

(iii) If R(K) = R(Dg) then {EmbTnag}m,n∈Z is a Parseval K frame for L2(R)

Proof. Let {em,n}m,n∈Z be an orthonormal basis of l2(Z2). For f ∈ L2(R) and (m,n) ∈ Z2

〈D∗g f ,emn〉= 〈 f ,Dgemn〉= 〈 f ,EmbTnag〉

then

D∗g f = ∑
m,n∈Z

〈 f ,EmbTnag〉emn

hence

(6.5) ‖D∗g f‖2 = ∑
m,n∈Z

|〈 f ,EmbTnag〉|2 ∀ f ∈ L2(R)

If R(K)⊆R(Dg), then by Douglas majoration theorem [4] we get

AKK∗ ≤ DgD∗g

this means that

A‖K∗ f‖2 ≤ ‖D∗g f‖2 ∀ f ∈ L2(R)

and by (6.5) we claim that {EmbTnag}m,n∈Z is a K frame for L2(R).

Suppose R(Dg) R(K), let f ∈R(K)\R(Dg) such that f 6= 0, since

R(Dg) = span(EmbTnag)

then

〈Dg(Cmn), f 〉L2(R) = 0 ∀(Cmn) ∈ l2(Z2),

hence

〈(Cmn),D∗g f 〉l2(Z2) = 0 ∀(Cmn) ∈ l2(Z2)

then

0 = ‖D∗g f‖2
l2(Z) = ∑

m,n∈Z
|〈 f ,EmbTnag〉|2

but ‖K∗ f‖ 6= 0, so {EmbTnag}m,n∈Z is not a K frame for L2(R).
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If R(K) = R(Dg) then there exist A > 0 such that

AKK∗ = DgD∗g

So

A‖K∗ f‖2 = ‖D∗g f‖2 ∀ f ∈ L2(R)

ie

A‖K∗ f‖2 = ‖ ∑
m,n∈Z

|〈 f ,EmbTnag〉|2 ∀ f ∈ L2(R).

�

Theorem 6.3. Let g ∈W and a,b > 0 such that ab > 1. Then for every h ∈W:

{EmbTnag}m,n∈Z is a Kh,g - frame , i.e there exist A,B > 0 such that :

A‖K∗h,g f‖2 ≤ ∑
m,n∈Z

|〈 f ,EmbTnag〉|2 ≤ B‖ f‖2,∀ f ∈ L2(R).

Proof. It is easy to see that the right hand side of the inequality holds because

{〈 f ,EmbTnah〉}m,n∈Z ∈ l2 (Z2).
On the other hand;

‖K∗h,g f‖= sup‖u‖=1|〈K∗h,g f ,u〉|= sup‖u‖=1|〈 f ,Kh,gu〉|

and by definition of Kh,g:

Kh,gu = ∑
m,n∈Z

〈u,EmbTnah〉EmbTnag.

So
‖K∗h,g f‖= sup

‖u‖=1
| ∑

m,n∈Z
〈EmbTnah,u〉〈 f ,EmbTnag〉|

≤ sup
‖u‖=1

(
∑

m,n∈Z
|〈EmbTnah,u〉|2

)1/2

.

(
∑
m,n
|〈 f ,EmbTnag〉|2

)1/2

≤ sup
‖u‖=1

B(h,a,b)‖u‖2

(
∑

m,n∈Z
|〈 f ,EmbTnag〉|2

)1/2

.

Let

A =
1

B(h,a,b)
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It follows that

A‖K∗ f‖2 ≤ ∑
m,n∈Z

|〈 f ,EmbTnag〉|2

this complete the proof. �

Remark 6.4. Let K be an operator such that {EmbTnag}m,n∈Z is a K - frame, is K in the form

Kh,g for some h and g in W?

Corollary 6.5. If {EmbTnag}m,n∈Z is a K-frame, then it is a T -frame for every T ∈ B(L2(R))

such that R(T )⊂R(K)

The following Theorem gives a partial answer to the problem:

Problem 6.6. Let K ∈ B(L2(H)) and a > 0, b > 0 such that {EmbTnag}m,n∈Z is a K-frame. The

system {Em bp
q

Tn ar
s

g}m,n∈Z(p, p,r,s are in N∗ and p≤ p , r ≤ s ) is it a Gabor K-frame?.

Theorem 6.7. Let K ∈ B(L2(H)) and a > 0, b > 0. If {EmbTnag}m,n∈Z is a K-frame, then

{Emβ Tnαg}m,n∈Z is a K-frame for every α > 0, β > 0 such that α = a
p and β = b

q (p,q ∈ N∗).

Proof. We can always reduce to case β = b and α = a
q (see proposition 3.5).

