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Abstract. In this study, we introduce a discrete time to the model to describe the time delays between infection of

a CD4+ T-cells, and the emission of viral particles on a cellular level. We begin by determining the existence and

stability of the equilibrium. Further We investigate the global stability of the infection-free equilibrium and give

sufficient condition for the local stability of the infected steady state is asymptotically stable for all delays. Finally,

the numerical simulations are presented to illustrate the analytical results.
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1. INTRODUCTION

In recent years, there has been a lot of interest in mathematical modelling of HIV/AIDS infec-

tion, in order to predict the evolution of this modern plague. Since the discovery of the human

immunodeficiency virus type 1 (HIV-1) in the early 1980s, the disease has spread in successive

waves to most regions around the globe. It is reported that HIV has infected more than 60

million people, and over a third of them subsequently died [1]. Considerable scientific effort

has been devoted to the understanding of viral pathogenesis, host/virus interactions, immune
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response to infection, and antiretroviral therapy [2]. HIV primarily attacks a host’s CD4+T−

cells (the main driver of the immune response). The amount of viruses in the blood is a good

predictor of the stage of the disease. The amount of CD4+T− cells in a typical healthy person’s

peripheral blood ranges between 800/mm3 and 1200/mm3. When this value falls below 200, an

HIV-positive patient is diagnosed with Acquired Immune Deficiency Syndrome (AIDS). HIV

differs from most viruses in that it is a retrovirus: Viruses do not have the ability to reproduce

independently, and they must be rely on a host to aid reproduction. Most viruses carry copies

of their DNA and insert this into the host cell’s DNA. Thus, when the host cell is stimulated

for reproduction, it reproduces copies of the virus. T cells divide and increase in population

once stimulated by antigen or mitogen. Chronic HIV infection causes gradual depletion of the

CD4+T− cell pool, and thus progressively compromises the host’s immune response, leading

to humoral and cellular immune function loss (the marker of the onset of AIDS), making the

host susceptible to opportunistic infections. In 1993, Perelson, Krischner and De Boer [3] pro-

posed an ODE model of cell-free viral spread of human immunodeficiency virus (HIV) in a

well-mixed compartment such as the bloodstream. Their model consists of four components:

uninfected healthy CD4+T− cells, latently infected CD4+T− cells, actively infected CD4+T−

cells and free virus [4]. This model has been important in the field of mathematical modelling

of HIV infection and many other models have been proposed which take the model of Perelson,

Krischner and De Boer [3].

In [5] Liming Cai and Xuezhi Li have been simplify their model into one consisting of

only three components: the healthy CD4+T− cells, infected CD4+T− cells and free virus

and introduce a discrete time delay to the model to describe the times between infection of

a CD4+T− cells and the emission of viral particles on a cellular level.Many Mathematical

model, used the proliferation process of T-cells have been received in the literature. In addi-

tion researchers extend the basic models by adding CD4+ T- cells simples logistic proliferation

term rT
(

1− T (t)
Tmax

)
CD4+T-cells, full logisitic proliferation term rT

(
1− T (t)+I(t)

Tmax

)
, where r is

the maximum proliferation rate of CD4+ T-cells, T, I respectively represent the concentration of

susceptible CD4+T-cells, infected CD4+T-cells, and Tmax is the maximum level of CD4+T-cells

concentration of the body, and injected T-cells at time t. Inspired by their work, in many authors
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have studied stability properties for delay differential equations and applied the results obtained

to analyze the stability of the equilibria for the model of HIV-1 infection. To our knowledge, no

works are contributed to the analysis for HIV infection of CD4+T− cells with two independent

delays or two proportional delay terms. Motivated by this situation, we introduce a HIV infec-

tion model with independent time delays proposed by Culshaw and Ruan [6]. Here τ1 and τ2 are

two time delays were included in our model. The first delay ”τ1” is the time between viral entry

latent infection. The second delay ”τ2” is the time between cell infection and viral production.

So, we assume that CD4+ T cells (healthy and infected) are governed by a full Logistic growth

term. Therefore, we shall establish a mathematical model as follows

T ′(t) = s−µ1T (t)+ rT (t)
(

1− T (t)+ I(t)
Tmax

)
− kT (t)V (t)

I′(t) = kT (t− τ1)V (t− τ1)+ rI(t)
(

1− T (t)+ I(t)
Tmax

)
−µ2I(t)

V ′(t) = Nµ2I(t− τ2)−µ3V (t)


(1)

where τ1 and τ2 are positive.

where T(t) represents the concentration of healthy CD4+T− cells at time t, I(t) represents the

concentration of infected CD4+T− cells and V(t) represents the concentration of free HIV at

time t. To explain the parameter, we note that s is the source of CD4+T− cells from precursors, r

is their growth rate of T-cells(thus , r > µ1 in general) and Tmax is the maximum level of CD4+T-

cells concentration in the body. The parameter k represents the rate of infection of T-cells with

free virus and so is given as a loss term for both healthy cells and virus, since they are both lost

by binding to one another, and is the source term for infected cells. µi(i = 1,2,3) are the nature

death rates of the uninfected T-cells, infected T-cells and the virus particles, respectively. It is

reasonable to assume that µ1 ≤ µ2, i.e., the infected T cells have a relatively shorter life than

the uninfected T cells due to an HIV viral burden. N is number of virus produced by infected

CD4+ T-cells during its lifetime. It is clear that according to the viral life cycle. We assume

that all parameters are non-negative constant.

The initial conditions of system (1) are

(2) T (θ) = φ1(θ)> 0, I(θ) = φ2(θ)> 0, V (θ) = φ3(θ)> 0, (−τ ≤ θ ≤ 0)
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where functions φi ∈C([−τ1,τ2,0]), i = 1,2,3, and C([−τ1,τ2,0]) is the Banach space of con-

tinuous function mappingthe interval [−τ1,τ2,0] into ℜ3
+, where ℜ3

+ = {(T, I,V,) : T, I,V > 0}.

