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Abstract. The Adomin Decomposition Method (ADM) is used to solve differential equations, so in this study

we used (ADM) to solve second order ordinary differential equations with singular initial value problem then, the

equation was given a generalization.
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1. INTRODUCTION

Second-order ordinary differential equations are one of the most widely studied classes of

differential equations in mathematics, physical science, and engineering [5]. Ordinary differ-

ential equations with singular points may have solutions which are not analytic at those points,

so series solution might not exist there [6]. This is because the solution may not be analytic at

point and hence without having a series expansions about the point. In stead, we must use a

more general series expansions. A differential equations may only have few singular points, but

solution behavior near these singular points is important. The Adomian decomposition method

has been paid much attention in the recent years in applied mathematics, and in the field of

∗Corresponding authors

E-mail addresses: samah2414@gmail.com, yahya217@yahoo.com

Received November 02, 2021
1



2 SAMAH SAEED SALIM, YAHYA QAID HASAN

series solution particularly. Moreover, it is a fact that this method is powerful, effective, as well

easily solves many types of linear or nonlinear ordinary or partial differential equations, and

integral equations [8, 2, 3, 4]. Many researchers are used this method to solve many kind of

the differential equations such as Emden Flower Equation [7], first order ordinary differential

equation [8]. We suppose the second ordinary differential equation with singular points as form:

(1) y′′+(2+
2
x
)y′+(1+

2
x
)y = z(x,y).

With initial conditions y(0) = A,y′(0) = B, where A, B are constants and z(x,y) is known func-

tion.

2. DESCRIBE THE USER’S WAY

The equation (1) can be written as follow :

(2) Ly = z(x,y),

where

(3) L(.) = x−1e−x d2

dx2 xex(.).

And we have the inverse operator L−1

(4) L−1(.) = x−1e−x
∫ x

0

∫ x

0
xex(.)dxdx.

when we take L−1 for both sides of equation (2) we get

(5) y = φ(x)+L−1z(x,y),

with conditions

y(0) = A,y′(0) = B.

The (ADM) is given the solution as series

(6) y(x) =
∞

∑
0

yn(x),

and

(7) z(x,y) =
∞

∑
0

An,
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the Adomian polynomials An are first constructed by Adomian, it gives general formula to

determine the values of An which gives the terms as:

A0 =V (y0),

A1 = y1V ′(y0),

A2 = y2V ′(y0)+
1
2!

y2V ′′(y0), ...

Now in compensation (6) and (7) in to (5), we get

∞

∑
n=0

yn(x) = φ(x)+L−1
∞

∑
n=0

An,

the yn(x) can by found as following :

(8) y0 = φ(x)

yn+1 =−L−1An,n≥ 0,

which gives

y0 = φ(x),

y1 =−L−1A0,

y2 =−L−1A1,

y3 =−L−1A2.

[4, 2].

Example(1): Consider the following equation

y′′+(2+
2
x
)y′+(1+

2
x
)y = x2 +6x+6+ ex2

− ey,

y(0) = 0 and y′(0) = 0.

Now the equation write it as

Ly = x2 +6x+6+ ex2
− ey,

when we take L−1 to the last equation we get

y = φ(x)+L−1(x2 +6x+6+ ex2
)−L−1(ey),
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and the φ(x) = 0. Now the first value of y is

y0(x) = L−1(x2 +6x+6+ ex2
),

the non-linear part is

yn+1(x) =−L−1(An),n≥ 0.

The Adomian polynomials for non-linear part ey are

A0 = eyo,

A1 = y1ey0,

Now we give the first terms

(9) y0 =
7x2

6
− x3

12
+

3x4

40
− x5

45
,

(10) y1 =−L−1(A0) =−
x2

6
+

x3

12
− x4

12
− x5

36
,

(11) y2 =−L−1(A1) =
x4

120
− x5

180
,

from(9), (10) and (11) we obtain the solution in a series form

(12) y(x) = y0 + y1 + y2 = x2− x4

60
+

x5

90
.
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Table: The comparision between exact solution y(x) = x2 and ADM.

x Exact ADM Absolut error

0.0 0.000 0.00000000 0.00000000

0.1 0.01 0.00999844 0.00000156

0.2 0.04 0.0399769 0.0000231

0.3 0.09 0.089892 0.000108

0.4 0.16 0.159687 0.000313

0.5 0.25 0.249306 0.000694

0.6 0.36 0.350704 0.009296

0.7 0.49 0.487866 0.002134

0.8 0.64 0.636814 0.003186

0.9 0.81 0.805626 0.004374

1.0 0.1 0.994444 0.005556

——– Exact ——– ADM

FIGURE 1. The exact solution y = x2 and the ADM solution y = ∑
2
n=0 yn(x).

3. GENERALIZATION

In this section, we will genralize equation (1) to the following form

(13)
n

∑
r=0

(
n
r

)
(

r
x
+1)y(n−r) = z(x,y).

With initial conditions y(0) = A,y′(0) = B,y′′(0) = C, ...y(n)(0) = D. Where A, B, C, D are

constants and z(x,y) is a known function.
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3.1. Theorem: We have the equation (13) if m ∈ N

x−1e−x dm

dxm xex(y) =
m

∑
r=0

(
m
r

)
(

r
x
+1)y(m−r).

