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Abstract. The aim of this paper is to introduce woven K-g-frames in Hilbert C∗-modules, to characterize them in

term of atomic system for K, and to discuss the erasures and perturbations of weaving of K-g-frames in Hilbert

C∗-modules.
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1. INTRODUCTION

As a generalization of bases in Hilbert spaces, frames were first introduced in 1952 by Duf-

fin and Schaefer [2] in the study of nonharmonic fourier series. Frames possess many nice

properties which make them very useful in wavelet analysis, irregular sampling theory, signal

processing and many other fields.
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The notion of weaving was recently proposed by Bemrose et al. [1] to simulate a question in

distributed signal processing and wireless sensor networks.

K−g−frames, which are more general than ordinary g−frames, naturally have become one

of the most active fields in frame theory in recent years. K−g−frames share many properties

with g−frames, but they have their own properties, like the inversibility of frame operator of

K−g−frames for more see [4, 6, 8, 9, 10, 11, 12].

Hilbert C∗-modules are generalization of Hilbert spaces in that they allow the inner prod-

uct to take values in a C∗-algebra rather than the field of complex numbers. There are many

differences between Hilbert C∗-modules and Hilbert spaces. For example, we know that any

closed subspace in a Hilbert space has an orthogonal complement, but it is not true for Hilbert

C∗-modules. And the Riesz representation theorem of continuous functionals in Hilbert C∗-

modules is invalid in general.

In this paper, we introduce the weaving of K-g-frames in Hilbert C∗-modules, we will char-

acterize them in term of atomic system for K, and we will discuss the erasures and perturbations

of weaving of K-g-frames in Hilbert C∗-modules.

A frame in a separable Hilbert space H is a sequence {xi}i∈I for which there exist positive

constants A,B > 0 such that:

A‖x‖2 ≤∑
i∈I
|〈x,xi〉|2 ≤ B‖x‖2,

for all x ∈ H. The constants A,B are respectively called lower and upper bounds. If A = B, it is

called a tight frame and it is said to be a normalized tight or Parseval frame if A = B = 1. The

collection {xi}i∈I ⊂ H is called Bessel if the above second inequality holds. In this case, B is

called the Bessel bound.

2. BACKGROUND MATERIAL

Let I and J be finite or countable index sets and let N be the set of natural numbers. Through-

out this paper, we assume that U and V are finitely or countably generated Hilbert A-modules,

where A is a complex C∗-algebra with the norm ‖.‖A , and {Vi : i ∈ I} is a sequence of closed

Hilbert submodules of V . End∗A(U ,Vi) is the collection of all adjointable A -linear maps from

U to Vi and End∗A(U ) is abbreviated for End∗A(U ,U ).
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In this section, we recall the definitions of g−frames, K−g−frames in Hilbert C∗−modules

and some lemmas which are needed later.

Definition 2.1. [5] A sequence {Λi ∈ End∗A(U ,Vi), i ∈ I} is called a g-frame or a generalized

frame in U with respect to {Vi : i ∈ I} if there exist constants C;D > 0 such that for every

f ∈U ,

C〈 f , f 〉 ≤∑
i∈I
〈Λi f ,Λi f 〉 ≤ D〈 f , f 〉

Definition 2.2. [13] Let K ∈ End∗A(U ), a sequence {Λi ∈ End∗A(U ,Vi), i ∈ I} is called a K-g-

frame if there exist constants C;D > 0 such that for every f ∈U ,

C〈K∗ f ,K∗ f 〉 ≤∑
i∈I
〈Λi f ,Λi f 〉 ≤ D〈 f , f 〉

Lemma 2.3. [3] Let U, V and W be Hilbert A-moduls, let S ∈ End∗A(W,V ) and T ∈ End∗A(U,V )

with R(T ∗) orthogonally complemented. The following statements are equivalent.

