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Abstract. In this article, we introduce a generalized nonlinear mixed ordered implicit quasi-variational inclusion

problem involving ⊕ operation in the setting of real ordered positive Hilbert spaces. We propose a perturbed

three-step iterative algorithm for solving generalized nonlinear mixed ordered implicit quasi-variational inclusion

problem involving ⊕ operator. By using a new resolvent operator method with XOR technique, we prove the

existence of solution of generalized nonlinear mixed ordered implicit quasi-variational inclusion problem involving

⊕ operator and discuss the convergence analysis as well as stability analysis of the proposed algorithm. The

iterative algorithm and results presented in this paper generalize, improve and significantly refine many previously

known results of this area. Moreover, we construct a numerical example and a convergence graph in support of our

main result by using MATLAB programming.

Keywords: convergence; quasi-variational inclusion; stability; algorithm; XOR operation.

2010 AMS Subject Classification: 47H09, 49J40.

∗Corresponding author

E-mail addresses: i.ahmad@qu.edu.sa, iqbal@qec.edu.sa

Received October 13, 2021
1



2 IQBAL AHMAD

1. INTRODUCTION

A number of solutions of nonlinear equations were introduced and studied by Amann [1] in

1972. In recent past, the fixed point theory and their applications have been intensively stud-

ied in real ordered Banach spaces. Therefore, it is very important and natural for generalized

nonlinear ordered variational inequalities (ordered equations) to be studied and discussed. In

2008, Li [8] introduced the generalized nonlinear ordered variational inequalities and proposed

an algorithm to approximate the solution for a class of generalized nonlinear ordered variational

inequalities (ordered equations) in real ordered Banach spaces.

In 2009, Li [9] introduced and studied a new class of general nonlinear ordered variational

inequalities (ordered equations), and established an existence theorem in real ordered Banach

spaces by using the B-restricted-accretive method. By using different kind of mappings such as

RME set-valued mapping, ordered (α,λ )-NODM set-valued mapping, (γG,λ )-weak-GRD set-

valued mapping and ordered (αA,λ )-ANODM set-valued mappings with strong comparison

mapping and their respective resolvent operators, Li et al. [9–13] studied different classes of

nonlinear inclusion problems and obtained their solutions in real ordered Hilbert spaces. Very

recently, Ahmad et al. [2–4] considered some classes of ordered variational inclusions involving

XOR operator in different settings.

Recently, three-step forward-backward splitting methods have been developed by Glowin-

ski et al. [7] and Noor [19–21] for solving various classes of variational inequalities by using

the Lagrangian multiplier and the auxiliary principle techniques. Thus, one can conclude that

three-step iterative algorithms play an important and significant part in solving various prob-

lems, which aries in pure and applied sciences. Glowinski et al. [7] shown that the three-step

schemes gave better numerical results than the two-step and one-step approximation iterations.

It has been proved that three step iterative algorithms are natural generalization of the splitting

methods for solving partial differential equations. For applications of splitting and decomposi-

tion methods, see [7, 16–20, 22] and the references therein.

Motivated and inspired by on going research in this direction, we introduce a new class of

generalized nonlinear mixed ordered implicit quasi-variational inclusion problem involving ⊕
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operation in real ordered Hilbert spaces. Using the concept of XOR operation, we propose

a perturbed three-step iterative algorithm which is more powerful than the previous iterative

algorithms considered by Li et al. [8–14]. Furthermore, we prove the existence of solution

of generalized nonlinear mixed ordered implicit quasi-variational inclusion problem involving

⊕ operation and analyze the convergence criteria of the iterative sequences of the proposed

algorithm. Finally, we discuss stability analysis. We also construct a numerical example and a

convergence graph is given by using MATLAB programming.

2. PRELIMINARIES

Throughout this paper, we suppose that Hp is a real ordered positive Hilbert space endowed

with a norm ‖ ·‖ and an inner product 〈·, ·〉, d is the metric induced by the norm ‖ ·‖ and 2Hp is

the family of all nonempty subsets of Hp.

For the presentation of the results, let us demonstrate some known definitions and results.

Definition 2.1 ( [6, 23]). A nonempty subset C of Hp is called

(i) a normal cone if there exists a constant N > 0 such that for 0≤ p≤ q, we have ||p|| ≤

N||q||, for any p,q ∈Hp;

(ii) for any p,q ∈Hp, p≤ q if and only if q− p ∈C;

(iii) p and q are said to be comparative to each other if and only if, we have either p≤ q or

q≤ p and is denoted by p ∝ q.

Definition 2.2 ( [23]). For arbitrary elements p,q ∈Hp, lub{p,q} and glb{p,q} mean least

upper bound and greatest upper bound of the set {p,q}. Suppose lub{p,q} and glb{p,q} exist,

some binary operations are defined as follows:

(i) p∨q = lub{p,q};

(ii) p∧q = glb{p,q};

(iii) p⊕q = (p−q)∨ (q− p);

(iv) p�q = (p−q)∧ (q− p).

The operations ∨,∧, ⊕ and � are called OR, AND, XOR and XNOR operations, respectively.



4 IQBAL AHMAD

Lemma 2.1 ( [6]). If p ∝ q, then lub{p,q} and glb{p,q} exist, p−q ∝ q− p and 0≤ (p−q)∨

(q− p).

Lemma 2.2 ( [6]). For any natural number n, p ∝ qn and qn→ q∗ as n→ ∞, then p ∝ q∗.

Proposition 2.1 ( [8,11,14]). Let ⊕ be an XOR operation and � be an XNOR operation. Then

the following relations hold:

(i) p� p = 0, p�q = q� p =−(p⊕q) =−(q⊕ p);

(ii) if p ∝ 0, then −p⊕0≤ p≤ p⊕0;

(iii) (λ p)⊕ (λq) = |λ |(p⊕q);

(iv) 0≤ p⊕q, if p ∝ q;

(v) if p ∝ q, then p⊕q = 0 if and only if p = q;

(vi) (p+q)� (u+ v)≥ (p�u)+(q� v);

(vii) (p+q)� (u+ v)≥ (p� v)+(q�u);

(viii) if p,q and w are comparative to each other, then (p⊕q)≤ p⊕w+w⊕q;

(ix) if p ∝ q, then ((p⊕0)⊕ (q⊕0))≤ (p⊕q)⊕0 = p⊕q;

(x) α p⊕β p = |α−β |p = (α⊕β )p, if p ∝ 0, for all p,q,u,v,w ∈Hp and α,β ,λ ∈ R.

Proposition 2.2 ( [6]). Let C be a normal cone in Hp with normal constant N, then for each

p,q ∈Hp, the following relations hold:

(i) ‖0⊕0‖= ‖0‖= 0;

(ii) ‖p∨q‖ ≤ ‖p‖∨‖q‖ ≤ ‖p‖+‖q‖;

(iii) ‖p⊕q‖ ≤ ‖p−q‖ ≤ N‖p⊕q‖;

(iv) if p ∝ q, then ‖p⊕q‖= ‖p−q‖.

Definition 2.3 ( [11, 14]). Let A : Hp→Hp be a single-valued mapping. Then

(i) A is said to be strongly comparison mapping, if A is a comparison mapping and A(p) ∝

A(q) if and only if p ∝ q, for all p,q ∈Hp;

(ii) A is said to be γ-ordered non-extended mapping, if there exists γ > 0 such that

γ(p⊕q)≤ A(p)⊕A(q), for all p,q ∈Hp.
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Definition 2.4 ( [11]). A mapping A : Hp→Hp is said to be β -ordered compression mapping,

if A is a comparison mapping and

A(p)⊕A(q)≤ β (p⊕q), f or 0 < β < 1.

Definition 2.5. A mapping F : Hp×Hp→Hp is said to be (π,ν)-ordered Lipschitz continu-

ous, if p ∝ q, u ∝ v, then N(p,u) ∝ N(q,v) and there exist constants π,ν > 0 such that

F(p,u)⊕F(q,v)≤ π(p⊕q)+ν(u⊕ v), f or all p,q,u,v ∈Hp.