Assume that {EmbTnag}m,n∈Z is a K-frame,then:

∑
m,n∈Z

|〈 f ,EmbTn a
q
g〉|2 =

q−1

∑
l=0

∑
m,n∈Z

|〈 f ,EmbT(nq+l) a
q
g〉|2

=
q−1

∑
l=0

∑
m,n∈Z

|〈 f ,EmbTl a
q
Tnag〉|2

=
q−1

∑
l=0

∑
m,n∈Z

|〈T−l a
q

f ,EmbTnag〉|2

= ∑
m,n∈Z

|〈 f ,EmbTnag〉|2 +
q−1

∑
l=1

∑
m,n∈Z

|〈T−l a
q

f ,EmbTnag〉|2

≥ A‖K∗ f‖2

�
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Corollary 6.8. Let g ∈W, if α = a
p and β = b

q (p,q ∈ N∗) then;

R(Dg,a,b)⊂R(Dg,α,β )

Example 6.9. Let h = g = χ[0,1) and a = 2 , b = 1.

We denote Kh,g in this example by Kg,g := K

Note that K∗ = (Dg ◦Cg)
∗ =C∗g ◦D∗g = Dg ◦Cg = K, and K is the frame operator corresponding

to {EmT2nχ[0,1)}m,n∈Z. Let us show that {EmT2nχ[0,1)}m,n∈Z is a K-frame.

K∗ f = K f = ∑
m,n∈Z

〈 f ,EmT2nχ[0,1)〉EmT2nχ[0,1)

Let f ∈Cc(R):

〈K f ,K f 〉= ∑
m,n∈Z

|〈 f ,EmT2nχ[0,1)〉|2〈EmT2nχ[0,1),EmT2nχ[0,1)〉

= ∑
m,n∈Z

|〈 f ,EmT2nχ[0,1)〉|2‖EmT2nχ[0,1)‖2
L2(R)

= ∑
m,n∈Z

|〈 f ,EmT2nχ[0,1)〉|2‖χ[0,1)‖2
L2(R)

= ∑
m,n∈Z

|〈 f ,EmT2nχ[0,1)〉|2.

By density of Cc(R) in L2(R), the equality hold for every f ∈ L2(R).

Then:

‖K∗ f‖2 = ∑
m,n∈Z

|〈 f ,EmT2nχ[0,1)〉|2

So, {EnT2nχ[0,1)}m,n∈Z is a K-frame for L2(R).

Let E := ∪k∈Z ([0,1)+2k) and F := ∪k∈Z ([1,2)+2k) .

E and F are 2Z- periodic sets in R.

We see that E∪F= R, also L2(E) and L2(F) are two closed subspaces of L2(R).

Moreover:

L2(E)⊕L2(F) = L2(R).(6.6)

Where L2(E) := { f ∈ L2(R) : f = 0 on R�E}.

Every f in L2(R) can be written as f = f1 + f2 , with f1 = f χE and f2 = f χF.
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It is easy to see from the definition of E, that for every f ∈ L2(F) we have K f = 0. Then

{EmbTnaχ[0,1)}m,n∈Z cannot be complete , so it is not an ordinary frame for L2(R).

Corollary 6.10. Let K, E and F as above. Then NK = L2(F), and RK = L2(E)

Proof. From [2](Theorem 12.2.1):

Kh,g f =
1
b ∑

k∈Z
f (x− k/b) ∑

n∈Z
g(x−na)h(x−na− k/b)

This equality is known as the Walnut representation (See [2], and[8] for more details ). Then:

K f = ∑
k∈Z

f (x− k) ∑
n∈Z

χ[0,1)(x−2n)χ[0,1)(x−2n− k)

= f (x) ∑
n∈Z
|χ[0,1)(x−2n)|2 + ∑

k 6=0
f (x− k) ∑

n∈Z
χ[0,1)(x−2n)χ[0,1)(x−2n− k)

If x ∈ F, then: x−2n ∈ F for all n ∈ Z, hence K f (x) = 0.

If x ∈ E, then:

K f = ∑
k∈Z

f (x− k) ∑
n∈Z

χ[0,1)(x−2n)χ[0,1)(x−2n− k)

= f (x) ∑
n∈Z
|χ[0,1)(x−2n)|2 + ∑

k 6=0
f (x− k) ∑

n∈Z
χ[0,1)(x−2n)χ[0,1)(x−2n− k)

= f (x) ∑
n∈Z
|χ[2n,2n+1)(x)|2 + ∑

k 6=0
f (x− k) ∑

n∈Z
χ[2n,2n+1)(x)χ[2n+k,2n+k+1)(x)

= f (x) ∑
n∈Z

χ[2n,2n+1)(x)

= f (x)χE = f1(x).

�

Based on what has been said, we can deduce that K = PE, where PE is the orthogonal projec-

tion on E.

Corollary 6.11. {EmT2nχ[0,1)}m,n∈Z is a Parseval frame for L2(E).

Proof. We have already seen that:

‖K f‖2 = ∑
m,n∈Z

|〈 f ,EmT2nχ[0,1)〉|2.
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As K f = f1 , and 〈 f ,EmT2nχ[0,1)〉= 〈 f1,EmT2nχ[0,1)〉.

We certainly have:

‖ f‖2 = ∑
m,n∈Z

|〈 f ,EmT2nχ[0,1)〉|2, f or every f ∈ L2(E).

�

The value of this can be noticed in the ease with witch we are able to reconstruct signals that

appears in proper subspaces of L2(R)) as the subspace E.
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