By the fundamental theory of functional differential equations [7], the system (1) has a unique

solution (T (t), I(t),V (t)) satisfying the initial condition (2).

The organization of this paper is as follows. In the next section, we verify the boundedness

of the solutions and existence of feasible equilibria of the system (1). In Section 3 , the local

asymptotic stability of feasible equilibria is established. In Section 4 , we investigate the global

asymptotic stability of feasible equilibria. We also performed numerical simulation to illustrate

the main analytical result in the section 5. The paper ends with a conclusion.

2. BOUNDEDNESS OF SOLUTIONS AND FEASIBLE EQUILIBRIA

In the following, we first show all solution of the system (1) with (2) are positive and ulti-

mately bounded.

Preposition 3.1: All the solution of system (1) with initial condition (2) are positive and ulti-

mately bounded for all large t. [?]

Proof:

First, let us prove the positivity by contradiction.

Suppose T(t) is not always postive. Then, let t0 > 0 be the first time such that T (t0) = 0. (i.e)

t0 = inf{t/t > 0,T (t) = 0}.From the first equation of (1) we have Ṫ (t0) = 0. By our assumption

this means T (t)> 0, for t∈ (t0− ε, t0), where ε is an arbitrary small positive constant. This is a

contradiction. It follows that T (t) is always positive.

We now show that I(t)> 0 for all t > 0. Otherewise if it is not valid, noting that T (t)> 0 and

I(t)> 0(−τ1 ≤ t ≤ 0) ,then there exists a t1such that I(t1) = 0. Assume that t1 is the first value

which T (t0) = 0, that is t1 = inf{t > 0 : I(t) = 0} then t1 > 0, and from system (1) and (2) , we

get

İ(t1) =


φ1(t1− τ1)φ3(t1− τ1)> 0 if 0≤ t1 ≤ τ1,

T (t1− τ1)V (t1− τ1)> 0 if t1 > τ1

Thus İ(t1)> 0. Hence, there exists sufficiently small ε1 > 0 to make I(t)< 0 for t ∈ (t1−ε, t1).

By the definition of t1, this is a contradiction.Therefore, I(t) > 0 for all t > 0. Similarly, we
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easily show that V(t) is always positive.Thus, we can conclude that all solutions of system (1)

with initial conditions (2) remain positive for all t > 0.

Next, we shall discuss the boundedness of solutions of the system (1). In the absence of HIV

infection, the dynamics of healthy CD4+T-cells are governed by

Ṫ (t) = s−µ1T (t)+ rT (t)
(

1− T (t)+ I(t)
Tmax

)
It can be shown that, the CD4+T-cells concentration stabilizes at a level T0, which is given by

T0 =
Tmax

2r

(
r−µ1 +

√
(r−µ1)2 +

4sr
Tmax

)
and T0 satisfy the following equation,

(3) s = µ1T0− rT0 +
rT 2

0
Tmax

.

By the first equation of system (1),we have

Ṫ (t)≤ s−µ1T + rT
(

1− T
Tmax

)
Thus, if T (0)< T0, we obtain

(4) lim
t→+∞

supT (t)≤ T0,∀ t ≥ 0.

Let W (t) = k[T (t− τ1)+ I], then

Ẇ (t) =sk−µ1kT (t− τ1)+ rkT (t− τ1)

(
1− T (t− τ1)+ I(t− τ2)

Tmax

)
+ rkT

(
1− T + I

Tmax

)
−µ1kT

≤ k
(

s+
rTmax

2

)
−µ1W (t)

(5)

Let M1 = k
(
s+ rTmax

2

)
and solving equation (5), we obtain

(6) W (t)≤ M1

µ1
T
(

W (0)−M1

µ1

)
e−µ1t

According to inequality (6), we get W (t) < 2M1
µ1

for sufficiently large t. Recall that T (t) > 0

and I(t)> 0 combining with inequality (4), T(t) and I(t) have ultimately above bound M2 > 0.

Similiary, the third equation of system (1), we have

(7) V̇ (t) = Nµ2I(t− τ2)−µ−3V ≤ (Nµ2M2)−µ3V )
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solving inequality (7), we have

(8) V (t)≤ Nµ2M2

µ3
+

[
V (0)− Nµ2M2

µ3

]
e−µ3t

It follows from inequality (8), that V(t) has an ultimately above bound M3 > 0,for sufficiently

large t. Hence we proved that all solutions of system (1) are ultimately bounded. Then the proof

of Theorem 3.1 is completed.

Let Ω =
{
(T, I,V ) ∈ R3

+ : 0 < T ≤ T0,0 < I ≤M2,0 <V ≤M3
}

, then Ω is the positive in-

variant set of system (1).

Next,we shall investigate the existence of equilibrium of system (1). The equilibrium of system

(1) satisfy the following equation

s−µ1T (t)+ rT (t)
(

1− T (t)+ I(t)
Tmax

)
− kT (t)V (t) = 0

kT (t)V (t)+ rI(t)
(

1− T (t)+ I(t)
Tmax

)
−µ2I(t) = 0

Nµ2I−µ3V (t) = 0


(9)

Clearly, the system (1) has always the infection free equilibrium E0(T0,0,0). From the third

equation of (9), we have

(10) I =
µ3V
Nµ2

Substituting this expression into the second equation of (9) and solving for T results in,

(11) T =

[
µ3Tm((µ2− r)
Nµ2kTm− rµ3

+
r2µ3

Nµ2(Nµ2kTm− rµ3)

]
V

Rewriting the first equation of (9) as

(12) s = T
[

µ1− r
(

1− T + I
Tmax

)
+ kV

]
substituting (10) and (11) into (12), we obtain

s = (A+BV )(C+DV )
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where

A =
µ3Tm(µ2− r)
Nµ2kTm− rµ3

B =
rµ2

3
Nµ2(Nµ2kTm− rµ3)

C = (µ1− r)+
µ3r(µ2− r)

Nµ2kTm− rµ3

D =
Nµ3k2Tm + rk(Nµ2I−µ3)

Nµ2kTm− rµ3

The critical number Ncrit is defined by,

Ncrit =
µ3

kµ2T0

(
s

T0
+µ2−µ1

)
> 0

It is easy to verify that the equation s = (A+BV )(C+DV ) has a unique positive root if and if

only if N > Ncrit . Thus, we also obtain

T ∗ = A+BV ∗ > 0 & I∗ =
µ3

Nµ2
V ∗.