Definition 2.6 ( [10–12]). Let A : Hp → Hp be a strong comparison and γ-ordered non-

extended mapping and M : Hp→ 2Hp be a set-valued mapping. Then

(i) M is said to be a comparison mapping, if for any vp ∈M(p), p ∝ vp, and if p ∝ q, then

for any vp ∈M(p) and vq ∈M(q), vp ∝ vq, for all p,q ∈Hp;

(ii) a weak comparison mapping M is said to be αA-weak-non-ordinary difference mapping

with respect to A, if for each p,q ∈ Hp, there exist αA > 0 and vp ∈ M(A(p)) and

vq ∈M(A(q)) such that

(vp⊕ vq)⊕αA(A(p)⊕A(q)) = 0.

Now, we introduce some new definitions of XOR-ordered different weak compression map-

ping, XOR-weak-ANODD set-valued mapping and a resolvent operator associated with XOR-

weak-ANODD set-valued mapping.

Definition 2.7. A weak compression mapping M : Hp → 2Hp is said to be λ -XOR-ordered

different weak compression mapping with respect to A, if for each p,q ∈Hp, there exists a

constant λ > 0 and vp ∈M(A(p)),vq ∈M(A(q)) such that

λ (vp⊕ vq)≥ p⊕q,

holds.
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Definition 2.8. Let A : Hp→Hp be a strongly comparison and γ-ordered non-extended map-

ping. Then, a weak comparison mapping M : Hp → 2Hp is said to be (αA,λ )-XOR-weak-

ANODD set-valued mapping if M is a αA-weak-non-ordinary difference mapping with re-

spect to A and λ -XOR-ordered different weak compression mapping with respect to A, and

[A⊕λM](Hp) = Hp, for λ ,β ,α > 0.

Definition 2.9. Let A : Hp→Hp be a strongly comparison and γ-ordered non-extended map-

ping. Let M : Hp→ 2Hp be a (αA,λ )-XOR-weak-ANODD set-valued mapping. The resolvent

operator J A
λ ,M : Hp→Hp associated with A and M is defined by

(2.1) J A
λ ,M(p) = [A⊕λM]−1(p),∀p ∈Hp,

where λ > 0 is a constant.

Definition 2.10 ( [24]). Let S,T : Hp→Hp be a single-valued mapping, p0 ∈Hp and let

pn+1 = S(T, pn)

defines an iterative sequence which yields a sequence of points {pn} in Hp. Suppose that

F(T ) = {p ∈Hp : T p = p} 6= /0 and {pn} converges to a fixed point p∗ of T . Let {un} ⊂Hp

and

ϑn = ‖un+1−S(T,un)‖.

If lim
n→∞

ϑn = 0, which implies that un → p∗, then the iterative sequence {pn} is said to be T -

stable or stable with respect to T.

Lemma 2.3 ( [25]). Let {χn} be a nonnegative real sequence and {ζn} be a real sequence in

[0,1] such that
∞

∑
n=0

ζn = ∞. If there exists a positive integer m such that

(2.2) χn ≤ (1−ζn)χn +ζnηn, ∀n≥ m,

where ηn ≥ 0, for all n≥ 0 and ηn→ 0(n→ 0), then lim
n→∞

χn = 0.

Now, we show that the resolvent operator defined by (2.1) is single-valued, a comparison

mapping as well as continuous.
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Proposition 2.3 ( [5]). Let A : Hp →Hp be a strongly comparison, γ-ordered non-extended

mapping and M : Hp → 2Hp be a αA-weak-non-ordinary difference set-valued mapping with

respect to A with λαA 6= 1. Then the resolvent operator J A
λ ,M : Hp→Hp is a single-valued,

for all α,λ > 0.

Proposition 2.4 ( [5]). Let M : Hp→ 2Hp be a (αA,λ )-XOR-weak-ANODD set-valued map-

ping with respect to J A
λ ,M. Let A : Hp→Hp be a strongly comparison mapping with respect

to J A
λ ,M. Then, the resolvent operator J A

λ ,M : Hp→Hp is a comparison mapping.

Proposition 2.5. Let M : Hp→ 2Hp be a (αA,λ )-XOR-weak-ANODD set-valued mapping with

respect to J A
λ ,M. Let A : Hp→Hp be a comparison and γ-ordered non-extended mapping with

respect to J A
λ ,M, for µ ≥ 1 and λαA > µ. Then the following condition holds:

J A
λ ,M(p)⊕J A

λ ,M(q)≤ µ

(λαA⊕µ)
(p⊕q), f or all p,q ∈Hp.

Proof. Let p,q ∈Hp, up = J A
λ ,M(p), uq = J A

λ ,M(q), and let

vp∗ =
1
λ

(
p⊕A(up))

)
∈M(up) and vq∗ =

1
λ

(
q⊕A(uq))

)
∈M(uq).

As M be an (αA,λ )-XOR-weak-ANODD set-valued mapping with respect to J A
λ ,M. It follows

that M is also an αA-weak-non-ordinary difference mapping with respect to J A
λ ,M, we have

(2.3) (vp∗⊕ vq∗)⊕αA(A(up)⊕A(uq)) = 0,

and

vp∗⊕ vq∗ =
1
λ
[(p⊕A(up))⊕ (q⊕A(uq))]

=
1
λ
[(p⊕q)⊕ (A(up)⊕A(uq))]

≤ µ

λ
[(p⊕q)⊕ (A(up)⊕A(uq))], for µ ≥ 1.

From (2.3), we have

αA(A(up)⊕A(uq)) = vp∗⊕ vq∗

≤ µ

λ
[(p⊕q)⊕ (A(up)⊕A(uq))],
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i.e.,

λαA

µ
(A(up)⊕A(uq))≤ [(p⊕q)⊕ (A(up)⊕A(uq))].

Now, [
λαA

µ
(A(up)⊕A(uq))

]
⊕
(
A(up)⊕A(uq)

)
≤ (p⊕q)⊕0 = p⊕q(

λαA

µ
⊕1
)(

A(up)⊕A(uq)
)
≤ (p⊕q).

It follows that

(2.4) A(up)⊕A(uq)≤
(

µ

(λαA⊕µ)

)
(p⊕q).

Since A is γ-ordered non-extended mapping with respect to J A
λ ,M and using (2.4), we have

(2.5) up⊕uq ≤
(

µ

γ(λαA⊕µ)

)
(p⊕q)

and consequently, we have

J A
λ ,M(p)⊕J A

λ ,M(q)≤ µ

γ(λαA⊕µ)
(p⊕q), ∀ p,q ∈Hp.

�

Proposition 2.6. Let M : Hp→ 2Hp be a (αA,λ )-XOR-weak-ANODD set-valued mapping with

respect to J A
λ ,M. Let A : Hp→Hp be a comparison and γ-ordered non-extended mapping with

respect to J A
λ ,M, for µ ≥ 1 and λαA > µ. Then the resolvent operator J A

λ ,M is continuous.

Proof. Let M be an (αA,λ )-XOR-weak-ANODD set-valued mapping with respect to J A
λ ,M. If

µ ≥ 1 and λαA > µ , then

J A
λ ,M(p)⊕J A

λ ,M(q)≤ µ

γ(λαA⊕µ)
(p⊕q),

holds. Let the sequence {pn} ⊆Hp and q ∈Hp, then we have

0≤J A
λ ,M(pn)⊕J A

λ ,M(q)≤ µ

γ(λαA⊕µ)
(pn⊕q),

By using (i) of the Definition 2.1, we have∥∥∥J A
λ ,M(pn)⊕J A

λ ,M(q)
∥∥∥≤ µ

γ(λαA⊕µ)
‖pn⊕q‖.
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From Proposition 2.2 and Proposition 2.4, we have∥∥∥J A
λ ,M(pn)−J A

λ ,M(q)
∥∥∥≤ µ

γ(λαA⊕µ)
‖pn−q‖.

If pn→ q, then J A
λ ,M(pn)→J A

λ ,M(q). Therefore, the resolvent operator J A
λ ,M is continuous.

This completes the proof. �

3. FORMULATION OF THE PROBLEM AND EXISTENCE RESULTS OF SOLUTIONS

Let Hp be a real ordered Hilbert space and C be a normal cone with normal constant N. Let

P,g,h,Q : Hp→Hp and F : Hp×Hp→Hp be the single-valued mappings. Let M : Hp→

2Hp be a set-valued mapping such that τM = {τu|u ∈M(Hp)}, for some τ > 0. We consider

the following problem:

For some τ > 0 and any ξ ∈ R, find p ∈Hp such that

(3.1) 0 ∈ P(p)⊕ τM(p)−ξ Q(h(p)⊕F(p,g(p))).

