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1. INTRODUCTION AND PRELIMINARIES

The concept of frames in Hilbert spaces has been introduced by Duffin and Schaeffer [9] in

1952 to study some deep problems in nonharmonic Fourier series. After the fundamental paper

[7] by Daubechies, Grossman and Meyer, frame theory began to be widely used, particularly in

the more specialized context of wavelet frames and Gabor frames [11]. Frames have been used

in signal processing, image processing, data compression and sampling theory. The concept of

a generalization of frames to a family indexed by some locally compact space endowed with a
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Radon measure was proposed by G. Kaiser [14] and independently by Ali, Antoine and Gazeau

[5]. These frames are known as continuous frames. Gabardo and Han in [10] called these

frames associated with measurable spaces, Askari-Hemmat, Dehghan and Radjabalipour in [3]

called them generalized frames and in mathematical physics they are referred to as coherent

states [5]. In 2012, L. Gavruta [12] introduced the notion of K-frames in Hilbert space to study

the atomic systems with respect to a bounded linear operator K. Controlled frames in Hilbert

spaces have been introduced by P. Balazs [4] to improve the numerical efficiency of iterative

algorithms for inverting the frame operator. Rahimi [17] defined the concept of controlled K-

frames in Hilbert spaces and showed that controlled K-frames are equivalent to K-frames due to

which the controlled operator C can be used as preconditions in applications. Controlled frames

in C∗-modules were introduced by Rashidi and Rahimi [15], and the authors showed that they

share many useful properties with their corresponding notions in a Hilbert space. We extended

the results of frames in Hilbert spaces to Hilbert C∗-modules (see [13], [19], [20], [21], [22],

[23], [24], [25], [26], [27], [28], [29])

Motivated by the above literature, we introduce the notion of a continuous controlled K-frame

in Hilbert C∗-modules.

In the following we briefly recall the definitions and basic properties of C∗-algebra, Hilbert

A -modules. Our references for C∗-algebras as [8, 6]. For a C∗-algebra A if a ∈A is positive

we write a≥ 0 and A + denotes the set of positive elements of A .

Definition 1.1. [18] Let A be a unital C∗-algebra and H be a left A -module, such that the

linear structures of A and H are compatible. H is a pre-Hilbert A -module if H is equipped

with an A -valued inner product 〈., .〉A : H ×H → A , such that is sesquilinear, positive

definite and respects the module action. In the other words,

(i) 〈x,x〉A ≥ 0 for all x ∈H and 〈x,x〉A = 0 if and only if x = 0.

(ii) 〈ax+ y,z〉A = a〈x,z〉A + 〈y,z〉A for all a ∈A and x,y,z ∈H .

(iii) 〈x,y〉A = 〈y,x〉∗A for all x,y ∈H .

For x ∈H , we define ||x|| = ||〈x,x〉A ||
1
2 . If H is complete with ||.||, it is called a Hilbert

A -module or a Hilbert C∗-module over A . For every a in C∗-algebra A , we have |a|= (a∗a)
1
2

and the A -valued norm on H is defined by |x|= 〈x,x〉
1
2
A for x ∈H .
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Let H and K be two Hilbert A -modules, A map T : H →K is said to be adjointable if

there exists a map T ∗ : K →H such that 〈T x,y〉A = 〈x,T ∗y〉A for all x ∈H and y ∈K .

We reserve the notation End∗A (H ,K ) for the set of all adjointable operators from H to K

and End∗A (H ,H ) is abbreviated to End∗A (H ).

Lemma 1.2. [2]. Let H and K two Hilbert A -modules and T ∈ End∗A (H ). Then the

following statements are equivalente:

(i) T is surjective.

(ii) T ∗ is bounded below with respect to norm, i.e, there is m > 0 such that ‖T ∗x‖ ≥ m‖x‖,

x ∈K .

(iii) T ∗ is bounded below with respect to the inner product, i.e, there is m′ > 0 such that,

〈T ∗x,T ∗x〉A ≥ m′〈x,x〉A ,x ∈K

Lemma 1.3. [18] Let H and K two Hilbert A -modules and T ∈ End∗A (H ). Then the fol-

lowing statements are equivalente,

(i) The operator T is bounded and A -linear.

(ii) There exist 0≤ k such that

〈T x,T x〉A ≤ k〈x,x〉A x ∈H .

For the following theorem, R(T) denote the range of the operator T.