(i) SS∗ ≤ λT T ∗ for some λ > 0

(ii) There exists µ > 0 such that ‖S∗z‖ ≤ µ‖T ∗z‖, ∀z ∈V

(iii) There exists a D ∈ End∗A(W,V ) such that S = T D, i.e :T X = S has a solution.

(iv) R(S)⊂R(T )

Lemma 2.4. [7] Let U and V be Hilbert A-modules over a C∗-algebra A, and let T : U −→ V

be a linear map. Then the following conditions are equivalent:

1. The operator T is bounded and A-linear.

2. There exists k ≥ 0 such that 〈T x,T x〉 ≤ k〈x,x〉 for all x ∈U .

One of the advantages of this equivalent definition of K-g-frames is that it is much easier to

compare the norms of two elements than to compare two elements in C∗-algebras.

Theorem 2.5. Let K ∈ End∗A(U ), a sequence {Λi ∈ End∗A(U ,Vi), i ∈ I} is a K-g-frame if and

only if there exists 0 <C;D < ∞ such that;

C‖〈K∗ f ,K∗ f 〉‖ ≤ ‖∑
i∈I
〈Λi f ,Λi f 〉‖ ≤ D‖〈 f , f 〉‖

for every f ∈U .
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Proof. (=⇒) immediate.

(⇐=) Assume that there exist constants 0 <C;D < ∞ such that for all f ∈U

C‖〈K∗ f ,K∗ f 〉‖ ≤ ‖∑
i∈I
〈Λi f ,Λi f 〉‖ ≤ D‖〈 f , f 〉‖

Let S the frame operator of the bessel g-sequence {Λi}i∈I .

S is a bounded positive self-adjoint operator, hence S has a unique positive square root, de-

noted by S
1
2 . then

√
C‖K∗ f‖ ≤ ‖S

1
2 f‖ ≤

√
D‖ f‖.

By lemma 2.4, we obtain

〈S
1
2 f ,S

1
2 f 〉= 〈S f , f 〉 ≤ B〈 f , f 〉

From (i)⇔ (ii) in lemma (2.3) there exist some λ > 0 such that:

KK∗ ≤ λS
1
2 (S

1
2 )∗.

Then
1
λ
〈K∗ f ,K∗ f 〉 ≤ 〈S f , f 〉= ∑

i∈I
〈Λi f ,Λi f 〉, ∀ f ∈U .

�

Lemma 2.6. Let H be an Hilbert A-module, let T,P,Q ∈ End∗A(H) with R(P∗) and R(Q∗) are

orthogonally complemented. The following statements are equivalent:

(i) R(T )⊂R(P)+R(Q)

(ii) T T ∗ ≤ λ (PP∗+QQ∗) for some λ > 0

(iii) There exists X ,Y ∈ End∗A(H) such that T = PX +QY .

3. WOVEN K-G-FRAMES

Definition 3.1. Two K-g-frames Λ = {Λi}i∈I and Γ = {Γi}i∈I for U are said to be woven K-g-

frames if there exist universal positive constants A and B such that for any partition σ of I, the

family {Λi}i∈σ ∪{Γi}i∈σ c is a K-g-frame for U with lower and upper K-g-frame bounds A and

B, respectively, that is

A〈K∗ f ,〈K∗ f 〉 ≤ ∑
i∈σ

〈Λi f ,Λi f 〉+ ∑
i∈σ c
〈Γi f ,Γi f 〉 ≤ B〈 f , f 〉, ∀ f ∈U .
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Definition 3.2. A family of K-g-frames {Λ j = {Λi j}i∈I, j ∈ [m]} for U are said to be wo-

ven K-g-frames if there exist universal positive constants A and B such that for any partition

{σ j} j∈[m] of I, the family {Λi j}i∈σ j, j∈[m] is a K-g-frame for U with lower and upper K-g-frame

bounds A and B, respectively, that is

A〈K∗ f ,〈K∗ f 〉 ≤ ∑
j∈[m]

∑
i∈σ j

〈Λi j f ,Λi j f 〉 ≤ B〈 f , f 〉, ∀ f ∈U .