We call this problem as generalized nonlinear mixed ordered implicit quasi-variational inclusion

problem involving ⊕ operation (in short, GNMOIQVIP).

Some special cases of problem (3.1) are as follows:

(i) If τ,ξ = 1, g,F = 0, h = I (identity mapping) and Q(p) = ω, (ω ∈Hp), then problem

(3.1) reduces to the problem of finding p ∈Hp such that

(3.2) ω ∈ P(p)⊕M(p).

Problem (3.2) was considered and studied by Li et al. [11].

(ii) If P,h = 0 and Q = I then problem (3.1) reduces to the problem of finding p ∈Hp such

that

(3.3) 0 ∈ τM(p)−ξ F(p,g(p)).

Problem (3.3) was considered and studied by Li et al. [14].

(iii) If ξ =−1, h = 0, Q = I (identity mapping) and F(p,g(p)) = f (p)−ω, (ω ∈Hp), then

problem (3.1) reduces to the problem of finding p ∈Hp such that

(3.4) ω ∈ f (p)+ τM(p).
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Problem (3.4) was considered and studied by Li et al. [15].

(iv) If P,g,F = 0, h = I (identity mapping) and Q = 1 (constant mapping), then problem

(3.1) reduces to the problem of finding p ∈Hp such that

(3.5) ξ ∈ τM(p).

Problem (3.5) was considered and studied by Li et al. [13].

(v) If ξ = 0,τ = 1 and P,g,h,F,Q= 0, then problem (3.1) reduces to the problem of finding

p ∈Hp such that

(3.6) 0 ∈M(p).

Problem (3.6) was considered and studied by Li [10, 12].

(vi) If ξ = −1, P,M = 0, and Q = I (identity mapping), then problem (3.1) reduces to the

problem of finding p ∈Hp such that

(3.7) 0≤ h(p)⊕F(p,g(p)).

Problem (3.7) was considered and studied by Li [9].

(vii) If h= 0 and F(p,g(p)) =F(g(p)), then problem (3.7) reduces to the problem of finding

p ∈Hp such that

(3.8) 0≤ F(g(p)).

Problem (3.8) was considered and studied by Li [8].

Hence, we see that our problem is much more general that the previous problems existing in

the literature.

The following Lemma is a fixed point formulation of GMOQVIP (3.1).

Lemma 3.1. The GNMOIQVIP (3.1) admits a solution p ∈Hp if and only if it satisfies the

following equation:

(3.9) p = J A
λ ,M[A(p)⊕ λ

τ
(P(p)⊕ξ Q(h(p)⊕F(p,g(p))))],

where λ > 0 is constant.
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Proof. The proof directly follows from the definition of the resolvent operator J A
λ ,M. �

Now, we prove the existence of solution for GNMOIQVIP (3.1).

Theorem 3.1. Let Hp be a real ordered Hilbert space and C be a normal cone with normal

constant N. Let A,P,g,h,Q : Hp→Hp and F : Hp×Hp→Hp be the single-valued mappings

such that A is δA-ordered compression and γ-ordered non-extended mapping, P is comparison,

δp-ordered compression mapping, g is comparison, δg-ordered compression mapping, h is com-

parison and δh-ordered compression mapping, Q is comparison and δQ-ordered compression

mapping with respect to h⊕F and F is comparison and (π,ν)-ordered Lipschitz continuous

mapping with respect to g, respectively. Let M : Hp→ 2Hp be an (αA,λ )-XOR-weak-ANODD

set-valued mapping. In addition, if A,P,g,h,Q,F,M,h⊕F and [A(.)⊕ λ

τ
(P(.)⊕ (ξ Q(.,g(.))))]

are compared to each other, and for all τ,λ > 0, the following conditions are satisfied:

(3.10)


N|µ

(
δAτ⊕λ (δP⊕|ξ |δQ(δh⊕ (π +νδg)))

)
|< |γτ(λαA⊕µ)|,

λαA > µ and µ ≥ 1,

then, GNMOIQVIP (3.1) admits a unique solution p∗ ∈ Hp, which is a fixed point of

J A
λ ,M[A(p∗)⊕ λ

τ
(P(p∗)⊕ξ Q(h(p∗)⊕F(p∗,g(p∗))))].

Proof. For i = 1,2, let us define R(pi) = P(pi)⊕ ξ Q(h(pi)⊕F(pi,g(pi))), for all pi ∈Hp.

Using Proposition 2.1 and 2.5, we obtain

0 ≤ J A
λ ,M[A(.)⊕ λ

τ
R(.)](p1)⊕J A

λ ,M[A(.)⊕ λ

τ
R(.)](p2)

≤ µ

γ(λαA⊕µ)

[
(A(.)⊕ λ

τ
R(.))(p1)⊕ (A(.)⊕ λ

τ
R(.))(p2)

]
≤ µ

γ(λαA⊕µ)

[
(A(p1)⊕A(p2))⊕

λ

τ
(R(p1)⊕R(p2))

]
≤ µ

γ(λαA⊕µ)

[
δA(p1⊕ p2)⊕

λ

τ
(R(p1)⊕R(p2))

]
.(3.11)

Since P is δp-ordered compression mapping, g is δg-ordered compression mapping, h is δh-

ordered compression mapping, Q is δQ-ordered compression mapping with respect to h⊕F
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and F is (π,ν)-ordered Lipschitz continuous mapping with respect to g, we have

R(p1)⊕R(p2)

= [(P(p1)⊕ξ Q(h(p1)⊕F(p1,g(p1))))⊕ (P(p2)⊕ξ Q(h(p2)⊕F(p2,g(p2))))]

= [(P(p1)⊕P(p2))⊕ (ξ Q(h(p1)⊕F(p1,g(p1)))⊕ξ Q(h(p2)⊕F(p2,g(p2))))]

≤ (δP(p1⊕ p2))⊕ (ξ Q(h(p1)⊕F(p1,g(p1)))⊕ξ Q(h(p2)⊕F(p2,g(p2))))

≤ (δP(p1⊕ p2))⊕|ξ |(Q(h(p1)⊕F(p1,g(p1)))⊕Q(h(p2)⊕F(p2,g(p2))))

≤ (δP(p1⊕ p2))⊕|ξ |δQ(h(p1)⊕F(p1,g(p1))⊕h(p2)⊕F(p2,g(p2)))

≤ (δP(p1⊕ p2))⊕|ξ |δQ(h(p1)⊕h(p2)⊕ (F(p1,g(p1))⊕F(p2,g(p2)))

≤ (δP(p1⊕ p2))⊕|ξ |δQ(δh(p1⊕ p2)⊕ (π(p1⊕ p2)+ν(g(p1)⊕g(p2)))

≤ (δP(p1⊕ p2))⊕|ξ |δQ(δh(p1⊕ p2)⊕ (π(p1⊕ p2)+νδg(p1⊕ p2))

= (δP(p1⊕ p2))⊕|ξ |δQ(δh⊕ (π +νδg))(p1⊕ p2)

= (δP⊕|ξ |δQ(δh⊕ (π +νδg)))(p1⊕ p2).(3.12)

Using (3.12), (3.11) becomes

0 ≤ J A
λ ,M[A(.)⊕ λ

τ
R(.)](p1)⊕J A

λ ,M[A(.)⊕ λ

τ
R(.)](p2)

≤ µ

γ(λαA⊕µ)

[
δA(p1⊕ p2)⊕

λ

τ
(δP⊕|ξ |δQ(δh⊕ (π +νδg)))(p1⊕ p2)

]
≤

µ
(
δAτ⊕λ (δP⊕|ξ |δQ(δh⊕ (π +νδg)))

)
γτ(λαA⊕µ)

(p1⊕ p2),

which implies that

(3.13) 0≤J A
λ ,M[A(.)⊕ λ

τ
R(.)](p1)⊕J A

λ ,M[A(.)⊕ λ

τ
R(.)](p2)≤ ψ(p1⊕ p2),

where ψ =

[
µ
(
δAτ⊕λ (δP⊕|ξ |δQ(δh⊕ (π +νδg)))

)
γτ(λαA⊕µ)

]
.