Theorem 1.4. [30] Let H be a Hilbert A -module over a C∗-algebra A and let T,S two

operators for End∗A (H ). If R(S) is closed, then the following statements are equivalent:

(i) R(T )⊂ R(S).

(ii) T T ∗ ≤ λ 2SS∗ for some λ ≥ 0.

(iii) There exists Q ∈ End∗A (H ) such that T = SQ.

2. CONTINUOUS CONTROLLED K-FRAME FOR HILBERT C∗-MODULES

Let X be a Banach space, (Ω,µ) a measure space, and f : Ω→ X a measurable function.

Integral of the Banach-valued function f has been defined by Bochner and others. Most prop-

erties of this integral are similar to those of the integral of real-valued functions. Since every
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C∗-algebra and Hilbert C∗-module is a Banach space thus we can use this integral and its prop-

erties.

Let H and K be two Hilbert C∗-modules, {Kw : w ∈ Ω} is a family of subspaces of K ,

and End∗A (H ,Kw) is the collection of all adjointable A -linear maps from H into Kw. We

define

⊕w∈ΩKw = {x = {xw}w∈Ω : xw ∈Kw,
∫

Ω

‖xw‖2dµ(w)< ∞}.

For any x = {xw : w ∈ Ω} and y = {yw : w ∈ Ω}, if the A -valued inner product is defined by

〈x,y〉A =
∫

Ω
〈xw,yw〉A dµ(w), the norm is defined by ‖x‖ = ‖〈x,x〉A ‖

1
2 . Therefore, ⊕w∈ΩKw

is a Hilbert C∗-module(see [14]).

Let A be a C∗-algebra, l2(A ) is defined by,

l2(A ) = {{aω}w∈Ω ⊆A : ‖
∫

Ω

aωa∗ωdµ(ω)‖< ∞}.

l2(A ) is a Hilbert C∗-module (Hilbert A −module) with pointwise operations and the inner

product defined as,

〈{aω}w∈Ω,{bω}w∈Ω〉A =
∫

Ω

aωb∗ωdµ(ω),{aω}w∈Ω,{bω}w∈Ω ∈ l2(A ),

and,

‖{aω}w∈Ω‖= (
∫

Ω

aωa∗ωdµ(ω))
1
2 .

Definition 2.1. Let H be a Hilbert A -module over a unital C∗-algebra, and K ∈ End∗A (H ).

A mapping F: Ω→H is called a continuous K-Frame for H if :

• F is weakly-measurable, ie, for any f ∈H , the map

w→ 〈 f ,F(w)〉A is measurable on Ω.

• There exist two strictly positive constants A and B such that

(2.1) A〈K∗ f ,K∗ f 〉A ≤
∫

Ω

〈 f ,F(w)〉A 〈F(w), f 〉A dµ(w)≤ B〈 f , f 〉A , f ∈H .

The elements A and B are called continuous K-frame bounds.

If A = B we call this Continuous K-Frame a continuous tight K-Frame, and if A = B = 1 it is

called a continuous Parseval K-Frame. If only the right-hand inequality of (2.1) is satisfied, we
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call F a continuous bessel mapping with Bessel bound B.

Let F be a continuous bessel mapping for Hilbert C∗- module H over A .

The operator T :H → l2(A ) defined by,

T f = {〈 f ,F(ω)〉A }ω∈Ω,

is called the analysis operator.

There adjoint operator T ∗ : l2(A )→H given by,

T ∗({aω}ω∈Ω) =
∫

Ω

aωF(ω)dµ(ω),

is called the synthesis operator.

By composing T and T ∗, we obtain the continuous K-frame operator, S : H →H defined by

S f =
∫

Ω

〈 f ,F(ω)〉A F(ω)dµ(ω).

It’s clear to see that S is positive, bounded and selfadjoint (see [5]).

For the following definition we need to introduce, GL+(H ) be the set of all positive bounded

linear invertible operators on H with bounded inverse.

Definition 2.2. Let H be a Hilbert A -module over a unital C∗-algebra and K ∈ End∗A (H ) ,

C ∈ GL+(H ). A mapping F :Ω→H is called a continuous C-controlled K-Frame in H if :

• F is weakly-measurable, ie, for any f ∈H , the map

w→ 〈 f ,F(w)〉A is measurable on Ω.

• There exists two strictly positive constants A and B such that

(2.2) A〈C
1
2 K∗ f ,C

1
2 K∗ f 〉A ≤

∫
Ω

〈 f ,F(w)〉A 〈CF(w), f 〉A dµ(w)≤ B〈 f , f 〉A , f ∈H .