Suppose that {Λi}i∈I is a K-g-Bessel sequence for U , then the synthesis operator of {Λi}i∈I

is defined by TΛ :
⊕

i∈I Vi −→U ,

TΛ({ fi}i∈I) = ∑
i∈I

Λ
∗
i fi, ∀{ fi}i∈I ∈

⊕
i∈I

Vi.

Its adjoint operator, which is called the analysis operator T ∗
Λ

: U −→
⊕

i∈I Vi,

T ∗Λ( f ) = {Λi f}i∈I, ∀ f ∈U .

And the K-g-frame operator SΛ : U −→U ,

SΛ f = TΛT ∗Λ f = ∑
i∈I

Λ
∗
i Λi f , ∀ f ∈U .

For any partition {σ j} j∈[m] of I, we define these operators,

T σ j
Λ

({ fi}i∈I) = ∑
i∈σ j

Λ
∗
i fi, ∀{ fi}i∈I ∈

⊕
i∈I

Vi, j ∈ [m] ,

(T σ j
Λ

)∗( f ) = {Λi f}i∈σ j , ∀ f ∈U , j ∈ [m] ,

Sσ j
Λ

f = TΛT ∗Λ f = ∑
i∈σ j

Λ
∗
i Λi f , ∀ f ∈U .

Theorem 3.3. Let K ∈ End∗A(U ), Λ = {Λi}i∈I and Γ = {Γi}i∈I be two K-g-frames for U with

respect to {Vi : i ∈ I}. Then for every partition σ of I, Λ and Γ are woven K-g-frames for U

with universal lower and upper K-g-frame bounds A and B, respectively, if and only if

A‖〈K∗ f ,〈K∗ f 〉‖ ≤ ‖∑
i∈σ

〈Λi f ,Λi f 〉+ ∑
i∈σ c
〈Γi f ,Γi f 〉‖ ≤ B‖〈 f , f 〉‖, ∀ f ∈U .

Proof. It follows from Theorem (2.4) �
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Proposition 3.4. Let K ∈ L(U ) and {Λi j}i∈σ j, j∈[m] be a family of woven K-g-frames for U .

Then the frame operator S is self adjoint, positive, bounded on U , and KK∗ ≤ λS for some

λ > 0.

Proof. For every f ∈U

S f = ∑
j∈[m]

∑
i∈σ j

Λ
∗
i jΛi j f

then

〈S f , f 〉= 〈 ∑
j∈[m]

∑
i∈σ j

Λ
∗
i jΛi j f , f 〉 = ∑

j∈[m]
∑

i∈σ j

〈Λi j f ,Λi j f 〉

then

A〈K∗ f ,K∗ f 〉 ≤ 〈S f , f 〉 ≤ B〈 f , f 〉

hence

AKK∗ ≤ S≤ BI.

So, the frame operator S is bounded and positive.

Therefore, S∗ = (T T ∗)∗ = T T ∗ = S then S is self adjoint. �

Proposition 3.5. Suppose for every j ∈ [m]; {Λ j = {Λi j}i∈I} is a g-Bessel sequence for U with

bound B j. Then every weaving {Λi j}i∈σ j, j∈[m] is a g-Bessel sequence with bound ∑ j∈[m]B j.

Proof.

∑
j∈[m]

∑
i∈σ j

〈Λi j f ,Λi j f 〉 ≤
m

∑
j=1

∑
i∈σ

〈Λi j f ,Λi j f 〉

=
m

∑
j=1

B j〈 f , f 〉.

�

The following theorem gives a characterization for weaving K-g-frames in term of atomic

system for K

Definition 3.6. Let K ∈End∗A(U ), then the family {Λi ∈End∗A(U ,Vi), i∈ I} is called an atomic

system for K, if the following conditions are satisfied

(i) The family {Λi ∈ End∗A(U ,Vi), i ∈ I} is a g-Bessel sequence,
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(ii) For every f ∈U , there exists fi ∈
⊕

i∈I Vi such that ‖{ fi}i∈I‖ ≤C‖ f‖ for some C > 0

and K f = ∑i∈I Λ∗i fi.