Using the definition of normal cone, we conclude that

(3.14)
∥∥∥J A

λ ,M[A(.)⊕ λ

τ
R(.)](p1)⊕J A

λ ,M[A(.)⊕ λ

τ
R(.)](p2)

∥∥∥≤ |ψ|N‖p1⊕ p2‖.
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Using the conditions (3.10), we can see that |ψ|< 1
N . It follows from (3.14) that J A

λ ,M[A(.)⊕
λ

τ
R(.)] is contraction operator. Hence, there exists a unique p∗ ∈Hp such that

p∗ = J A
λ ,M[A(p∗)⊕ λ

τ
(P(p∗)⊕ξ Q(h(p∗)⊕F(p∗,g(p∗))))].

From Lemma 3.1, p∗ is a unique solution of GNMOIQVIP (3.1). �

4. CONVERGENCE AND STABILITY ANALYSIS

In this section, we suggest the following perturbed three-step iterative algorithm based on

Lemma 3.1 for finding the approximate solution of GNMOIQVIP (3.1). We also discuss the

convergence and stability analysis of the proposed algorithm.

Iterative Algorithm 4.1. Let A,P,g,h,Q : Hp→Hp and F : Hp×Hp→Hp be the single-

valued mappings. Let M : Hp→ 2Hp be a set-valued mapping. Given any initial point p0 ∈Hp,

assume that p1 ∝ p0. We define the sequence {pn} and let pn+1 ∝ pn such that

(4.1)



pn+1 = (1−an)pn +an

(
J A

λ ,M[A(qn)⊕ λ

τ
(P(qn)⊕ξ Q(h(qn)

⊕F(qn,g(qn))))]
)
+anαn,

qn = (1−bn)pn +bn

(
J A

λ ,M[A(zn)⊕ λ

τ
(P(zn)⊕ξ Q(h(zn)

⊕F(zn,g(zn))))]
)
+bnβn,

zn = (1− cn)pn + cn

(
J A

λ ,M[A(pn)⊕ λ

τ
(P(pn)⊕ξ Q(h(pn)

⊕F(pn,g(pn))))]
)
+ cnδn.

Let {un} be any sequence in Hp and define {ϑn} by

(4.2)



ϑn =
∥∥∥un+1−

[
(1−an)un +an

(
J A

λ ,M[A(tn)⊕ λ

τ
(P(tn)⊕ξ Q(h(tn)

⊕F(tn,g(tn))))]
)
+anαn

]∥∥∥,
tn = (1−bn)un +bn

(
J A

λ ,M[A(sn)⊕ λ

τ
(P(sn)⊕ξ Q(h(sn)

⊕F(sn,g(sn))))]
)
+bnβn,

sn = (1− cn)un + cn

(
J A

λ ,M[A(un)⊕ λ

τ
(P(un)⊕ξ Q(h(un)

⊕F(un,g(un))))]
)
+ cnδn,
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where 0≤ an,bn,cn ≤ 1,
∞

∑
n=0

an = ∞,∀ n≥ 0. Here {αn}, {βn} and {δn} are three sequences in

Hp introduced to take into account the possible inexact computation provided that αn⊕0 = αn,

βn⊕0 = βn and δn⊕0 = δn,∀ n≥ 0.

Remark 4.1. If cn = 0,∀ n≥ 0, then Algorithm 4.1 becomes Ishikawa type iterative algorithm.

On taking bn,cn = 0,∀ n ≥ 0, Algorithm 4.1 becomes Mann type iterative algorithm. Also,

we remark that for suitable choices of operators involved in Algorithm 4.1, we can easily ob-

tain many more algorithms studied by several authors for solving ordered variational inclusion

problems, see e.g. [2, 3, 9–12, 14].

Theorem 4.1. Let Hp,C,A,P,h,g,F and M be the same as in Theorem 3.1 such that all the

conditions of Theorem 3.1 are satisfied. In addition, assume that the following conditions are

satisfied:

(4.3)


|µ
(
δAτ⊕λ (δP⊕|ξ |δQ(δh⊕ (π +νδg)))

)
|< |γτ(λαA⊕µ)|min{ 1

N ,1},

λαA > µ and µ ≥ 1.

If lim
n→∞
‖αn∨ (−αn)‖= lim

n→∞
‖βn∨ (−βn)‖= lim

n→∞
‖δn∨ (−δn)‖= 0, then

(I) the sequence {pn} generated by Algorithm 4.1 converges strongly to the unique solution

p∗ of GNMOIQVIP (3.1).

(II) moreover, if 0 < κ ≤ an, then lim
n→∞

un = p∗ if and only if lim
n→∞

ϑn = 0, where ϑn is defined

in (4.2) i.e., the sequence {pn} generated by (4.1) is stable with respect to J A
λ ,M.

Proof. (I). First, we prove the sequence {pn} strongly converges to the unique solution p∗ of

GNMOQVIP (3.1). By the conditions (4.3), we can assume that the conditions (3.10) hold.

Then, by Theorem 3.1, let us suppose that p∗ be an unique solution of GNMOQVIP (3.1).

Then, we have

p∗ = (1−an)p∗+an

(
J A

λ ,M[A(p∗)⊕ λ

τ
(P(p∗)⊕ξ Q(h(p∗)⊕F(p∗,g(p∗))))]

)
= (1−bn)p∗+bn

(
J A

λ ,M[A(p∗)⊕ λ

τ
(P(p∗)⊕ξ Q(h(p∗)⊕F(p∗,g(p∗))))]

)
= (1− cn)p∗+ cn

(
J A

λ ,M[A(p∗)⊕ λ

τ
(P(p∗)⊕ξ Q(h(p∗)⊕F(p∗,g(p∗))))]

)
.

(4.4)
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Using Algorithm 4.1, (4.4), Proposition 2.1 and Proposition 2.5, it follows that

0 ≤ pn+1⊕ p∗ =
[
(1−an)pn +an

(
J A

λ ,M[A(qn)⊕
λ

τ
(P(qn)

⊕ξ Q(h(qn)⊕F(qn,g(qn))))]
)
+anαn

]
⊕
[
(1−an)p∗+an

(
J A

λ ,M[A(p∗)

⊕λ

τ
(P(p∗)⊕ξ Q(h(p∗)⊕F(p∗,g(p∗))))]

)]
≤ (1−an)(pn⊕ p∗)+an(αn⊕0)

+an

((
J A

λ ,M[A(qn)⊕
λ

τ
(P(qn)⊕ξ Q(h(qn)⊕F(qn,g(qn))))]

)
⊕
(
J A

λ ,M[A(p∗)⊕ λ

τ
(P(p∗)⊕ξ Q(h(p∗)⊕F(p∗,g(p∗))))]

))
≤ (1−an)(pn⊕ p∗)+ψan(qn⊕ p∗)+an(αn⊕0),(4.5)

where ψ =

[
µ
(
δAτ⊕λ (δP⊕|ξ |δQ(δh⊕ (π +νδg)))

)
γτ(λαA⊕µ)

]
.