The elements A and B are called continuous C-controlled K-frame bounds.

If A = B we call this continuous C-controlled K-Frame a continuous tight C-Controlled K-

Frame, and if A = B = 1 it is called a continuous Parseval C-Controlled K-Frame. If only the

right-hand inequality of (2.2) is satisfied, we call F a continuous C-controlled bessel mapping

with Bessel bound B.
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Example 2.3.

H = A = l2(C)

=

{
{an}∞

n=1 ⊂ C /
∞

∑
n=1
|an|2 <+∞

}
.

A is recognized as a Hilbert A -Module with the A -inner product

< {an}∞

n=1 ,{bn}∞

n=1 >A =
{

anbn
}∞

n=1 .

Consider now the borned linear operator

C : H → H

{an}∞

n=1 7−→ {αan}∞

n=1

where α ∈ R∗+. Then C is positive invertible and

C−1({an}∞

n=1) =
{

α
−1an

}∞

n=1 .

Let (Ω,µ) the measure space where Ω = [0,1] and µ is the lebesgue measure and let

F : Ω → H

w 7−→ Fw =
{w

n

}∞

n=1

.

In the author hand, consider the projection

K : H → H

{an}∞

n=1 7−→ (a1, ..,ar,0, ...)

where r is an integer (r ≥ 2).

It’s clair that K∗ = K and for each f = {an}∞

n=1 ∈ H = l2(C), one has∫
Ω

< f ,Fw >A <CFw, f >A dµ(w) =
∫
[0,1]

{w
n

an

}∞

n=1
.
{

α
w
n

an

}∞

n=1
dµ(w)

=
∫
[0,1]

{
α

w2

n2 |an|2
}∞

n=1
dµ(w)

=
α

3

{
|an|2

n2

}∞

n=1

.

Hence ∫
Ω

< f ,Fw >A <CFw, f >A dµ(w)≤ απ2

18
< {an}∞

n=1 ,{an}∞

n=1 >A .
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Furthermore,

< CK∗ f ,K∗ f >A =< (αa1, ..,αar,0, ...),(a1, ..,ar,0, ...)>A

= (α |a1|2 , ..,α |ar|2 ,0, ...).

Then for A = 1
3r2 , one obtain

α

3r2 (|a1|2 , .., |ar|2 ,0, ...)≤

{
α

3
|an|2

n2

}∞

n=1

.

The conclusion is

1
3r2 <C1/2K∗ f ,C1/2K∗ f >A≤

∫
Ω

< f ,Fw >A <CFw, f >A dµ(w)≤ απ2

18
< f , f >A

Let F be a continuous C-controlled bessel mapping for Hilbert C∗- module H over A .

We define the operator frame

SC : H →H by,

SC f =
∫

Ω

〈 f ,F(ω)〉A CF(ω)dµ(ω).

Remark 2.4. From definition of S and SC, we have, SC =CS.

Using [16] , SC is A -linear and bounded. Thus, it is adjointable.

Since 〈SCx,x〉A ≥ 0, for any x∈H , it result, again from [16], that SC is positive and selfadjoint.

Theorem 2.5. Let H be a Hilbert A -module, K ∈ End∗A (H ), and C ∈ GL+(H ). Let F :

Ω→H a map. Suppose that CK = KC, R(C
1
2 )⊂ R(K∗C

1
2 ) with R(K∗C

1
2 ) is closed. Then F is

a continuous C-controlled K-frame for H if and only if there exist two constants 0 < A,B < ∞

such that :

(2.3) A‖C
1
2 K∗ f‖2 ≤ ‖

∫
Ω

〈 f ,F(w)〉A 〈CF(w), f 〉A dµ(w)‖ ≤ B‖ f‖2, f ∈H .

Proof. (=⇒) obvious.

For the converse, we suppose that 0 < A,B < ∞ such that :

A‖C
1
2 K∗ f‖2 ≤ ‖

∫
Ω

〈 f ,F(w)〉A 〈CF(w), f 〉A dµ(w)‖ ≤ B‖ f‖2, f ∈H .
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We have,

‖
∫

Ω

〈 f ,F(w)〉A 〈CF(w), f 〉A dµ(w)‖= ‖〈SC f , f 〉A ‖

= ‖〈CS f , f 〉A ‖

= ‖〈(CS)
1
2 f ,(CS)

1
2 f 〉A ‖

= ‖(CS)
1
2 f‖2.