Theorem 3.7. Let K ∈ End∗A(U ), the families {Λi}i∈I and {Γi}i∈I be two K-g-frames for U .

The the following statements are equivalent

(i) The families {Λi}i∈I and {Γi}i∈I are woven K-g-frames.

(ii) The family {Λi}i∈σ ∪{Γi}i∈σ c is an atomic system for K, where σ is any subset of I.

Proof. i) =⇒ ii). Suppose that the families {Λi}i∈I and {Γi}i∈I are woven K-g-frames with

bounds A and B .

For every partition [σ ,σ c] of I, we have

A〈K∗ f ,〈K∗ f 〉 ≤ ∑
i∈σ

〈Λi f ,Λi f 〉+ ∑
i∈σ c
〈Γi f ,Γi f 〉 ≤ B〈 f , f 〉, ∀ f ∈U .

Then the family {Λi}i∈σ ∪{Γi}i∈σ c is g-Bessel sequence with bound B.

On the other hand

A〈K∗ f ,〈K∗ f 〉 ≤ 〈Sσ
Λ

f , f 〉+ 〈Sσ c

Γ f , f 〉

This imply that

AKK∗ ≤ T σ
Λ
(T σ

Λ
)∗+T σ c

Γ (T σ c

Γ )∗

by lemma (2.6), there exist two bounded operators L1,L2 : U =⇒
⊕

i∈I Vi such that

K f = T σ
Λ

L1 f +T σ c

Γ L2 f , ∀ f ∈U .

Let L1 f = { fi}i∈I ∈
⊕

i∈I Vi and L2 f = {gi}i∈I ∈
⊕

i∈I Vi, then

K f = T σ
Λ

L1 f +T σ c

Γ L2 f

= T σ
Λ
{ fi}i∈I +T σ c

Γ {gi}i∈I.

= ∑
i∈σ

Λ
∗
i fi + ∑

i∈σ c
Γ
∗
i gi.

and

‖{ fi}i∈I‖= ‖L1 f‖ ≤ ‖L1‖‖ f‖

‖{gi}i∈I‖= ‖L2 f‖ ≤ ‖L2‖‖ f‖.

So {Λi}i∈σ ∪{Γi}i∈σ c is an atomic system for K.
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ii) =⇒ i). Suppose that the family {Λi}i∈σ ∪{Γi}i∈σ c is an atomic system for K, for any

partition [σ ,σ c] of I, then the family {Λi}i∈σ ∪{Γi}i∈σ c is a g-Bessel sequence for U , then for

any g ∈U , there exist { fi}i∈I ∈
⊕

i∈I Vi such that

Kg = ∑
i∈σ

Λ
∗
i fi + ∑

i∈σ c
Γ
∗
i fi

where

‖{ fi}i∈I‖ ≤C‖g‖.

Then

‖K∗ f‖2 = supg∈U ,‖g‖=1‖〈K∗ f ,g〉‖

= supg∈U ,‖g‖=1‖〈 f ,Kg〉‖.

= supg∈U ,‖g‖=1‖〈 f , ∑
i∈σ

Λ
∗
i fi + ∑

i∈σ c
Γ
∗
i fi〉‖.

= supg∈U ,‖g‖=1‖〈∑
i∈σ

Λi f + ∑
i∈σ c

Γi f , fi〉‖.

≤ supg∈U ,‖g‖=1‖∑
i∈I
〈 fi, fi〉‖‖〈∑

i∈σ

Λi f + ∑
i∈σ c

Γi f , ∑
i∈σ

Λi f + ∑
i∈σ c

Γi f 〉‖.

≤C‖〈∑
i∈σ

Λi f + ∑
i∈σ c

Γi f , ∑
i∈σ

Λi f + ∑
i∈σ c

Γi f 〉‖.