Using the same argument as for (4.5), we calculate

0 ≤ qn⊕ p∗ =
[
(1−bn)pn +bn

(
J A

λ ,M[A(zn)⊕
λ

τ
(P(zn)

⊕ξ Q(h(zn)⊕F(zn,g(zn))))]
)
+bnβn

]
⊕
[
(1−bn)p∗+bn

(
J A

λ ,M[A(p∗)

⊕λ

τ
(P(p∗)⊕ξ Q(h(p∗)⊕F(p∗,g(p∗))))]

)]
≤ (1−bn)(pn⊕ p∗)+bn(βn⊕0)

+bn

((
J A

λ ,M[A(zn)⊕
λ

τ
(P(zn)⊕ξ Q(h(zn)⊕F(zn,g(zn))))]

)
⊕
(
J A

λ ,M[A(p∗)⊕ λ

τ
(P(p∗)⊕ξ Q(h(p∗)⊕F(p∗,g(p∗))))]

))
≤ (1−bn)(pn⊕ p∗)+ψbn(zn⊕ p∗)+bn(βn⊕0),(4.6)

and

0 ≤ zn⊕ p∗ =
[
(1− cn)pn + cn

(
J A

λ ,M[A(pn)⊕
λ

τ
(P(pn)

⊕ξ Q(h(pn)⊕F(pn,g(pn))))]
)
+ cnδn

]
⊕
[
(1− cn)p∗+ cn

(
J A

λ ,M[A(p∗)

⊕λ

τ
(P(p∗)⊕ξ Q(h(p∗)⊕F(p∗,g(p∗))))]

)]
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≤ (1− cn)(pn⊕ p∗)+ cn(δn⊕0)

+cn

((
J A

λ ,M[A(pn)⊕
λ

τ
(P(pn)⊕ξ Q(h(pn)⊕F(pn,g(pn))))]

)
⊕
(
J A

λ ,M[A(p∗)⊕ λ

τ
(P(p∗)⊕ξ Q(h(p∗)⊕F(p∗,g(p∗))))]

))
≤ (1− cn)(pn⊕ p∗)+ψcn(pn⊕ p∗)+ cn(δn⊕0)

≤ [1− cn(1−ψ)](pn⊕ p∗)+ cn(δn⊕0)

≤ (pn⊕ p∗)+ cn(δn⊕0), since (1− cn(1−ψ))≤ 1.(4.7)

Using (4.7), (4.6) becomes

0 ≤ qn⊕ p∗

≤ (1−bn)(pn⊕ p∗)+ψbn((pn⊕ p∗)+ cn(δn⊕0))+bn(βn⊕0)

≤ (1−bn(1−ψ))(pn⊕ p∗)+ψcn(δn⊕0)+bn(βn⊕0)

≤ (pn⊕ p∗)+ψcn(δn⊕0)+bn(βn⊕0), since (1−bn(1−ψ))≤ 1.(4.8)

Combining (4.5), (4.7) and (4.8) becomes

0 ≤ pn+1⊕ p∗

≤ (1−an)(pn⊕ p∗)+ψan
[
(pn⊕ p∗)+ψcn(δn⊕0)

+bn(βn⊕0)
]
+an(αn⊕0)

≤ (1−an(1−ψ))(pn⊕ p∗)+ψan
[
ψcn(δn⊕0)+bn(βn⊕0)

]
+an(αn⊕0)

≤ (1−an(1−ψ))(pn⊕ p∗)+
[
ψ

2ancn(δn⊕0)+ψanbn(βn⊕0)

+an(αn⊕0)
]
.

Using definition of normal cone and Proposition 2.2, we have

‖pn+1− p∗‖ ≤ (1−Nan(1−ψ))‖pn− p∗‖

+ Nan(1−ψ)

(
ψ2‖δn∨ (−δn)‖+ψ‖βn∨ (−βn)‖+‖αn∨ (−αn)‖

(1−ψ)

)
.

(4.9)
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On setting ηn =
ψ2‖δn∨(−δn)‖+ψ‖βn∨(−βn)‖+‖αn∨(−αn)‖

(1−ψ) ; χn = ‖pn− p∗‖;ζn = Nan(1−ψ) (4.9)

can be written as

(4.10) χn ≤ (1−ζn)χn +ζnηn.

From Lemma 2.3 and using the hypothesis lim
n→∞
‖αn∨(−αn)‖= lim

n→∞
‖βn∨(−βn)‖= lim

n→∞
‖δn∨

(−δn)‖= 0, we can deduce that χn→ 0, as n→ ∞, and so {pn} converges strongly to a unique

solution p∗ of GNMOIQVIP (3.1).

(II). Let H(p∗) = J A
λ ,M[A(p∗)⊕ λ

τ
(P(p∗)⊕ ξ Q(h(p∗)⊕F(p∗,g(p∗))))]. Using Algorithm

4.1 and Proposition 2.1, we obtain

0 ≤ un+1⊕ p∗

≤ un+1⊕
(
(1−an)un +anH(tn)+anαn

)
+
(
(1−an)un +anH(tn)+anαn

)
⊕
(
(1−an)p∗+anH(p∗)

)
≤

[
un+1⊕

(
(1−an)un +anH(tn)+anαn

)]
+(1−an)(un⊕ p∗)+an(H(tn)⊕H(p∗))+an(αn⊕0)

≤
[
un+1⊕

(
(1−an)un +anH(tn)+anαn

)]
+(1−an)(un⊕ p∗)+anψ(tn⊕ p∗)+an(αn⊕0),(4.11)

where ψ =

[
µ
(
δAτ⊕λ (δP⊕|ξ |δQ(δh⊕ (π +νδg)))

)
γτ(λαA⊕µ)

]
.

From (4.11), we have

0 ≤ tn⊕ p∗

≤
(
(1−bn)un +bnH(sn)+bnβn

)
⊕
(
(1−bn)p∗+bnH(p∗)

)
≤ (1−bn)(un⊕ p∗)+bn(H(sn)⊕H(p∗))+bn(βn⊕0)

≤ (1−bn)(un⊕ p∗)+bnψ(sn⊕ p∗)+bn(βn⊕0).(4.12)



18 IQBAL AHMAD

Similarly, from (4.12), we get

0 ≤ sn⊕ p∗

≤
(
(1− cn)un + cnH(un)+ cnδn

)
⊕
(
(1− cn)p∗+bnH(p∗)

)
≤ (1− cn)(un⊕ p∗)+ cn(H(un)⊕H(p∗))+ cn(δn⊕0)

≤ (1− cn)(un⊕ p∗)+ cnψ(un⊕ p∗)+ cn(δn⊕0)

≤ (1− cn(1−ψ))(un⊕ p∗)+ cn(δn⊕0)

≤ (un⊕ p∗)+ cn(δn⊕0), since (1− cn(1−ψ))≤ 1.(4.13)

Using (4.13), (4.12) becomes

0 ≤ tn⊕ p∗

≤ (1−bn)(tn⊕ p∗)+ψbn((tn⊕ p∗)+ cn(δn⊕0))+bn(βn⊕0)

≤ (1−bn(1−ψ))(tn⊕ p∗)+ψcn(δn⊕0)+bn(βn⊕0)

≤ (tn⊕ p∗)+ψcn(δn⊕0)+bn(βn⊕0), since (1−bn(1−ψ))≤ 1.(4.14)

By using (4.14) and (4.12), (4.11) becomes as

0 ≤ un+1⊕ p∗

≤
[
un+1⊕

(
(1−an)un +anH(tn)+anαn

)]
+(1−an)(un⊕ p∗)

+ψan
[
(un⊕ p∗)+ψcn(δn⊕0)+bn(βn⊕0)

]
+an(αn⊕0)

≤
[
un+1⊕

(
(1−an)un +anH(tn)+anαn

)]
+(1−an(1−ψ))(un⊕ p∗)

+ψan
[
ψcn(δn⊕0)+bn(βn⊕0)

]
+an(αn⊕0)

≤
[
un+1⊕

(
(1−an)un +anH(tn)+anαn

)]
+(1−an(1−ψ))(un⊕ p∗)

+
[
ψ

2ancn(δn⊕0)+ψanbn(βn⊕0)+an(αn⊕0)
]
.
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Using definition of normal cone and Proposition 2.2, we have

‖un+1− p∗‖ ≤ N‖un+1−
(
(1−an)un +anH(tn)+anαn

)
‖

+ (1−Nan(1−ψ))‖un− p∗‖

+ Nan(1−ψ)

(
ψ2‖δn∨ (−δn)‖+ψ‖βn∨ (−βn)‖+‖αn∨ (−αn)‖

(1−ψ)

)
≤ Nϑn +(1−an(1−ψ))‖un− p∗‖

+ Nan(1−ψ)

(
ψ2‖δn∨ (−δn)‖+ψ‖βn∨ (−βn)‖+‖αn∨ (−αn)‖

(1−ψ)

)
.(4.15)

Since 0 < κ ≤ an, (4.15) becomes

‖un+1− p∗‖ ≤ (1−Nan(1−ψ))‖un− p∗‖+anN(1−ψ)

(
ϑn

κ(1−ψ)

+
ψ2‖δn∨ (−δn)‖+ψ‖βn∨ (−βn)‖+‖αn∨ (−αn)‖

(1−ψ)

)
.(4.16)

Assume that lim
n→∞

ϑn = 0, hence lim
n→∞

un = p∗, where lim
n→∞
‖αn∨ (−αn)‖= lim

n→∞
‖βn∨ (−βn)‖=

lim
n→∞
‖δn∨ (−δn)‖= 0.