Since, R(C
1
2 ) ⊂ R(K∗C

1
2 ) with R(K∗C

1
2 ) is closed, then by theorem 1.4, there exists 0 ≤ m

such that,

(C
1
2 )(C

1
2 )∗ ≤ m(K∗C

1
2 )(K∗C

1
2 )∗.

Thus,

〈(C
1
2 )(C

1
2 )∗ f , f 〉A ≤ m〈(K∗C

1
2 )(K∗C

1
2 )∗ f , f 〉A .

Consequently,

‖C
1
2 f‖2 ≤ m‖K∗C

1
2 f‖2.

Then,

A‖C
1
2 f‖2 ≤ Am‖K∗C

1
2 f‖2 ≤ m‖(CS)

1
2 f‖2.

Hence,
A
m
‖C

1
2 f‖2 ≤ ‖(CS)

1
2 f‖2.

So,

(2.4)

√
A
m
‖C

1
2 f‖ ≤ ‖(CS)

1
2 f‖.

From lemma1.2, we have,√
A
m
〈C

1
2 f ,C

1
2 f 〉A ≤ 〈C

1
2 S

1
2 f ,C

1
2 S

1
2 f 〉A .

Then,

〈C
1
2 f ,C

1
2 f 〉A ≤

√
m
A
〈CS f , f 〉A .

So,

〈C
1
2 f ,C

1
2 f 〉A ≤

√
m
A
〈SC f , f 〉A .
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One the deduce

〈C
1
2 K∗ f ,C

1
2 K∗ f 〉A ≤ ‖K∗‖2〈C

1
2 f ,C

1
2 f 〉A ≤ ‖K∗‖2

√
m
A
〈SC f , f 〉A .

Hence,

(2.5)
1

‖K∗‖2

√
A
m
〈C

1
2 K∗ f ,C

1
2 K∗ f 〉A ≤ 〈SC f , f 〉A .

Since SC is positive, selfadjoint and bounded A -linear map, we can write

〈S
1
2
C f ,S

1
2
C f 〉A = 〈SC f , f 〉A =

∫
ω

〈 f ,F(w)〉A 〈CF(w), f 〉A dµ(w).

From lemma 1.3, there exists D > 0 such that,

〈S
1
2
C f ,S

1
2
C f 〉A ≤ D〈 f , f 〉A ,

hence,

(2.6) 〈SC f , f 〉A ≤ D〈 f , f 〉A .

Therfore by (2.5) and (2.6), we conclude that F is a continuous C-controlled K-frame in

Hilbert C∗-module H with frame bounds 1
‖K∗‖2

√
A
m and D. �

Lemma 2.6. Let C ∈ GL+(H ). Suppose CSC = SCC and R(S
1
2
C)⊂ R((CSC)

1
2 ) with R((CSC)

1
2 )

is closed. Then ‖S
1
2
C f‖2 ≤ λ‖(CSC)

1
2 f‖2 for some λ ≥ 0.

Proof. By theorem1.4, there exists some λ > 0 such that,

(S
1
2
C)(S

1
2
C)
∗ ≤ λ (CS

1
2
C)(CS

1
2
C)
∗.

Hence,

〈(S
1
2
C)(S

1
2
C)
∗ f , f 〉A ≤ λ 〈(CS

1
2
C)(CS

1
2
C)
∗ f , f 〉A .

So,

‖S
1
2
C f‖2 ≤ λ‖(CS

1
2
C) f‖2, f ∈H .

�



10 FARAJ, KABBAJ, LABRIGUI, TOURI, ROSSAFI

Theorem 2.7. Let F : Ω→H a map and C ∈ GL+(H ). Suppose CSC = SCC and R(S
1
2
C) ⊂

R((CSC)
1
2 ) with R((CSC)

1
2 ) is closed. Then F is a continuous C-controlled Bessel mapping with

bound B if and only if U : l2(A )→H defined by U({aw}w∈Ω) =
∫

Ω
awCF(w)dµ(w) is well

defined bounded with ‖U‖ ≤
√

B‖C 1
2‖.

Proof. Assume that F is a continuous C-controlled Bessel with bound B. Hence ,

‖
∫

Ω

〈 f ,F(w)〉A 〈CF(w), f 〉A dµ(w)‖ ≤ B‖ f‖2, f ∈H .

So,

‖〈SC f , f 〉A ‖ ≤ B‖ f‖2.