≤C‖〈∑
i∈σ

Λi f , ∑
i∈σ

Λi f 〉+ 〈∑
i∈σ c

Γi f , ∑
i∈σ c

Γi f 〉‖.

Hence

1
C
‖K∗ f‖2 ≤ ‖〈∑

i∈σ

Λi f , ∑
i∈σ

Λi f 〉+ 〈∑
i∈σ c

Γi f , ∑
i∈σ c

Γi f 〉‖.

Therefore, the family {Λi}i∈σ ∪{Γi}i∈σ c is a g-Bessel sequence, then t he families {Λi}i∈I and

{Γi}i∈I are woven K-g-frames. �

Proposition 3.8. Let Λ = {Λi}i∈I and Γ = {Γi}i∈I be two g-Bessel sequences in U with respect

to {Vi : i ∈ I} with g-Bessel bounds B1, B2, respectively. If for J ⊂ I; ΛJ = {Λi}i∈J and ΓJ =

{Γi}i∈J are woven K-g-frames, then Λ and Γ are woven K-g-frames for U .

Proof. Let A be universal lower bound for the woven K-g-frame ΛJ and ΓJ , and let σ ⊂ I be a

subset of I. Then,
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A〈K∗ f ,K∗ f 〉 ≤ ∑
j∈σ∩J

〈Λ j f ,Λ j f 〉+ ∑
j∈σ c∩J

〈Γ j f ,Γ j f 〉

≤ ∑
j∈σ

〈Λ j f ,Λ j f 〉+ ∑
j∈σ c
〈Γ j f ,Γ j f 〉.

≤ (B1 +B2)〈 f , f 〉.

Hence, Λ and Γ are woven K-g-frames for U . �

Theorem 3.9. Let Λ = {Λi}i∈I and Γ = {Γi}i∈I be woven K-g-frames for U with respect to

{Vi : i ∈ I} with universal K-g-frame bounds A and B. If for all f ∈ U ∑ j∈J〈Λ j f ,Λ j f 〉 ≤

D〈K∗ f ,K∗ f 〉 for some 0 < D < A and some J ⊂ I Then Λ0 = {Λi}i∈I\J and Γ0 = {Γi}i∈I\J are

woven K-g-frames for U with universal K-g-frame boundsA−D and B.

Proof. Let σ be a subset of I \ J, then

∑
j∈σ

〈Λ j f ,Λ j f 〉+ ∑
j∈\(J∪σ)

〈Γ j f ,Γ j f 〉= ( ∑
j∈σ∪J

〈Λ j f ,Λ j f 〉−∑
j∈J
〈Λ j f ,Λ j f 〉)+ ∑

j∈\(J∪σ)

〈Γ j f ,Γ j f 〉.

= ( ∑
j∈σ∪J

〈Λ j f ,Λ j f 〉+ ∑
j∈\(J∪σ)

〈Γ j f ,Γ j f 〉)−∑
j∈J
〈Λ j f ,Λ j f 〉.

≥ A〈K∗ f ,K∗ f 〉−D〈K∗ f ,K∗ f 〉

= (A−D)〈K∗ f ,K∗ f 〉, ∀ f ∈U .

And for the upper bound

∑
j∈σ

〈Λ j f ,Λ j f 〉+ ∑
j∈\(J∪σ)

〈Γ j f ,Γ j f 〉 ≤ ∑
j∈σ∪J

〈Λ j f ,Λ j f 〉+ ∑
j∈\(J∪σ)

〈Γ j f ,Γ j f 〉

≤ B〈 f , f 〉.