3. LOCAL STABILITY ANALYSIS

In this section, we study the local stability of the infection - free equilibrium and the infected

equilibrium points.

Theorem 3.2: If N ≤ Ncrit , then system (1) has only the uninfected equilibrium E0(T0,0,0); if

N > Ncrit , the system (1) has the two equilibria; the infected free equilibria E0 and the chronic

infection equilibrium E∗(T ∗, I∗,V ∗).

Proof:

Let E∗(T ∗, I∗,V ∗) be an arbitrary equilibrium. Thus, linerarizing the system (1) at the equilib-

rium E∗(T ∗, I∗,V ∗), we obtain the charateristic equation about E∗ as follows∣∣∣∣∣∣∣∣∣
λ +M1

rT ∗
Tmax

kT ∗

rT ∗− kV ∗e−λτ1 + rT ∗
Tm

λ +M2 −kT ∗e−λτ1

0 −Nµ2e−λτ2 λ +µ3

∣∣∣∣∣∣∣∣∣= 0

where,

M1 =
(

µ1 +
rI∗+2rT ∗

Tmax
+ kV ∗− r

)
, M2 =

(
µ2 +

2rI∗+rT ∗
Tmax

− r
)
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Thus, for the uninfected equilibrium E0(T0,0,0), the charateristic equation has been reduces to

(13)
(

λ +
s

T0
+

rT0

Tmax

)[
λ

2 +A0λ +B0−C0e−λ (τ1+τ2)
]
= 0

where

A0 =

(
µ2− r+

rT0

Tm
+µ3

)
=

s
T0
−µ1 +µ3 +µ2 > 0

B0 =

(
µ2− r+

rT0

Tm

)
µ3 = µ3

(
s

T0
+µ2−µ1

)
> 0

C0 = Nµ3kT0 > 0

Clearly, the equation (13) has a characteristic root λ1 =
(

r−µ1 +
2rT0
Tmax

)
=
(
−s
T0
− rT0

Tmax
< 0
)

, and

the rest charateristic roots of equation (13)satisfy the following equation,

(14)
[
λ

2 +A0λ +B0−C0e−λ (τ1+τ2)
]
= 0

when τ1 = τ2 = 0, if N < Ncrit , then B0−C0e−λ (τ1+τ2) = B0−C0 > 0. By Routh-Hurwitz

Criterion, E0 is locally asymptotically stable. If N = Ncrit , one eigenvalue is zero, and it is

simple., So E0 is stable. If N > Ncrit , then B0−C0e−λ (τ1+τ2) < 0. Thus E0 is a saddle with point

dimW s(E0) = 2 and dimW u(E0) = 1.

For the time delays τ1,τ2 > 0, we can show that equation (13) has no root with positive real

part as N < Ncrit . In fact, assume λ = (u1± iv1), where V1 > 0 and i =
√
−1. Substituting

λ = (u1± v1i) into equation (13) and seperating the real and imaginary parts, we obtain

u2
1− v2

1 +A0u1 +B0 =
(

C0e−u1(τ1+τ2) cosv(τ1+τ2)
1

)
2u1v1 +A0V1 =

(
−C0e−u1(τ1+τ2) sinv(τ1+τ2)

1

)
(15)

Squaring and adding both equations (15), we have

(16)

v2
1
(
v2

1 +2u2
1 +2A0u1 +A2

0−2B0
)
+u4

1 +A2
0u2

1 +2A0B0u1 +2A0u3
1 +2B0u2

1 =C2
0e−2u1τ −B2

0.

Since A2
0− 2B0 =

(
s

T0
+β −α

)2
+ d2 > 0. The left side of equation (16) is larger than zero,

while the right side of equation (16) is less than zero (since u1 ≥ 0, and if N < Ncrit , then

B0 > C0). This results in contradiction. Therefore, u1 < 0, and E0 is locally asymptotically

stable. When N > Ncrit , let F1(λ ) =
[
λ 2 +A0λ +B0−C0e−λ (τ1+τ2)

]
, and note that F1(0) =
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B0−C0 < 0 and lim
λ→+∞

= +∞. It follows from the continuity of the function F1(λ ) on [0,+∞)

that the equation (14) has at least one positive real root. Hence, the characteristic equation (13)

has at least one positive real root. Hence, E0 is unstable. This complete the proof. �

Thus, We obtain the following theorem.