In the begining, we show that U is well defined .

For each {aw}w∈Ω ∈ l2(A ),

‖U({aw}ω∈Ω)‖2 = sup
f∈H ,‖ f‖=1

‖〈U({aw}ω∈Ω), f 〉A ‖2

= sup
f∈H ,‖ f‖=1

‖〈
∫

Ω

awCF(w)dµ(w), f 〉A ‖2

= sup
f∈H ,‖ f‖=1

‖
∫

Ω

aw〈CF(w), f 〉A dµ(w)‖2

≤ sup
f∈H ,‖ f‖=1

‖
∫

Ω

〈 f ,CF(w)〉A 〈CF(w), f 〉A dµ(w)‖.‖
∫

Ω

awa∗wdµ(w)‖

= sup
f∈H ,‖ f‖=1

‖〈
∫

Ω

〈 f ,CF(w)〉A CF(w)dµ(w), f 〉A ‖.‖
∫

Ω

awa∗wdµ(w)‖

= sup
f∈H ,‖ f‖=1

‖〈CSC f , f 〉A ‖.‖
∫

Ω

awa∗wdµ(w)‖

= sup
f∈H ,‖ f‖=1

‖〈(CSC)
1
2 f ,(CSC)

1
2 f 〉A ‖.‖{aw}ω∈Ω‖2

≤ sup
f∈H ,‖ f‖=1

‖(C)
1
2‖2‖(SC f )

1
2‖2‖{aw}ω∈Ω‖2

≤ B‖(C)
1
2‖2‖{aw}ω∈Ω‖2.

Then,

‖U‖ ≤
√

B‖(C)
1
2‖.
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Hence U is well defined and bounded.

Now, suppose that U is well defined, and

‖U‖ ≤
√

B‖(C)
1
2‖.

For any f ∈H and {aw}ω∈Ω ∈ l2(A ), we have,

〈 f ,U({aw}ω∈Ω)〉A = 〈 f ,
∫

Ω

awCF(w)dµ(w)〉A

=
∫

Ω

〈a∗wC f ,F(w)〉A dµ(w)

=
∫

Ω

〈C f ,F(w)〉A a∗wdµ(w)

= 〈{〈C f ,F(w)〉A }ω∈Ω,{aw}ω∈Ω〉A .

Then, U has an adjoint, and

U∗ f = {〈C f ,F(w)〉A }ω∈Ω.

Also,

‖U‖2 = sup
‖({aw}ω∈Ω)‖=1

‖U({aw}ω∈Ω)‖2

= sup
‖({aw}ω∈Ω)‖=1,‖ f‖=1

‖〈U({aw}ω∈Ω), f 〉A ‖2

= sup
‖({aw}ω∈Ω)‖=1,‖ f‖=1

‖〈{aw}ω∈Ω,U∗ f 〉A ‖2

= sup
‖ f‖=1

‖U∗ f‖2

= ‖U∗‖2

So,

‖U∗ f‖2 = ‖〈U∗ f ,U∗ f 〉A ‖= ‖〈UU∗ f , f 〉A ‖= ‖〈CSC f , f 〉A ‖.

Then,

(2.7) ‖U∗ f‖2 = ‖(CSC)
1
2 f‖2 ≤ B‖(C)

1
2‖2‖ f‖2.

From lemma 2.6, we have,

‖(SC)
1
2 f‖2 ≤ λ‖(CSC)

1
2 f‖2,
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for some λ > 0.

Using (2.7) we get,

‖(SC)
1
2 f‖2 ≤ λ‖(CSC)

1
2 f‖2

≤ λB‖C
1
2‖2‖ f‖2.

Hence F is a continuous C-controlled Bessel mapping with Bessel bound λB‖C 1
2‖2. �

Proposition 2.8. Let F be a continuous C-controlled K-frame for H with bounds A and B.

Then :

ACKK∗I ≤ SC ≤ B.I.

Proof. Suppose F is a continuous C-controlled K-frame with bounds A and B. Then,

A〈C
1
2 K∗ f ,C

1
2 K∗ f 〉A ≤

∫
Ω

〈 f ,F(w)〉A 〈CF(w), f 〉A dµ(w)≤ B〈 f , f 〉A .

Hence,

A〈CKK∗ f , f 〉A ≤ 〈SC f , f 〉A ≤ B〈 f , f 〉A .

So,

ACKK∗I ≤ SC ≤ B.I.