It follows that, Λ0 and Γ0 are woven K-g-frames for U with the universal lower and upper

K-g-frame bounds A−D and B, respectively �

Theorem 3.10. Let Λ = {Λi}i∈I and Γ = {Γi}i∈I be a pair of K-g-frames for U with respect to

{Vi : i ∈ I} with universal K-g-frame bounds A1, B1 and A2, B2, respectively. Assume that there

are constants 0 < α,β ,µ < 1 such that

α
√

B1 +β
√

B2 +µ <
A1

2(
√

B1 +
√

B1)
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and

‖∑
i∈I
〈(Λ∗i −Γ

∗
i ) fi,(Λ

∗
i −Γ

∗
i ) fi〉‖

1
2 ≤α‖∑

i∈I
〈Λ∗i f ,Λ∗i f 〉‖

1
2 +β‖∑

i∈I
〈Γ∗i f ,Γ∗i f 〉‖

1
2 +µ‖〈{ fi},{ fi}〉‖

1
2

for all { fi} ∈ (⊕Vi)i∈I . Then, Λ and Γ are woven K-g-frames with universal lower and upper

frame bounds A1− A1
2 ‖K

†‖ and B1 +B2, respectively.

Proof.

‖∑
i∈σ

Λ
∗
i Λi f −∑

i∈σ

Γ
∗
i Γi f‖= ‖T σ

Λ
({Λi f}i∈σ )−T σ

Γ ({Γi f}i∈σ )‖

= ‖T σ
Λ
(T σ

Λ
)∗ f −T σ

Γ (T σ
Γ )∗ f‖.

= ‖T σ
Λ
(T σ

Λ
)∗ f −T σ

Λ
(T σ

Γ )∗ f +T σ
Λ
(T σ

Γ )∗ f −T σ
Γ (T σ

Γ )∗ f‖.

≤ ‖T σ
Λ
(T σ

Λ
)∗ f −T σ

Λ
(T σ

Γ )∗ f‖+‖T σ
Λ
(T σ

Γ )∗ f −T σ
Γ (T σ

Γ )∗ f‖.

≤ ‖T σ
Λ
(T σ

Λ
)∗ f −T σ

Λ
(T σ

Γ )∗ f‖+‖T σ
Λ
(T σ

Γ )∗ f −T σ
Γ (T σ

Γ )∗ f‖.

≤ ‖T σ
Λ
‖‖(T σ

Λ
)∗ f − (T σ

Γ )∗ f‖+‖T σ
Λ
−T σ

Γ ‖‖(T σ
Γ )∗‖‖ f‖.

≤ ‖TΛ‖‖TΛ−TΓ‖‖ f‖+‖TΛ−TΓ‖‖(TΓ)‖‖ f‖.

≤ ‖TΛ‖‖TΛ−TΓ‖‖K†‖‖K∗ f‖+‖TΛ−TΓ‖‖TΓ‖‖K†‖‖K∗ f‖.

≤ (α‖TΛ‖+β‖TΓ‖+µ)(‖TΛ‖+‖TΓ‖)‖K†‖‖K∗ f‖.

<
A1

2(
√

B1 +
√

B1)
(
√

B1 +
√

B1)‖K†‖‖K∗ f‖.

=
A1

2
‖K†‖‖K∗ f‖.

On the other hand

‖ ∑
i∈σ c

Λ
∗
i Λi f + ∑

i∈σ

Γ
∗
i Γi f‖= ‖ ∑

i∈σ c
Λ
∗
i Λi f + ∑

i∈σ

Λ
∗
i Λi f −∑

i∈σ

Λ
∗
i Λi f + ∑

i∈σ

Γ
∗
i Γi f‖

= ‖∑
i∈I

Λ
∗
i Λi f + ∑

i∈σ

Γ
∗
i Γi f −∑

i∈σ

Λ
∗
i Λi f‖.

≥ ‖∑
i∈I

Λ
∗
i Λi f‖−‖∑

i∈σ

Λ
∗
i Λi f −∑

i∈σ

Γ
∗
i Γi f‖.

≥ A1‖K∗ f‖−‖∑
i∈σ

Λ
∗
i Λi f −∑

i∈σ

Γ
∗
i Γi f‖.

≥ A1‖K∗ f‖− A1

2
‖K†‖‖K∗ f‖.
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= (A1−
A1

2
‖K†‖)‖K∗ f‖.