Theorem 3.3: The infection - free equilibrium E0(T0,0,0) of the system (1) is locally asymptot-

ically stable when N < Ncrit and unstable when N > Ncrit .

proof:
For infected equilibrium E∗ = (T ∗, I∗,V ∗), then the characteristic equation (13)reduces to

(17)

∆(λ ,τ1,τ2) = λ
3 +a1λ

2 +a2λ +a3e−λτ1 +a4λe−λτ1 +a5e−λ (τ1+τ2)+a6λe−λ (τ1+τ2)+a7e−λτ2 +a8

where

a1 =

(
s

T ∗
+

r (T ∗+ I∗)
Tmax

+
kT ∗V ∗

I∗
+µ3

)
> 0

a2 =
s

T ∗

(
kT ∗V ∗

I∗
+

rI∗

Tmax
+µ3

)
+(T ∗+ I∗)

rµ3

Tmax
+

kT ∗V ∗µ3

I∗
+

rk(T ∗)2V ∗

I∗Tmax

a3 =
rkT ∗V ∗µ3

Tmax

a4 =
rkT ∗V ∗

Tmax

a5 =

[
k2T ∗(V ∗)2µ3

I∗
−
(

s
T ∗

+
rT ∗

Tmax

)
kT ∗V ∗µ3

I∗

]
a6 =

[
−kT ∗V ∗µ3

I∗

]
a7 =

[
−rkT ∗V ∗µ3

I∗

]
a8 =

[
srµ3I∗

T ∗Tmax

]
+

(
s

T ∗
+

rT ∗

Tmax

)
kT ∗V ∗µ3

I∗

when τ1 = τ2 = 0 in equation (17), we can write as

(18) λ
3 +a1λ

2 +a2λ +a3 = 0
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where

a2 =
s

T ∗

(
KT ∗V ∗

I∗
+

rI∗

Tm
+µ3

)
+(T ∗+ I∗)

[
rµ3

Tm
+

rKT ∗V ∗

I∗Tm

]
a3 =

[
K2T ∗(V ∗)2µ3

I∗
+

srµ3I∗

I∗Tm

]
> 0

Hence a1 > 0, a2 > 0, a3 > 0, by directly calculating we obtain

b = a1a2−a3

=

(
rµ3

Tm
+

rkT ∗V ∗

I∗Tm

)
a1 (T ∗+ I∗)+

s
T ∗

(
kT ∗V ∗

I∗
+

rI∗

Tm
+µ3

)
− k2T ∗(V ∗)2µ3

I∗
+

rs
TmT ∗

[
kT ∗V ∗+

rI∗

Tm

]
If τ1 = τ2 = 0, by Routh-Hurwitz criterion, we have following theorem.

Theorem 3.4: If b > 0, then the infected equilibrium E∗(T ∗, I∗,V ∗) is locally asymptotically

stable.

To show that the infected equilibrium E∗(T ∗, I∗,V ∗) of system (1) is locally asymptotically sta-

ble for all τ1 and τ2. We firstly introduce a lemma (3.1) coming from literature [63].

Lemma 3.1: A set of necessary and sufficient conditions for the equilibrium E to be asymptoti-

cally stable for all (τ1,τ2)≥ 0 is the following.

(i) The real parts of all the roots of ∆(λ ,0) = 0 are negative.

(ii) For all real ω and (τ1,τ2)≥ 0, ∆(iω,τ1,τ2) 6= 0, where i =
√
−1.

Proof:

Here ∆(λ ,0) = 0 has roots whose real parts are negative. Therefore, the condition (i) is easily

satisifed. we now verify the condition (ii) of lemma(3.1). Firstly, when ω0 = 0, we have

∆(0,τ1,τ2) = a3 +a5 +a7 6= 0. Secondly, when ω0 6= 0, we have

(19)

∆(λ ,τ)= λ
3+a1λ

2+a2λ +a3e−λτ1 +a4λe−λτ1 +a5e−λ (τ1+τ2)+a6λe−λ (τ1+τ2)+a7e−λτ2 +a8

Case 3.1 :
τ1 = τ2 = 0

Substuite the delay values in (19), the charactersitic equation becomes,

λ 3 +a1λ 2 +(a2 +a4−a6)λ +(a3 +a5−a7 +a8) = 0
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By Routh-Hurwitz Criterian, that all the eigen values of the characteristic equation has negative

real part⇔ a1 > 0,(a2 +a4−a6)> 0,(a3 +a5−a7 +a8)> 0.

Therefore, E∗ is locally asymptotically stable.

Case 3.2:

τ1 6= 0,τ2 = 0(τ1 > 0)

The charactersitic equation becomes,

(20) λ
3 +a1λ

2 +a2λ +(a3 +a5)e−λτ2 +(a4−a6)λe−λτ2 +(a8−a7) = 0

Let λ = iω1(ω1 > 0). From the equation (20), it becomes

iω3
1 +a1ω2

1 − ia2ω1− (a3−a5)e−iω1τ1− iω1τ1 (a4 +a6)e−iω1τ1−a8 +a7 = 0

Separate the real and imaginary parts,

a1ω2
1 +a7−a8 = (a3−a5)cosω1τ1 +(a4 +a6)ω1 sinω1τ1

ω3
1 −a2ω1 = (a3−a5)sinω1τ1− (a4 +a6)ω1 cosω1τ1

Squaring and adding both equation, we obtain

(21)

ω
6
1 +
(
a2

1−2a2
)

ω
4
1 +
(
a2

2−2a1a7−a2
6−a2

6−2a4a6−2a1a8−a2
4
)

ω
2
1 +
(
a7

2−2a3a5−a2
3 +a2

8
)
= 0

Let ρ = ω2 ; b1 = a2
1−2a2 ; b2 = a2

2−2a1a7−a2
6−a2

4−2a4a6−2a1a8 ; b3 = a2
7 +2a3a5−

a2
5 +a2

8−2a4a6−a2
3

Then the equation (21) becomes,

(22) g(ρ) = ρ
3 +b1ρ

2 +b2ρ +b3 = 0.

We claim Equation (22) has no any positive roots for b2,b3 > 0. In fact, we notice that dg(ρ)
dt =

3ρ2 +2b1ρ +b2.

Let,

(23)
dg(ρ)

dt
= 0⇒ 3ρ

2 +2b1ρ +b2 = 0.