Conversely, suppose that lim
n→∞

un = p∗. From (4.4) and lim
n→∞
‖αn ∨ (−αn)‖ = lim

n→∞
‖βn ∨

(−βn)‖= lim
n→∞
‖δn∨ (−δn)‖= 0, we have

0 ≤ un+1⊕
[
(1−an)un +anH(tn)+anαn

]
≤ un+1⊕ p∗+

[
((1−an)un +anH(tn)+anαn)⊕ p∗

]
≤ un+1⊕ p∗+

[
((1−an)un +anH(tn)+anαn)⊕ ((1−an)p∗+anH(tn)p∗)

]

≤ un+1⊕ p∗+(1−an)(un⊕ p∗)+an(H(tn)⊕H(p∗))+an(αn⊕0)

≤ un+1⊕ p∗+(1−an)(un⊕ p∗)+anψ(tn⊕ p∗)+an(αn⊕0)

≤ (un+1⊕ p∗)+(1−an(1−ψ))(un⊕ p∗)+anψ
[
ψ

2(δn⊕0)

+ψ(βn⊕0)+(αn⊕0)
]
.(4.17)
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Again applying the definition of normal cone and Proposition 2.2, it follows that

ϑn = ‖un+1−
[
(1−an)un +anH(tn)+anαn

]
‖

≤ N‖un+1− p∗‖+N(1−an(1−ψ))‖un− p∗‖

+anNψ
[
ψ

2‖δn∨ (−δn)‖+ψ‖βn∨ (−βn)‖+‖αn∨ (−αn)‖
]
,(4.18)

which implies that

(4.19) lim
n→∞

ϑn = 0.

Hence, the iterative sequence {pn} generated by (4.2) is stable with respect to J A
λ ,M. This

completes the proof. �

If we take τ,ξ = 1, g,F = 0, h = I (identity mapping) and Q(p) = ω, (ω ∈Hp) in GN-

MOIQVIP (3.1), we suggest and analyze another class of perturbed three-step iterative scheme

to get the following convergence analysis and stability of the problem (3.2).

We can obtain the following corollaries for Theorem 4.1.

Corollary 4.1. Let Hp be a real ordered Hilbert space and C be a normal cone with normal

constant N. Let A,P : Hp→Hp be the single-valued mappings such that A is δA-ordered com-

pression and γ-ordered non-extended mapping and P is comparison, δp-ordered compression

mapping, respectively. Let M : Hp→ 2Hp be an (αA,λ )-XOR-weak-ANODD set-valued map-

ping. In addition, if A,P,M and [A(.)⊕λ (P(.)⊕ω)] are compared to each other, and for all

λ > 0, the following conditions are satisfied:

(4.20)


|µ(δA⊕λδP|< |γ(λαA⊕µ)|min{ 1

N ,1},

λαA > µ and µ ≥ 1.

For a given p0 ∈ Hp, let the sequences {pn}, {qn} and {zn} are defined by the following

schemes:

(4.21)


pn+1 = (1−an)pn +an

(
J A

λ ,M[A(qn)⊕λ (ω⊕P(qn))]
)
+anαn,

qn = (1−bn)pn +bn

(
J A

λ ,M[A(zn)⊕λ (ω⊕P(zn))]
)
+bnβn,

zn = (1− cn)pn + cn

(
J A

λ ,M[A(pn)⊕λ (ω⊕P(pn))]
)
+ cnδn.
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Let {un} be any sequence in Hp and define {ϑn} by

(4.22)


ϑn =

∥∥∥un+1−
[
(1−an)un +an

(
J A

λ ,M[A(tn)⊕λ (ω⊕P(tn))]
)
+anαn

]∥∥∥,
tn = (1−bn)un +bn

(
J A

λ ,M[A(sn)⊕λ (ω⊕P(sn))]
)
+bnβn,

sn = (1− cn)un + cn

(
J A

λ ,M[A(un)⊕λ (ω⊕P(un))]
)
+ cnδn,

where 0≤ an,bn,cn ≤ 1,
∞

∑
n=0

an = ∞,∀ n≥ 0. Here {αn}, {βn} and {δn} are three sequences in

Hp introduced to take into account the possible inexact computations provided that αn⊕0=αn,

βn⊕ 0 = βn and δn⊕ 0 = δn,∀ n ≥ 0. If lim
n→∞
‖αn ∨ (−αn)‖ = lim

n→∞
‖βn ∨ (−βn)‖ = lim

n→∞
‖δn ∨

(−δn)‖= 0, then

(I) the sequence {pn} converges strongly to the unique solution p∗ of the problem (3.2).

(II) moreover, if 0 < κ ≤ an, then lim
n→∞

un = p∗ if and only if lim
n→∞

ϑn = 0, where ϑn is defined

(4.22) i.e., the sequence {pn} generated by (4.21) is stable with respect to J A
λ ,M.

On taking h,P = 0 and Q = I (identity mapping) in GNMOIQVIP (3.1), we suggest and

analyze another class of perturbed three-step iterative scheme to get the following convergence

analysis and stability of the problem (3.3).

Corollary 4.2. Let Hp be a real ordered Hilbert space and C be a normal cone with normal

constant N. Let A,g : Hp→Hp and F : Hp×Hp→Hp be the single-valued mappings such

that A is δA-ordered compression and γ-ordered non-extended mapping, g is comparison, δg-

ordered compression mapping and F is comparison and (π,ν)-ordered Lipschitz continuous

mapping with respect to g, respectively. Let M : Hp→ 2Hp be an (αA,λ )-XOR-weak-ANODD

set-valued mapping. In addition, if A,g,F,M and [A(.)⊕ λ

τ
(ξ F(.,g(.)))] are compared to each

other, and for all τ,λ > 0, the following conditions are satisfied:

(4.23)


|µ(δAτ⊕λξ (π +νδg)|< |τγ(λαA⊕µ)|min{ 1

N ,1},

λαA > µ and µ ≥ 1.



22 IQBAL AHMAD

For a given p0 ∈ Hp, let the sequences {pn}, {qn} and {zn} are defined by the following

schemes:

(4.24)


pn+1 = (1−an)pn +an

(
J A

λ ,M[A(qn)⊕ λ

τ
(ξ F(qn,g(qn)))]

)
+anαn,

qn = (1−bn)pn +bn

(
J A

λ ,M[A(zn)⊕ λ

τ
(ξ F(zn,g(zn)))]

)
+bnβn,

zn = (1− cn)pn + cn

(
J A

λ ,M[A(pn)⊕ λ

τ
(ξ F(pn,g(pn)))]

)
+ cnδn.

Let {un} be any sequence in Hp and define {ϑn} by

(4.25)


ϑn =

∥∥∥un+1−
[
(1−an)un +an

(
J A

λ ,M[A(tn)⊕ λ

τ
(ξ F(tn,g(tn)))]

)
+anαn

]∥∥∥,
tn = (1−bn)un +bn

(
J A

λ ,M[A(sn)⊕ λ

τ
(ξ F(sn,g(sn)))]

)
+bnβn,

sn = (1− cn)un + cn

(
J A

λ ,M[A(un)⊕ λ

τ
(ξ F(un,g(un)))]

)
+ cnδn,

where 0≤ an,bn,cn ≤ 1,
∞

∑
n=0

an = ∞,∀ n≥ 0. Here {αn}, {βn} and {δn} are three sequences in

Hp introduced to take into account the possible inexact computations provided that αn⊕0=αn,

βn⊕ 0 = βn and δn⊕ 0 = δn,∀ n ≥ 0. If lim
n→∞
‖αn ∨ (−αn)‖ = lim

n→∞
‖βn ∨ (−βn)‖ = lim

n→∞
‖δn ∨

(−δn)‖= 0, then

(I) the sequence {pn} converges strongly to the unique solution p∗ of the problem (3.3).

(II) moreover, if 0 < κ ≤ an, then lim
n→∞

un = p∗ if and only if lim
n→∞

ϑn = 0, where ϑn is defined

(4.25) i.e., the sequence {pn} generated by (4.24) is stable with respect to J A
λ ,M.