�

Proposition 2.9. Let F be a continuous C-controlled Bessel mapping for H , and C∈GL+(H ).

Then F is a continuous C-controlled K-frame for H if and only if there exists A > 0 such that:

ACKK∗ ≤CS.

Proof. (=⇒) obvious.

(⇐=) Assume that there exists A > 0 such that: ACKK∗ ≤CS,

then,

A〈CKK∗ f , f 〉A ≤ 〈SC f , f 〉A .

Hence,

A〈C
1
2 K∗ f ,C

1
2 K∗ f 〉A ≤ 〈SC f , f 〉A .
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Therefore,

A〈C
1
2 K∗ f ,C

1
2 K∗ f 〉A ≤

∫
Ω

〈 f ,F(w)〉A 〈CF(w), f 〉A dµ(w).

Hence F is a continuous C-controlled K-frame.

�

Proposition 2.10. Let C ∈ GL+(H ), K ∈ End∗A (H ) and F be a continuous C-controlled K-

frame for H with lower and upper frames bounds A and B respectivelty. Suppose KC = CK

and R(C
1
2 )⊂R(K∗C

1
2 )with R(K∗C

1
2 ) is closed. Then F is continuous K-frame for H with lower

and upper frames bounds A‖C−1
2 ‖−2‖(C)

1
2‖−2 and B‖C−1

2 ‖2 respectively.

Proof. Assume that F is a continuous C-controlled K-frame with lower and upper frames bounds

A and B. From theorem 2.5, we have:

A‖C
1
2 K∗ f‖2 ≤ ‖

∫
Ω

〈 f ,F(w)〉A 〈CF(w), f 〉A dµ(w)‖ ≤ B‖ f‖2, f ∈H .

Then,

A‖K∗ f‖2 = A‖C
−1
2 C

1
2 K∗ f‖2

≤ A‖C
−1
2 ‖2‖C

1
2 K∗ f‖2

≤ ‖C
−1
2 ‖2‖

∫
Ω

〈 f ,F(w)〉A 〈CF(w), f 〉A dµ(w)‖.

So,

(2.8) A‖K∗ f‖2 ≤ ‖C
1
2‖2‖〈SC f , f 〉A ‖.

Moreover,

〈SC f , f 〉A = 〈CS f , f 〉A

= 〈(CS)
1
2 f ,(CS)

1
2 f 〉A

= ‖(CS)
1
2 f‖2

≤ ‖(C)
1
2‖2.‖(S)

1
2 f‖2

= ‖(C)
1
2‖2.〈(S)

1
2 f ,(S)

1
2 f 〉A

= ‖(C)
1
2‖2.〈S f , f 〉A ,
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then,

(2.9) 〈SC f , f 〉A ≤ ‖(C)
1
2‖2.〈S f , f 〉A .

From (2.8)and (2.9), we have,

A‖K∗ f‖2 ≤ ‖C
−1
2 ‖2‖(C)

1
2‖2〈S f , f 〉A

= ‖C
−1
2 ‖2‖(C)

1
2‖2

∫
Ω

〈 f ,F(w)〉A 〈F(w), f 〉A dµ(w).

Hence,

‖C
−1
2 ‖−2‖(C)

1
2‖−2A‖K∗ f‖2 ≤

∫
Ω

〈 f ,F(w)〉A 〈F(w), f 〉A dµ(w).

Moreover,

‖
∫

Ω

〈 f ,F(w)〉A 〈F(w), f 〉A dµ(w)‖= ‖〈S f , f 〉A ‖

= ‖〈C−1CS f , f 〉A ‖

= ‖〈(C−1CS)
−1
2 f ,(C−1CS)

−1
2 f 〉A ‖

= ‖(C−1CS)
1
2 f‖2

≤ ‖C
−1
2 ‖2‖(CS)

1
2 f‖2

= ‖C
−1
2 ‖2〈(CS)

1
2 f ,(CS)

1
2 f 〉A

= ‖C
−1
2 ‖2〈CS f , f 〉A

≤ ‖C
−1
2 ‖2B‖ f‖2.

Then F is a continuous K-frame for H with lower and upper frames bounds

A‖C−1
2 ‖−2‖(C)

1
2‖−2 and B‖C−1

2 ‖2.

�

Proposition 2.11. Let C ∈GL+(H ) and K ∈ End∗A (H ). We Suppose that KC =CK, R(C
1
2 )⊂

R(K∗C
1
2 ) with R(K∗C

1
2 ) is closed and F is a continuous K-frame for H with lower and upper

frames bounds A and B respectivlty.