The roots of Equation (23) are given by

ρ1,2 =
−b1±

√
b2

1−3b2

3
.
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If b2 > 0, then
(
b2

1−3b2
)
< b2

1 (i.e)
√(

b2
1−3b2

)
< b1. Hence ρ1,ρ2 are both negative, the

equation (3.14) has no positive root. Therefore, if G(0) = b3 > 0, then equation(3.14) has no

positive root. For any time delay τ > 0, the infected equilibrium, E∗ = (T ∗, I∗,V ∗) is locally

asymptotically stable for τ1 > 0, τ2 = 0.

Case 3.3:

τ1 = 0,τ2 6= 0(τ2 > 0)

The charactersitic equation becomes,

(24) λ
3 +a1λ

2 +(a2 +a4)λ +(a5 +a7)e−λτ2−a6λe−λτ2 +(a3 +a2) = 0

Let λ = iω2(ω2 > 0)

iω3
2 +a1ω2

2 +(a2 +a4)iω2− (a5 +a7)e−iω2τ2− iω2a6e−iω2τ2−a3 +a8 = 0

Separate the real and imaginary parts, we have

a1ω2
2 − (a3 +a8) = (a5 +a7)cosω2τ2 +a6ω2 sinω2τ2

ω3
2 − (a2 +a4)ω2 =−(a5 +a7)sinω2τ2 +a6ω1 cosω2τ2

Squaring and adding both equation, we obtain

(25)

ω
6
2 +
(
a2

1−2a2−2a4
)

ω
2
2 +
[
a2

2 +2a2a4 +a2
4−2a1a3−2a1a8

]
ω

2
2 +
[
a2

3−2a3a8−a2
8 +a2

7−a2
5
]
= 0

Let ρ = ω2
2 ; b1 = a2

1−2a2−2a4 ; b2 = a2
2 +2a2a4 +a2

4−2a1a3−2a1a8 ; b3 = a2
3 +2a3a8 +

a2
7 +a2

8−a2
5

Then the equation (25) becomes,

(26) g(ρ) = ρ
3 +b1ρ

2 +b2ρ +b3 = 0.

by case(ii), we get ∆(iω2,τ2) 6= 0, for any τ2 > 0, τ1 = 0. Therefore E∗= (T ∗, I∗,V ∗) is locally

asymptotically stable for τ2 > 0, τ1 = 0.

Case 3.4:

τ1 > 0 & τ2 > 0

The charactersitic equation becomes,
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λ 3 +a1λ 2 +a2λ +a3e−λτ1 +a4λe−λτ1 +a5e−λ (τ1+τ2)+a6λe−λ (τ1+τ2)+a7e−λτ2 +a8 = 0

Let τ1 = τ2 > 0

(27)

λ
3 +a1λ

2 +a2λ +a3e−λτ1 +a4λe−λτ1 +a5e−λ (τ1+τ2)+a6λe−λ (τ1+τ2)+a7e−λτ2 +a8 = 0

Let λ = iω(ω > 0)

iω3
2 +a1ω2−a2iω−a3e−iωτ − iω4e−iωτ −a5e−iω(τ1+τ2)−a6iωe−iω(τ1+τ2)+a7e−iωτ +a8 = 0

Separate the real and imaginary parts, we have

a1ω2−a8 = a3 cosωτ−a5 cosω(τ1 + τ2)+a4 sinωτ−a6ω sinω(τ1 + τ2)−a7 cosωτ

ω3−a2ω2 =−a3 cosωτ−a5 sinω(τ1 + τ2)−a4 cosωτ +a6ω sinω(τ1 + τ2)+a7 cosωτ

Squaring and adding both equation, we obtain(
a1ω2 +a8

)2
+
(
ω3−a2ω

)2
= a2

3 +a2
4ω2 +a2

5 +a2
6ω2 +a2

7

(28) = ω
6 +
(
a2

1−2a2
)

ω
4 +
(
a2

2−2a1a8−a2
4−a2

6
)

ω
2 +
(
a2

8−a2
3−a2

7−a2
5
)

Let ρ = ω2
2 ; b1 = a2

1− 2a2 ; b2 = a2
2 + 2a2a4 + a2

4− 2a1a3− 2a1a8 ; b3 = a2
3 + 2a3a8 + a2

7 +

a2
8−a2

5

Then the equation (28) becomes,

(29) g(ρ) = ρ
3 +b1ρ

2 +b2ρ +b3 = 0.

by case(i), we get ∆(iω2,τ2) 6= 0, for any τ1,τ2 > 0. Therefore E∗ = (T ∗, I∗,V ∗) is locally

asymptotically stable for τ1 > 0, τ2 > 0. Hence the conditions (i) and (ii) of lemma (3.1) are

satisfied if the system (1) holds. �

4. GLOBAL STABILITY ANALYSIS

In this section, we construct a suitable Lyapunov function to study the global dynamics of

the infection-free equilibrium and chronic infection equilibrium for system (1).

Theorem 3.5: If N ≤ Ncrit , then the infection - free equilibrium, E0(T0,0,0) of system (1) is

globally asymptotically stable in Ω.