By setting ξ =−1, h,P = 0, Q = I (identity mapping)and F(p,g(p)) = f (p)−ω, (ω ∈Hp)

in GNMOIQVIP (3.1), we suggest and analyze another class of perturbed three-step iterative

scheme to get the following convergence analysis and stability of the problem (3.4).

Corollary 4.3. Let Hp be a real ordered Hilbert space and C be a normal cone with nor-

mal constant N. Let A, f : Hp→Hp be the single-valued mappings such that A is δA-ordered

compression and γ-ordered non-extended mapping, f is comparison, δ f -ordered compression

mapping, respectively. Let M : Hp→ 2Hp be an (αA,λ )-XOR-weak-ANODD set-valued map-

ping. In addition, if A, f ,M and [A(.)⊕ λ

τ
(ω − f (.))] are compared to each other, and for all
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τ,λ > 0, the following conditions are satisfied:

(4.26)


|µ(τδA⊕λδ f )|< |τγ(λαA⊕µ)|min{ 1

N ,1},

λαA > µ and µ ≥ 1.

For a given p0 ∈Hp, let the sequences {pn}, {qn} and {zn} defined by the following schemes:

(4.27)


pn+1 = (1−an)pn +an

(
J A

λ ,M[A(qn)⊕ λ

τ
(ω− f (qn))]

)
+anαn,

qn = (1−bn)pn +bn

(
J A

λ ,M[A(zn)+
λ

τ
(ω− f (zn))]

)
+bnβn,

zn = (1− cn)pn + cn

(
J A

λ ,M[A(pn)+
λ

τ
(ω− f (pn))]

)
+ cnδn.

Let {un} be any sequence in Hp and define {ϑn} by

(4.28)


ϑn =

∥∥∥un+1−
[
(1−an)un +an

(
J A

λ ,M[A(tn)+ λ

τ
(ω− f (tn))]

)
+anαn

]∥∥∥,
tn = (1−bn)un +bn

(
J A

λ ,M[A(sn)+
λ

τ
(ω− f (sn))]

)
+bnβn,

sn = (1− cn)un + cn

(
J A

λ ,M[A(un)+
λ

τ
(ω− f (un))]

)
+ cnδn,

where 0≤ an,bn,cn ≤ 1,
∞

∑
n=0

an = ∞,∀ n≥ 0. Here {αn}, {βn} and {δn} are three sequences in

Hp introduced to take into account the possible inexact computations provided that αn⊕0=αn,

βn⊕ 0 = βn and δn⊕ 0 = δn,∀ n ≥ 0. If lim
n→∞
‖αn ∨ (−αn)‖ = lim

n→∞
‖βn ∨ (−βn)‖ = lim

n→∞
‖δn ∨

(−δn)‖= 0, then

(I) the sequence {pn} converges strongly to the unique solution p∗ of the problem (3.4).

(II) moreover, if 0 < κ ≤ an, then lim
n→∞

un = p∗ if and only if lim
n→∞

ϑn = 0, where ϑn is defined

(4.28). That is, the sequence {pn} generated by (4.27) is stable with respect to J A
λ ,M.

If we take P,g,F = 0,h = I (identity mapping) and Q(p) = 1 (constant mapping) in GN-

MOIQVIP (3.1), we suggest and analyze another class of perturbed three-step iterative schemes

get the following convergence analysis and stability of the problem (3.5).

Corollary 4.4. Let Hp be a real ordered Hilbert space and C be a normal cone with normal

constant N. Let A : Hp →Hp be the single-valued mapping such that A is comparison, δA-

ordered compression and γ-ordered non-extended mapping, respectively. Let M : Hp→ 2Hp be
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an (αA,λ )-XOR-weak-ANODD set-valued mapping. In addition, if A,M and [A(.)⊕ λ

τ
ξ ] are

compared to each other, and for all τ,λ > 0, the following conditions are satisfied:

(4.29)


|µδA|< |τγ(λαA⊕µ)|min{ 1

N ,1},

λαA > µ and µ ≥ 1.

For a given p0 ∈Hp, let the sequences {pn}, {qn} and {zn} defined by the following schemes:

(4.30)


pn+1 = (1−an)pn +an

(
J A

λ ,M[A(qn)⊕ λ

τ
ξ ]
)
+anαn,

qn = (1−bn)pn +bn

(
J A

λ ,M[A(zn)⊕ λ

τ
ξ ]
)
+bnβn,

zn = (1− cn)pn + cn

(
J A

λ ,M[A(pn)⊕ λ

τ
ξ ]
)
+ cnδn.

Let {un} be any sequence in Hp and define {ϑn} by

(4.31)


ϑn =

∥∥∥un+1−
[
(1−an)un +an

(
J A

λ ,M[A(tn)⊕ λ

τ
ξ ]
)
+anαn

]∥∥∥,
tn = (1−bn)un +bn

(
J A

λ ,M[A(sn)⊕ λ

τ
ξ ]
)
+bnβn,

sn = (1− cn)un + cn

(
J A

λ ,M[A(un)⊕ λ

τ
ξ ]
)
+ cnδn,

where 0≤ an,bn,cn ≤ 1,
∞

∑
n=0

an = ∞,∀ n≥ 0. Here {αn}, {βn} and {δn} are three sequences in

Hp introduced to take into account the possible inexact computations provided that αn⊕0=αn,

βn⊕ 0 = βn and δn⊕ 0 = δn,∀ n ≥ 0. If lim
n→∞
‖αn ∨ (−αn)‖ = lim

n→∞
‖βn ∨ (−βn)‖ = lim

n→∞
‖δn ∨

(−δn)‖= 0, then

(I) the sequence {pn} converges strongly to the unique solution p∗ of the problem (3.5).

(II) moreover, if 0 < κ ≤ an, then lim
n→∞

un = p∗ if and only if lim
n→∞

ϑn = 0, where ϑn is defined

(4.31). That is, the sequence {pn} generated by (4.30) is stable with respect to J A
λ ,M.

If we take ξ = 0,τ = 1 and P,g,h,F,Q = 0 in GNMOIQVIP (3.1), we suggest and analyze

another class of perturbed three-step iterative schemes get the following convergence analysis

and stability of the problem (3.6).

Corollary 4.5. Let Hp be a real ordered Hilbert space and C be a normal cone with normal

constant N. Let A : Hp →Hp be the single-valued mapping such that A is comparison, δA-

ordered compression and γ-ordered non-extended mapping, respectively. Let M : Hp→ 2Hp be
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an (αA,λ )-XOR-weak-ANODD set-valued mapping. In addition, if M and A are compared to

each other, and for all λ > 0, the following conditions are satisfied:

(4.32)


|µδA|< |γ(λαA⊕µ)|min{ 1

N ,1},

λαA > µ and µ ≥ 1.

For a given p0 ∈Hp, let the sequences {pn}, {qn} and {zn} defined by the following schemes:

(4.33)


pn+1 = (1−an)pn +an

(
J A

λ ,M[A(qn)]
)
+anαn,

qn = (1−bn)pn +bn

(
J A

λ ,M[A(zn)]
)
+bnβn,

zn = (1− cn)pn + cn

(
J A

λ ,M[A(pn)]
)
+ cnδn.

Let {un} be any sequence in Hp and define {ϑn} by

(4.34)


ϑn =

∥∥∥un+1−
[
(1−an)un +an

(
J A

λ ,M[A(tn)]
)
+anαn

]∥∥∥,
tn = (1−bn)un +bn

(
J A

λ ,M[A(sn)]
)
+bnβn,

sn = (1− cn)un + cn

(
J A

λ ,M[A(un)]
)
+ cnδn,

where 0≤ an,bn,cn ≤ 1,
∞

∑
n=0

an = ∞,∀ n≥ 0. Here {αn}, {βn} and {δn} are three sequences in

Hp introduced to take into account the possible inexact computations provided that αn⊕0=αn,

βn⊕ 0 = βn and δn⊕ 0 = δn,∀ n ≥ 0. If lim
n→∞
‖αn ∨ (−αn)‖ = lim

n→∞
‖βn ∨ (−βn)‖ = lim

n→∞
‖δn ∨

(−δn)‖= 0, then

(I) the sequence {pn} converges strongly to the unique solution p∗ of the problem (3.6).