Then F is continuous C-controlled K-frame for H with lower and upper frames bounds A and

‖C‖‖S‖.
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Proof. Assume that F is a continuous K-frame for H with lower and upper frames bounds A

and B. Then we have:

A〈K∗ f ,K∗ f 〉A ≤
∫

Ω

〈 f ,F(w)〉A 〈F(w), f 〉A dµ(w)≤ B〈 f , f 〉A ,

Since 〈K∗ f ,K∗ f 〉A > 0 and 〈 f , f 〉A > 0 then,

(2.10) A‖K∗ f‖2 ≤ ‖
∫

Ω

〈 f ,F(w)〉A 〈F(w), f 〉A dµ(w)‖ ≤ B‖ f‖2.

Then for every f ∈H ,

A‖C
1
2 K∗ f‖2 = A‖K∗C

1
2 f‖2

≤ ‖
∫

Ω

〈C
1
2 f ,F(w)〉A 〈F(w),C

1
2 f 〉A dµ(w)‖

= ‖〈
∫

Ω

〈C
1
2 f ,F(w)〉A F(w)dµ(w),C

1
2 f 〉A ‖

= ‖〈C
1
2 S f ,C

1
2 f 〉A ‖

= ‖〈CS f , f 〉A ‖

= ‖〈S f ,C f 〉A ‖

≤ ‖S f‖.‖C f‖,

then

(2.11) A‖C
1
2 K∗ f‖2 ≤ ‖〈SC f , f 〉A ‖ ≤ ‖S‖.‖C‖‖ f‖2.

By (2.11) and theorem2.5, we conclude that F is continuous C-controlled K-frame for H with

lower and upper frames bounds A and ‖C‖‖S‖.

�

Theorem 2.12. Let C ∈ GL+(H ), and F be a continuous C-controlled K-frame for H with

bounds A and B. Let M,K ∈End∗A (H ) such that R(M)⊂R(K), R(K) is closed and C commutes

with M∗ and K∗. Then F is continuous C-controlled M-frame for H .
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Proof. Assume that F be a continuous C-controlled K-frame for H with bounds A and B, then,

(2.12) A〈C
1
2 K∗ f ,C

1
2 K∗ f 〉A ≤

∫
Ω

〈 f ,F(w)〉A 〈CF(w), f 〉A dµ(w)≤ B〈 f , f 〉A , f ∈H .

Since R(M)⊆ R(K), by theorem 1.4, there exists some 0≤ λ such that

MM∗ ≤ λKK∗.

Hence,

〈MM∗C
1
2 f ,C

1
2 f 〉A ≤ λ 〈KK∗C

1
2 f ,C

1
2 f 〉A ,

then,

A
λ
〈MM∗C

1
2 f ,C

1
2 f 〉A ≤ A〈KK∗C

1
2 f ,C

1
2 f 〉A .

By (2.12), we have,

A
λ
〈M∗C

1
2 f ,M∗C

1
2 f 〉A ≤

∫
Ω

〈 f ,F(w)〉A 〈CF(w), f 〉A dµ(w)≤ B〈 f , f 〉A .

Then F is continuous C-controlled M-frame for H with bounds A
λ

and B. �

The following results gives the invariance of a continuous C-controlled Bessel mapping by a

adjointable operator.

Proposition 2.13. Let T ∈ End∗A (H ) such that TC =CT and F be a continuous C-controlled

Bessel mapping with bound D. Then T F is also a continuous C-controlled Bessel mapping with

bound D‖T ∗‖.

Proof. Assume that F is a continuous C-controlled Bessel mapping with bound D. Hence we

have, ∫
Ω

〈 f ,F(w)〉A 〈CF(w), f 〉A dµ(w)≤ D〈 f , f 〉A , f ∈H .
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We have,∫
Ω

〈 f ,T F(w)〉A 〈CT F(w), f 〉A dµ(w) =
∫

Ω

〈T ∗ f ,F(w)〉A 〈TCF(w), f 〉A dµ(w)

=
∫

Ω

〈T ∗ f ,F(w)〉A 〈CF(w),T ∗ f 〉A dµ(w)

≤ D〈T ∗ f ,T ∗ f 〉A

≤ D‖T ∗‖2〈 f , f 〉A .

The result holds.

�

Now, we study the invariance of a continuous C-controlled K-frame mapping by adjointable

operator.