So (A1− A1
2 ‖K

†‖) is an universal lower bound, and one can see that B1 +B2 is an universal

upper bound. �

Theorem 3.11. Let Λ = {Λi}i∈I and Γ = {Γi}i∈I be woven K-g-frames for U with respect to

{Vi : i ∈ I} with universal K-g-frame bounds A1, B1 and A2, B2, respectively. Assume that there

are constants 0 < α,β ,µ < 1 such that

αB1‖K†‖+βB2‖K†‖+µ‖K†‖< A1

and

‖∑
i∈σ

〈(Λ∗i Λi−Γ
∗
i Γi) fi,(Λ

∗
i Λi−Γ

∗
i Γi) fi〉‖

1
2 ≤ α‖∑

i∈σ

〈Λ∗i Λi f ,Λ∗i Λi f 〉‖
1
2 +β‖∑

i∈σ

〈Γ∗i Γi f ,Γ∗i Γi f 〉‖
1
2

+µ(∑
i∈σ

‖Λi f‖)
1
2

for all f ∈U and σ ⊂ I. Then, Λ and Γ are woven K-g-frames with universal lower and upper

frame bounds (A1−αB1‖K†‖−βB2‖K†‖−µ‖ and (B1 +αB1 +βB2 +µ
√

B1), respectively.

Proof. For any σ ∈ I, we have by hypothesis

‖∑
i∈σ

(Λ∗i Λi‖ ≤ α‖∑
i∈σ

Λ
∗
i Λi f‖+β‖∑

i∈σ

Γ
∗
i Γi f‖+µ(∑

i∈σ

‖Λi f‖)
1
2

then

‖ ∑
i∈σ c

Λ
∗
i Λi f + ∑

i∈σ

Γ
∗
i Γi f‖= ‖ ∑

i∈σ c
Λ
∗
i Λi f + ∑

i∈σ

Λ
∗
i Λi f −∑

i∈σ

Λ
∗
i Λi f + ∑

i∈σ

Γ
∗
i Γi f‖

= ‖∑
i∈I

Λ
∗
i Λi f + ∑

i∈σ

Γ
∗
i Γi f −∑

i∈σ

Λ
∗
i Λi f‖.

≥ ‖∑
i∈I

Λ
∗
i Λi f‖−‖∑

i∈σ

Λ
∗
i Λi f −∑

i∈σ

Γ
∗
i Γi f‖.

≥ A1‖K∗ f‖−‖∑
i∈σ

Λ
∗
i Λi f −∑

i∈σ

Γ
∗
i Γi f‖.

≥ A1‖K∗ f‖−α‖∑
i∈σ

Λ
∗
i Λi f‖−β‖∑

i∈σ

Γ
∗
i Γi f‖−µ(∑

i∈σ

‖Λi f‖)
1
2 .

≥ (A1−αB1‖K†‖−βB2‖K†‖−µ‖K†‖)‖K∗ f‖

.
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On the other hand

‖ ∑
i∈σ c

Λ
∗
i Λi f + ∑

i∈σ

Γ
∗
i Γi f‖= ‖∑

i∈I
Λ
∗
i Λi f + ∑

i∈σ

Γ
∗
i Γi f −∑

i∈σ

Λ
∗
i Λi f‖.

≤ ‖∑
i∈I

Λ
∗
i Λi f‖+‖∑

i∈σ

Λ
∗
i Λi f −∑

i∈σ

Γ
∗
i Γi f‖.

≤ B1‖ f‖+α‖∑
i∈σ

Λ
∗
i Λi f‖+β‖∑

i∈σ

Γ
∗
i Γi f‖+µ(∑

i∈σ

‖Λi f‖)
1
2 .

≤ (B1 +αB1 +βB2 +µ
√

B1)‖ f‖.

Then, Λ and Γ are woven k-g-frames with the universal lower and upper bounds (A1 −

αB1‖K†‖−βB2‖K†‖−µ‖K†‖) and (B1 +αB1 +βB2 +µ
√

B1), respectively. �
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