Proof : We prove that by using mathematical induction :

When m = 1 then the equation is written as

x−1e−x d
dx

xex(y) =
1

∑
r=0

(
1
r

)
(

r
x
+1)y(1−r),

then both sides give the same equations

y′+(1+
1
x
)y = y′+(1+

1
x
)y,

then the equation is hold.

Now we must prove the following formula

x−1e−x dm+1

dxm+1 xex(y) =
m+1

∑
r=0

(
m+1

r

)
(

r
x
+1)y(m+1−r).

Suppose that

x−1e−x dm

dxm xex(y) =
m

∑
r=0

(
m
r

)
(

r
x
+1)y(m−r),

then

x−1e−x dm+1

dxm+1 xex(y) = x−1e−x dm

dxm (exy+ xexy+ xexy′),

= x−1e−x dm

dxm (exy)+ x−1e−x dm

dxm (xexy)+ x−1e−x dm

dxm (xexy′),

=
1
x

m

∑
r=0

(
m
r

)
y(m−r)+

m

∑
r=0

(
m
r

)
(

r
x
+1)y(m−r)+

m

∑
r=0

(
m
r

)
(

r
x
+1)y(m+1−r),

=
1
x

m

∑
r=1

(
m

r−1

)
y(m+1−r)+

(−1)
x

m

∑
r=1

(
m

r−1

)
y(m+1−r)+

m

∑
r=1

(
m

r−1

)
(

r
x
+1)y(m+1−r)

+y(m+1)+
m

∑
r=1

(
m
r

)
(

r
x
+1)y(m+1−r)

,

= y(m+1)+
m

∑
r=1

[

(
m

r−1

)
+

(
m
r

)
](

r
x
+1)y(m+1−r),

= y(m+1))+
m

∑
r=1

(
m+1

r

)
(

r
x
+1)y(m+1−r),

=
m

∑
r=0

(
m+1

r

)
(

r
x
+1)y(m+1−r).
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Therefore

x−1e−x dm+1

dxm+1 xex(y) =
m

∑
r=0

(
m+1

r

)
(

r
x
+1)y(m+1−r).

4. DESCRIBE THE USER’S WAY

The equation (13) can be written as follow:

(14) Ly = z(x,y),

by using differential operator

(15) L(.) = x−1e−x dn

dxn xex(.).

And we have the inverse operator L−1

(16) L−1(.) = x−1e−x
∫ x

0

∫ x

0

∫ x

0
...
∫ x

0
xex(.)dxdxdx...dx.

when we take L−1 for both sides of equation (15) we get

(17) y = φ(x)+L−1z(x,y).

[4, 2]

Example(2). Consider the following equation

y′′′′+(4+
4
x
)y′′′+(6+

12
x
)y′′+(4+

12
x
)y′+(1+

4
x

y) =
16ex

x
(2+ lny).

And the condtions y(0) = 1,y′(0) = 1 and y′′(0) = 1.

The equation can be written as

Ly =
16ex

x
(2+ lny).

When we take L−1 to both sides we get

y = φ(x)+L−1(
16ex

x
(2+ lny)).

And φ(x) = e−x(1+2x+2x2). We obtain

y0(x) = φ(x)+L−1(
32ex

x
)

yn+1(x) =−L−1(An),n≥ 0.
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The Adomian polynomials for non-linear part Z(x,y) = 16ex

x Ln(y) are

A0 =
16ex

x
Ln(y0),

A1 =
y1

y0
(
16ex

x
),

which gives the first term

(18) y0 = 1+ x+
x2

2
+

x3

6
− 11x4

120
+

19x5

360
− 73x6

5040
+

17x7

5040
,

(19) y1 =−L−1(A0) =
2x4

15
− 2x5

45
,

(20) y2 =−L−1(A1) =
2x7

1575
,

from(18), (19) and (20) we obtain the solution in a series form

(21) y(x) = y0 + y1 + y2 = 1+ x+
x2

2
+

x3

6
+

x4

24
+

x5

120
− 73x6

5040
+

13x7

2800
.

Table: The comparision between exact solution y(x) = ex and ADM .

x Exact ADM Absolut error

0.0 0.000 0.000000000 0.000000000

0.1 1.10517 1.10517 0.00000

0.2 1.2214 1.2214 0.0000

0.3 1.34986 1.34985 0.00001

0.4 1.49182 1.49177 0.000005

0.5 1.64872 1.64851 0.00021

0.6 1.82212 1.8215 0.00062

0.7 2.01375 2.01225 0.0015

0.8 2.22554 2.22231 0.00323

0.9 2.4596 2.45328 0.00632
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s

——– Exact ——– ADM

FIGURE 2. The exact solution y = ex and the ADM solution y = ∑
2
n=0 yn(x).

5. CONCLUSION

In this work, we noticed the easy way for finding the approximate solutions to exact solutions,

and we found its generalization and proved the generalization by using mathematical induction.

we discussed some examples to understand the method.
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