Theorem 2.14. Let C ∈ GL+(H ), and F be a continuous C-controlled K-frame for H with

bounds A and B. If T ∈ End∗A (H ) with closed range such that R(K∗T ∗) is closed and C, K, T

commute with each other. Then T F is a continuous C-controlled K-frame for R(T ).

Proof. Assume that F is a continuous C-controlled K-frame with bounds A and B. Then,

A〈C
1
2 K∗ f ,C

1
2 K∗ f 〉A ≤

∫
Ω

〈 f ,F(w)〉A 〈CF(w), f 〉A ≤ B〈 f , f 〉A , f ∈H .

Since T has a closed range, then T has Moore-Penrose inverse T † such that T T †T = T and

T †T T † = T †, so T T †
/R(T ) = IR(T ) and (T T †)∗ = I∗ = I = T T †.

We have,

〈K∗C
1
2 f ,K∗C

1
2 f 〉A = 〈(T T †)∗K∗C

1
2 f ,(T T †)∗K∗C

1
2 f 〉A

= 〈(T †)∗T ∗K∗C
1
2 f ,(T †)∗T ∗K∗C

1
2 f 〉A .

So,

(2.13) 〈K∗C
1
2 f ,K∗C

1
2 f 〉A ≤ ‖(T †)∗‖2〈T ∗K∗C

1
2 f ,T ∗K∗C

1
2 f 〉A .

Therfore,

(2.14) ‖(T †)∗‖−2〈K∗C
1
2 f ,K∗C

1
2 f 〉A ≤ 〈T ∗K∗C

1
2 f ,T ∗K∗C

1
2 f 〉A .
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Consequently, from theorem 1.4, and R(T ∗K∗) ⊂ R(K∗T ∗), there exists some λ ≥ 0 such

that,

(2.15) 〈T ∗K∗C
1
2 f ,T ∗K∗C

1
2 f 〉A ≤ λ 〈K∗T ∗C

1
2 f ,K∗T ∗C

1
2 f 〉A .

Hence, using (2.14) and (2.15) we have,

∫
Ω

〈 f ,T F(w)〉A 〈CT F(w), f 〉A dµ(w) =
∫

Ω

〈T ∗ f ,F(w)〉A 〈TCF(w), f 〉A dµ(w)

=
∫

Ω

〈T ∗ f ,F(w)〉A 〈CF(w),T ∗ f 〉A dµ(w)

≥ A〈C
1
2 K∗T ∗ f ,C

1
2 K∗T ∗ f 〉A

≥ A
λ
〈T ∗C

1
2 K∗ f ,T ∗C

1
2 K∗ f 〉A ,

then,

(2.16)
∫

Ω

〈 f ,T F(w)〉A 〈CT F(w), f 〉A dµ(w)≥ A
λ
‖(T †)∗‖−2〈C

1
2 K∗ f ,C

1
2 K∗ f 〉A

Using (2.16) and proposition2.13, the result holds.

�

Theorem 2.15. Let C ∈ GL†(H ) and F be a continuous C-controlled K-frame for H with

bounds A and B.

If T ∈ End∗A (H ) is a isometry such that R(T ∗K∗)⊂ R(K∗T ∗) with R(K∗T ∗) is closed and C,

K, T commute with each other, then T F is a continuous C-controlled K-frame for H .

Proof. Using theorem 1.4, there exists some λ ≥ 0 such that,

‖T ∗K∗C
1
2 f‖2 ≤ λ‖K∗T ∗C

1
2 f‖2.
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Assume A the lower bound for the continuous C-controlled K-frame F and T is an isometry

then,

A
λ
‖C

1
2 K∗ f‖2 =

A
λ
‖T ∗C

1
2 K∗ f‖2

≤ A‖K∗T ∗C
1
2 f‖2

= A‖C
1
2 K∗T ∗ f‖2

≤
∫

Ω

〈T ∗ f ,F(w)〉A 〈CF(w),T ∗ f 〉A dµ(w)

=
∫

Ω

〈 f ,T F(w)〉A 〈TCF(w), f 〉A dµ(w),

then,

(2.17)
A
λ
‖C

1
2 K∗ f‖2 ≤

∫
Ω

〈 f ,T F(w)〉A 〈CT F(w), f 〉A dµ(w).

Hence, from proposition 2.13 and inequality (2.17), we conclude that T F is a continuous

C-controlled K-frame for H with bounds A
λ

and B‖T ∗‖2.

�
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