Proof: Define a Liapunov functional

W (t) = T (t)− T0 ln T (t)
T0

+ I(t)−V (t) +K
τ1∫
0

T (t −ω)V (t −ω)dω +Nµ2

τ2∫
0

I(t −ω)dω . Here

W(t) is well-defined, continuous and positive defined for all (T, I,V ) > 0 and θ ∈ [0,ρ]. Also,
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the global minimum W (= 0) occurs at the infection free steady state E0. Thus every solutions

tends to the viral free steady state E0. Further, a function W(t) along the trajectories of (1)

satisfies.

dW
dt

= (T −T0)

[
s
T
+ r
(

1− T + I
Tm

)
−µ1− kV

]
+ kT (t− τ1)V (t− τ1)−µ2I

+ rI
(

1− T + I
Tm

)
−Nµ2I(t− τ2)+µ3V − kT (t− τ1)V (t− τ1)+ kTV

−Nµ2I +Nµ2I(t− τ2)

= (T −T0)

[
s
T
+ r
(

1− T + I
Tm

)
−µ1

]
+ kT0V + r

(
1− T + I

Tm

)
−µ2I +µ3V −Nµ2I

Using the equation;

r−µ1 =
rT0

Tm
− s

T0
,

we get,

dW
dt

=−s(T −T0)
2

T T0
− r

Tm
[(T −T0 + I)]2 + kT0V + rI

(
1− T0

Tm

)
−µ2I + kT0V

−µ3V −Nµ2I

Using the equation,

r
(

1− T0

Tm

)
= µ1−

s
T0
,

we get

dW
dt

=− s(T −T0)
2

T T0
− r

Tm
[(T −T0 + I)]2−µ3V + kT0V − µ2kT0

µ3(
µ3

µ2kT0

[
s

T0
+µ2−µ1

]
+N

)
I

Rewritten dW
dt interms of the critical number, we get

dW
dt

=−s(T −T0)
2

T T0
− r

Tm
[(T −T0 + I)]2 + kT0V −µ3V + kT0V − µ2kT0

µ3
(Ncrit−N) I

If N ≤ Ncrit , then dW
dt ≤ 0, from corollary [57], E0 is asymptotically stable. Also, N = Ncrit ,

dW
dt = 0 implies that T (t) = T0 and I(t) = 0. While in the case N < Ncrit , dW

dt = 0 if and

only if T (t) = T0 and I(t) = 0. It is easy to show that E0(T0,0,0) is the largest invariant set

{(T (t), I(t),V (t)) : dW
dt = 0}. By the classical Liapunov - Lasalle invariance principle [58], E0



MATHEMATICAL ANALYSIS OF HIV INFECTION OF CD4+ T-CELLS 15

is globally asymptotically stable. This complete the proof. �

In the following, we consider the global asymptotic stability of chronic infection equilibrium

E∗(T ∗, I∗,V ∗). We construct an Liapunov functional for chronic infection equilibrium using

suitable combinations of the Liapunov functions given by g(x) := x−1− ln x.

Thus, the function g has a global minimum at 1 and satisfies g(1) = 0.

Theorem 3.6: If N > Ncrit and r ≤ µ1 +
r

Tmax
[T ∗+ I∗], then the unique chronic infection equi-

librium E∗(T ∗, I∗,V ∗) of system (1) is globally asymptotically stable for any τ1,τ2 ≥ 0.

Proof:

We define a Liapunov function as follows:

L(t) = L1(t)+ kT ∗V ∗L2(t)+ kT ∗V ∗L3(t)

where

L1(t) =
(

T (t)−T ∗ ln
T (t)
T ∗

)
+

(
I(t)− I∗ ln

I(t)
I∗

)
+

kT ∗V ∗

Nµ2I∗

(
V (t)−V ∗ ln

V (t)
V ∗

)
(30)

L2(t) =

τ1∫
0

(
T (t−ω)V (t−ω)

T ∗V ∗
−1− ln

T (t−ω)V (t−ω)

T ∗V ∗

)
dω(31)

L3(t) =

τ2∫
0

(
I(t−ω)

I∗
−1− ln

I(t−ω)

I∗

)
dω(32)

At infected steady state, we have

r−µ1 =
−s
T ∗

+ kV ∗+
r

Tm
(T ∗+ I∗)

r−µ2 =
−kT ∗V ∗

I∗
+

r
Tm

(T ∗+ I∗)

µ3V ∗ = Nµ2I∗


(33)

The derivative of U1(t) with respect to ’t’ along the solution of (30), we get

dL1

dt
=

(
T −T ∗

T

)
dT
dt

+

(
I− I∗

I

)
dI
dt

+
kT ∗V ∗

Nµ2I∗

(
V −V∗

V

)
dV
dt

= (T −T ∗)
(

s
T
− r

Tm
(T + I)− kV + r−µ1

)
+(I− I∗)

(
kT (t− τ1)V (t− τ1)

I
− r

Tm
(T + I)+ r−µ2

)
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+
kT ∗V ∗

Nµ2I∗

(
1− V ∗

V

)
{Nµ2I(t− τ2)−µ3V}

Using the equation (33), we get

=

{(
−s

T T ∗
(T −T ∗)2

)
− r

Tm
[(T −T ∗)+(I− I∗)]2

}
+{−kTV + kTV ∗}

+ kT ∗V ∗
(

1+
T (t− τ1)V (t− τ1)

T ∗V ∗
− I

I∗
− T (t− τ1)V (t− τ1)

T ∗V ∗
I∗

I
+

T
T ∗
− TV

T ∗V ∗

)
+

kT ∗V ∗

Nµ2I∗
Nµ2I (t− τ2)−

kT ∗V ∗

Nµ2I∗

(
V ∗

V

)
Nµ2I (t− τ2)

We can rewritten dL1
dt as,

=− (s− kT ∗V ∗)
[
(T −T ∗)2

T T ∗

]
− r

Tm
[(T −T ∗)+(I− I∗)]2

+ kT ∗V ∗
[(

3− T ∗

T
− TV

T ∗V ∗
+

T (t− τ1)V (t− τ1)

T ∗V ∗
− I

I∗
− T (t− τ1)V (t− τ1)

T ∗V ∗
I∗

I

)]
+ kT ∗V ∗

[(
T
T ∗

+
T ∗

T
−2
)]

+
kT ∗V ∗

Nµ2I∗
Nµ2I (t− τ2)−

kT ∗V ∗

Nµ2I∗

(
V ∗

V

)
Nµ2I (t− τ2)

Using the equation, (
s− kT ∗V ∗

T ∗

)
= (µ1− r)+

r
Tm

(T ∗+ I∗)