(II) moreover, if 0 < κ ≤ an, then lim
n→∞

un = p∗ if and only if lim
n→∞

ϑn = 0, where ϑn is defined

(4.34). That is, the sequence {pn} generated by (4.33) is stable with respect to J A
λ ,M.

5. NUMERICAL EXAMPLE

In this section, we provide a numerical example to illustrate Algorithm 4.1 and justify our main

result.

Example 5.1. Let Hp = [0,∞) with the usual inner product and norm, and let C = [0,1] be a

normal cone with normal constant N = 1. Let A,P,g,h,Q : Hp→Hp and F : Hp×Hp→Hp
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be the mappings defined by

A(p) =
( p

2
⊕ 5

6

)
, P(p) =

( p
3
⊕ 5

6

)
, g(p) =

p
5

h(p) =
( p

9
⊕4
)
,

Q(p) =
6p
17
⊕ 11

5
and F(p,g(p)) =

(
p+5g(p)

)
⊕4, ∀p ∈Hp.

For each p,q ∈Hp, p ∝ q. Then, it is easy to check that A is 3
4 -ordered compression and 1

4 -

ordered non-extending mapping, P is 2
3 -ordered compression mapping, Q is 3

7 -ordered compres-

sion mapping, g is 1
3 -ordered compression mapping and h is 1

7 -ordered compression mapping,

respectively.

For p,q,u,v ∈Hp, p ∝ u,q ∝ v, we calculate

F(p,g(u))⊕F(q,g(v)) = ((p+5g(u))⊕4)⊕ ((q+5g(v))⊕4)

= (((p+5g(u)))⊕ (q+5g(v)))⊕ (4⊕4)

= (((p+5g(u)))⊕ (q+5g(v)))⊕0

= ((p+5g(u)))⊕ (q+5g(v))

≤ (p⊕q)+(5g(u)⊕5g(v))

= (p⊕q)+5(g(u)⊕g(v))

= (p⊕q)+5
(u

5
⊕ v

5

)
= (p⊕q)+(u⊕ v),

i.e.,

F(p,g(u))⊕F(q,g(v))≤ (p⊕q)+(u⊕ v), ∀p,q,u,v ∈Hp.

Hence, F is (1,1)-ordered Lipschitz continuous mapping with respect to g.

Suppose that M : Hp→CB(Hp) is a set-valued mapping defined by

M(p) = {4p⊕ 5
6
},∀p ∈Hp.

It can be easily verified that M is a comparison mapping and (4,1)-XOR-weak-ANODD set-

valued mapping. Thus, M is a 4-weak-non-ordinary difference mapping with respect to A and

1-XOR-ordered different weak comparison mapping. Also, it is clear that for λ = 1, [A⊕

λM](Hp) = Hp. Hence, M is an (4,1)-XOR-weak-ANODD set-valued mapping.
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The resolvent operator defined by (2.1) associated with A and M is given by

J A
λ ,M(p) =

2p
7
,∀p ∈Hp,(5.1)

It is easy to examine that the resolvent operator defined above is comparison and single-valued

mapping.

In particular for µ = 1, we obtain

J A
λ ,M(p)⊕J A

λ ,M(q) =
2p
7
⊕ 2p

7

≤ 4
3
(p⊕q),

i.e.,

J A
λ ,M(p)⊕J A

λ ,M(q)≤ 4
3
(p⊕q),∀p,q ∈Hp.

That is, the resolvent operator J A
λ ,M is 4

3 -ordered Lipschitz continuous.

If we take τ = 1 and ξ = 1, we calculate

J A
λ ,M[A(p) ⊕ λ

τ
(P(p)⊕ξ Q(h(p)⊕F(p,g(p))))]

= J A
λ ,M[A(p)⊕ (P(p)⊕Q(h(p)⊕F(p,g(p))))]

=
2[A(p)⊕ (P(p)⊕Q(h(p)⊕F(p,g(p))))]

7

=
2
[(

p
2 ⊕1

)
⊕
((

p
3 ⊕

5
6

)
⊕Q(h(p)⊕F(p,g(p)))

)]
7

=
2
7

( p
2
⊕ 5

6
⊕
( p

3
⊕ 5

6
⊕Q((

p
9
⊕4)⊕ (2p⊕4))

))
=

2
7

( p
2
⊕ 5

6
⊕
( p

3
⊕ 5

6
⊕Q((

p
9
⊕2p))

))
=

2
7

( p
2
⊕ 5

6
⊕
( p

3
⊕ 5

6
⊕Q

(17p
9

)))
=

2
7

[ p
2
⊕ 5

6
⊕
(( p

3
⊕ 5

6

)
⊕
( 6

17
17p

9

)
⊕ 11

5

)]
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=
2
7

[ p
2
⊕ 5

6
⊕ 5

6
⊕ p

3
⊕ 2p

3
⊕ 11

5

]
=

p
21
⊕ 22

35
.

Clearly, 3
5 is a fixed point of J A

λ ,M[A(p)+(P(p)⊕Q(h(p)⊕F(p,g(p))))].

Let an =
1

n+1 ,bn =
3n

3n+1 ,cn =
2n+1
2n+3 ,αn =

2
5n ,βn =

1
4n+1 and γn =

2n+3
3n2+5 . It is easy to show that

the sequences {an},{bn},{cn},{αn},{βn} and {γn} satisfying the conditions 0≤ an,bn,cn ≤ 1,
∞

∑
n=0

an = ∞, αn⊕0 = αn,βn⊕0 = βn and γn⊕0 = γn.

Now, we can estimate the sequences {pn},{qn} and {zn} by the following schemes:

pn+1 =
n

n+1
pn +

1
n+1

(qn

21
⊕ 4

7

)
+

2
(n+1)(5n+1)

,

qn =
1

3n+1
pn +

3n
3n+1

( zn

21
⊕ 4

7

)
+

3n
(3n+1)(4n+1)

,

zn =
2

2n+3
pn +

2n+1
2n+3

(qn

21
⊕ 4

7

)
+

2n+1
3n2 +5

.

It is also verified that condition (4.3) is satisfied. Thus, all the assumptions of Theorem 4.1

are fulfilled. Hence, the sequence {pn} converges strongly to the unique solution p∗ = 3
5 of the

problem (3.1).

All codes are written in MATLAB Version 7.13, we have the following different initial values

p0 = 4,6,8 which shows that the sequence {pn} converge to p∗ = 3
5 .
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No. of For p0 = 4 For p0 = 6 For p0 = 8

Iteration pn pn pn

n=1 4 6 8

n=2 6.287078 8.673421 11.2979

n=3 5.170505 7.302701 10.346027

n=4 3.653934 4.103810 6.1038

n=5 2.350428 2.587599 2.599085

n=6 1.872496 1.948989 2.190598

n=7 1.511503 1.659801 1.890222

n=8 1.101440 1.300220 1.120331

n=9 0.989578 0.998203 0.999360

n=10 0.903126 0.908721 0.907726

n=15 0.648478 0.641205 0.649038

n=20 0.600941 0.600831 0.600810

n=25 0.600043 0.600051 0.600046

n=30 0.600005 0.600007 0.600005

n=35 0.600002 0.600003 0.600001

TABLE 1. The values of pn with initial values p0 = 4, p0 = 6 and p0 = 8
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FIGURE 1. The convergence of pn with initial values p0 = 4, p0 = 6 and p0 = 8

6. CONCLUSION

In this article, we study a generalized mixed ordered quasi-variational inclusion problem based

on XOR operator in a real ordered Hilbert spaces and prove the existence of solution. We have

constructed a perturbed three-step iterative algorithm for this class of generalized mixed ordered

quasi-variational inclusion problem which is more general than the Mann-type, Ishikawa-type

iterative algorithms with errors, and many other iterative schemes studies by several author’s,

see e.g., [2–4, 10–14, 16, 17]. We prove the convergence analysis of our proposed algorithm

which assumes that the suggested algorithm converges in norm to a unique solution of our

considered problem and also show that the convergence is stable with some consequences.

Finally, we give a numerical example in support of our main result. Our results extend and

generalize most of the results of different authors existing in the literature.
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