We get

dL1

dt
=−

{
(µ1− r)+

r
Tm

(T ∗+ I∗)
}[

(T −T ∗)2

T

]
− r

Tm
[(T −T ∗)+(I− I∗)]2

+ kT ∗V ∗
[(

3− T ∗

T
− TV

T ∗V ∗
+

T (t− τ1)V (t− τ1)

T ∗V ∗
− I

I∗
− T (t− τ1)V (t− τ1)

T ∗V ∗
I∗

I

)]
+

kT ∗V ∗

Nµ2I∗
Nµ2I (t− τ2)−

kT ∗V ∗

Nµ2I∗

(
V ∗

V

)
Nµ2I (t− τ2)

Since the L2(t) equation,

L2(t) = kT ∗V ∗
τ1∫

0

([
T (t−ω)V (t−ω)

T ∗V ∗
−1− ln

T (t−ω)V (t−ω)

T ∗V ∗

)]
dω

It is easy to see that, the derivative of L2(t)

dL2

dt
=

d
dt

{∫
τ1

0

[
T (t−ω)V (t−ω)

T ∗V ∗
−1− ln

T (t−ω)V (t−ω)

T ∗V ∗

]
dω

}
=

[
−T (t− τ1)V (t− τ1)

T ∗V ∗
+

TV
T ∗V ∗

+ ln
T (t− τ1)V (t− τ1)

T ∗V ∗
− ln

TV
T ∗V ∗

]
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Consider

ln
T (t− s)V (t− s)

T ∗V ∗
+ ln

T ∗V ∗

TV
= ln

(
T (t− s)V (T − s)I∗

T ∗V ∗I

)
+ ln

T ∗

V ∗
+ ln

(
IV ∗

I∗V

)

dL2

dt
=

[
−T (t− τ1)V (t− τ1)

T ∗V ∗
+

TV
T ∗V ∗

+ ln
T (t− τ1)V (t− τ1)I∗

T ∗V ∗I
+ ln

IV ∗

I∗V
+ ln

T ∗

T

]
Since L3(t) the equation,

L3(t) =

τ1∫
0

(
I(t−ω)

I∗
−1− ln

I(t−ω)

I∗

)
dω

The derivative of L3(t) along solution of system (32), we get,

dL3

dt
=

d
dt

[∫
τ2

0

(
I(t−ω)

I∗
−1− ln

I(t−ω)

I∗

)
ω

]
=

{
−I(t− τ2)

I∗
+

I
I∗

+ ln
I(t− τ2)

I∗
− ln

I
I∗

}
Consider,

ln
I(t− τ2)

I∗
− ln

I
I∗

= ln
I(t− τ2)V ∗

I∗V
− ln

IV ∗

I∗V

dL3

dt
=

[
−I(t− τ2)

I∗
+

I
I∗

+ ln
I(t− τ2)V ∗

I∗V
− ln

IV ∗

I∗V

]
Since

dL
dt

=
dL1

dt
+ kT ∗V ∗

dL2

dt
+ kT ∗V ∗

dL3

dt

We obtain,

dL
dt

=−
{
(µ1− r)+

r
Tm

(T ∗+ I∗)
}[

(T −T ∗)2

T

]
− r

Tm
[(T −T ∗)+(I− I∗)]2

+ kT ∗V ∗
[(

3− T ∗

T
− TV

T ∗V ∗
+

T (t− τ1)V (t− τ1)

T ∗V ∗
− I

I∗
− T (t− τ1)V (t− τ1)

T ∗V ∗
I∗

I

)]
+

kT ∗V ∗

Nµ2I∗
Nµ2I (t− τ2)−

kT ∗V ∗

Nµ2I∗

(
V ∗

V

)
Nµ2I (t− τ2)

+ kT ∗V ∗
[
−T (t− τ1)V (t− τ1)

T ∗V ∗
+

TV
T ∗V ∗

+ ln
T (t− τ1)V (t− τ1)I∗

T ∗V ∗I
+ ln

IV ∗

I∗V
+ ln

T ∗

T

]
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+ kT ∗V ∗
[
−I(t− τ2)

I∗
+

I
I∗

+ ln
I(t− τ2)V ∗

I∗V
− ln

IV ∗

I∗V

]

dL
dt

=−
{
(µ1− r)+

r
Tm

(T ∗+ I∗)
[
(T −T ∗)2

T

]}
− r

Tm
[(T −T ∗)+(I− I∗)]2

− kT ∗V ∗
[(

T ∗

T
−1− ln

T ∗

T

)]
− kT ∗V ∗[(

T (t− τ1)I∗V (t− τ1)

T ∗V ∗I
−1− ln

T (t− τ1)I∗V (t− τ1)

T ∗V ∗I

)]
− kT ∗V ∗

[(
I(t− τ2)V ∗

I∗V
−1− I(t− τ2)V ∗

I∗V

)]
dL
dt

=−
{
(µ1− r)+

r
Tm

(T ∗+ I∗)
[
(T −T ∗)2

T

]}
− r

Tm
[(T −T ∗)+(I− I∗)]2(34)

− kT ∗V ∗
[

g
(

T ∗

T

)]
− kT ∗V ∗

[
g
(

T (t− τ1)I∗V (t− τ1)

T ∗V ∗I

)]
ds

− kT ∗V ∗
[

g
(

I(t− τ2)V ∗

I∗V

)]
ds

Notice that T ∗, I∗,V ∗ > 0, we have that dL
dt ≤ 0. By theorem 5.3.1 in [4], solutions limit to

µ , the largest invarient subset L′(t) = 0. Using the similar argument as that in [34] and by

Lasealle’s on variable principle, the global asymptotic stability of E∗ follows. Therefore,

E∗(T ∗, I∗,V ∗) is globally asymptotically stable for any τ1,τ2 ≥ 0. This complete the proof. �

5. NUMERICAL SIMULATION

In order to check the main results of this paper, we use Matlab software to carry out some

numerical simulations. For the simulations, we use a similar set of parameter values as those in

[64].
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TABLE 1. Variables and Parameters for viral spread

Parameter Expansion Values

T Uninfected CD4+T cell population size 1000mm−3

I Infected CD4+T cell density 0

V Initial density of HIV RNA 10−3 mm−3

µ1 Natural death rate of CD4+T cells 0.2 day−1

µ2 Blanket death rate of infected CD4+T cells 1 day−1

µ3 Death rate of free virus 2.4 day−1

k Rate CD4+T cells become infected with virus 1×10−4mm3day−1

r Growth rate of CD4+T cell population 0.95day−1

N Number of virions produced by infected CD4+T cells Varies

Tmax Maximal population level of CD4+T cells 1500mm−3

s Source term for uninfected CD4+T cells 0.1 day−1 mm−3

T0 CD4+T cell population for HIV-negative persons 1000 mm−3

Analytical studies can never completed without numerical verification of the results. In this

section, to verify the validity of the theoretical result of this chapter, we perform numerical

simulation. Beside verification of our analytical findings these numerical solutions are very

important from practical point of view.

In order to illustrate the system dynamics we have used the default parameter values in Table 1.

The average CD4+T - cells count in healthy human body is 1000 cells mm3 [53] which is taken

as its initial value. Since there is no infected CD4+T - cells immediately after first effective

contact between a healthy CD4+T - cells and a human immunodeficiency virus, so that the

initial value of infected CD4+T - cells is taken to be zero. The initial viral load is considered as

1×10−3mm3. We therefore fix the initial value for each iteration as (1000,0,1×10−3). Thus,

the parameter values and initial condition of the system relate to real world scenarios.

First we have simulated the non - delayed system (1) with τ1 = τ2 = 0. For the parameter

values given in Table 1. The number of infectious viruses released N, varies in the literature,

here we first take N = 60. From the ODE model, then all the conditions of lemma (3.1) are
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satisfied and the infected steady state E is asymptotically stable. Figure 4 show that trajectories

of system (1) approach to steady state. If we increase the value of N, then the numbers of

uninfected CD4+T - cells and vir uses are decreases and the number of infected cells increases

substantially, but the stability of the steady state does not change. We note that though the

dynamics of system (1) are very similar to that of Perelson, Krichner and De Boer model [3],

the actual steady state values in our model (1) are different. Our bifurcation value Ncrit is lower,

the equilibrium level of healthy CD4+T - cells is lower and the equilibrium level of free virus is

higher than that in Perelson Krichner and De Boer model [3]. Thus the infected steady state E is

asymptotically stable for all τ1, τ2 > 0. Take N = 60,τ1 = τ2 = 0.1 and other parameter values

given in Table 1. Numerical solution show that the infected steady state E is asymptotically

stable (Figure 1).
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FIGURE 1. The ODE Model: Local asymptotic stability of the infected steady

state E, τ1,τ2 = 0, N = 60 and all other parameters are given in Table 1
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FIGURE 2. Local asymptotic stability of the infected steady state E, τ1 = τ2 =

0.1, N = 60 and all other parameters are given in Table 1



24 A. ANU PRIYADHARSHINI, K. KRISHNAN



MATHEMATICAL ANALYSIS OF HIV INFECTION OF CD4+ T-CELLS 25

FIGURE 3. Local asymptotic stability of the infected steady state E, τ1 = 1,τ2 =

0.1, N = 60 and all other parameters are given in Table 1
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FIGURE 4. Local asymptotic stability of the infected steady state E, τ1 =

0.1,τ2 = 3, N = 60 and all other parameters are given in Table 1
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FIGURE 5. Periodic solution bifurcated from the infected steady state E, τ1 =

1.5, τ2 = 3 and all other parameters are given in Table 1
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In Figure 3, we plot the time series solution of the delayed system (2) for τ1 = 0.1 & τ2 = 3,

with N = 60 (Figure 3). Following the analytical results, we observe that the larger delay τ2 can

not produce any oscillations and the system populations remain stable for all values of τ1 < τ2.

The only difference between the two cases is that the viral blip occurs earlier with high peak

when τ2 is smaller and it occurs later with low peak if the delay is higher (τ2 = 3). Further

under the condition of τ1 = 1 when τ2 = 0.1, E is asymptotically stable (see Figure 2). while at

τ1 = 1.21 and τ2 = 0.1, E loses stability and the Hopf bifurcation occurs. From Figure 3.5, the

periodic solution bifurcated from the infected steady state E , when τ1.5, τ3 > 0. Take N = 60,

and other parameter values given in table 1. Numerical solution show that the infected steady

state E is asymptotically unstable.

6. CONCLUSIONS

In this work, we have proposed a delayed model to describe the dynamics of HIV

infection of CD4+ T-cells by taking two independent delays, we first proved that proposed

model is mathematically and virologically well-posed. In addition, we have proved that the

disease-free equilibrium E0 is globally asymptotically stable. If the critical number Ncrit ≤ N,

which means that the HIV particals are eradicated. When Ncrit > N, E0 become unstable and

there occurs the HIV infection equilibrium E∗ which is globally asymptotically stable.

Finally we investigate the delay induced oscillations could occur via instability. Numer-

ical simulations shows that the bifurcation is super critical and the bifurcating periodic solution

is absolutely asymptotically stable. Sufficient conditions are established for the local asymp-

totic stability of the uninfected steady state and the infected steady state. The influence of the

time delays in the stability of equilibrium states is discussed. We shared that the local stability

of the uninfected steady state is discrete of the size of the delay; on the other hand, we proved

that increasing the delay can destabilize the infected steady state leading to a Hopf bifurcation

periodic solutions.
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