
Available online at http://scik.org

J. Math. Comput. Sci. 2022, 12:117

https://doi.org/10.28919/jmcs/7003

ISSN: 1927-5307

A MATHEMATICAL SIMULATION AND OPTIMAL CONTROL OF A VIH MODEL
WITH DIFFERENT INFECTIOUS LEVEL

AYOUB SAKKOUM∗, MUSTAPHA LHOUS, EL MOSTAFA MAGRI

Fondamental and Applied Mathematics Laboratory (FAML), Department of Mathematics and Computer Science,

Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco

Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we consider a mathematical model of propagation HIV disease. We propose a case with three

different levels of infection. The model was analyzed using the stability theory of a nonlinear differential equation.

We describe the equilibrium point of the model and the basic reproduction number. This equilibrium point is both

locally and globally stable under certain conditions. A control problem is formulated, we use an optimal control

strategies to reduce the number of deaths and to reduce the spread of HIV. Some results concerning the existence and

the characterization of the optimal control will be given. The Pontryagin’s maximum principle is used to characterize

the optimal control. We obtained an optimality system that we sought to solve numerically by an iterative discrete

schema that converges following an appropriate test similar the one related to the forward-backward sweep method.

Numerical simulations are given to illustrate the obtained results.
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1. INTRODUCTION

HIV is a virus that exists and spreads in both developed and developing countries, but with a

different rate. It is transmitted from person to person in different ways: sexual transmission, shar-

ing of needles by users, intravenous drug use, mother-to-child transmission (vertical transmission),

and transmission by blood transfusion contaminated. To slow the spread of HIV there are many

strategies include voluntary HIV testing, use of condoms and awareness programs to promote safer

sex, circumcision, use of vaginal microbicides and the use of antiretroviral (ARV) drugs. There is

no safe and effective vaccine against HIV yet.

HIV is one of the deadly diseases, causing millions of deaths in the word. More than 38 million

people worldwide are living with HIV in 2019. At the end of 2019 and according to estimates by

the Ministry of Health 21,500 people were living with HIV in Morocco, of which 6,000 (22%) do

not yet know their HIV status. On the 850 new HIV infections recorded in Morocco in 2019, 34%

were among those aged 15-24. The data also show 300 deaths. In detail, 67% of new infections

occur in networks of key populations at higher risk of infection. 70,7% of women are infected by

their spouse. Statistics reveal a low prevalence of HIV in Morocco among the general population

(0,08%), 1,7% among "female workers", 5,9% on average among homosexuals, 7,1% on average

among people who inject drugs. Three regions account for almost 65% of notifed cases, namely

Sous-Massa (25%), Marrakech-Safi (21%) and Casablanca-Settat (20%).

The importance of creating a mathematical model of HIV is to provide an explanation and interpre-

tation of the spread of HIV, given that it is an invisible and contagious virus. Based on this model,

we can judge the approved procedures mentioned by many analysts and specialist physicians and

pharmacists are sufficient to limit the spread of this virus. Many HIV models have been discussed

by several authors [7], [2], [8], [9], [12], [13], [14], [18], [15], [16], [17], [19], [21]. J. Silva [19]

has proposed a epidemiological model of HIV/AIDS transmission including Pre-exposure prophy-

laxis PrEP. In the same context Zhiming Li [12] established a susceptible-exposed in the latent

stage-infectious (SEI) mode to sketch the evolution of epidemic. A vivo deterministic model has

studied by Purity Ngina and Al [14], they have give a various HIV treatment strategies. Moham-

mad Shirazian [18] has proposed a mathematical method implemented to formulate guidelines for
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clinical testing and monitoring of HIV/AIDS disease.

We proposed a mathematical HIV model that identifies and describes the spread of HIV. Discrete

modeling is more realistic because HIV data are collected discreetly, but we rely on a continuous

model because it is less complex to treat. In this paper, we formulated a system of HIV disease,

assuming three, different and varying infections cases.

Symptoms of HIV/AIDS vary depending on the stage of infection. The first case is the primary

infection (acute HIV). However, the amount of virus in your bloodstream (viral load) is very high

at the same time. The virus infects a large number of TCD4+ cells and reproduces rapidly. As

a result, infection spreads during the initial infection more easily than during the next stage. The

second case is the secondary state of infection where the immune system deteriorates. As the virus

continues to multiply and destroy immune cells, cells in the body that help fight germs may de-

velop mild infections or chronic signs. The third case is the advanced state of the disease where

the immune system breaks down and the individual develops a loss of immunity to many other

pathogens. The methods adopted by the Moroccan Ministry of Health in dealing with this danger-

ous epidemic are good methods and give good results, as the World Health Organization stated that

the proportion of people infected with HIV and those infected with AIDS does not exceed 0.003

globally. Thus, we conclude that most people infected with HIV do not develop AIDS. If HIV is

not treated, it will turn into AIDS. With AIDS, your immune system is severely damaged. You’re

more likely to develop opportunistic infections or opportunistic cancers, which usually don’t affect

people with a healthy immune system.

In this work, we will study an HIV model with its three cases of infection and we assume that the

states of the patient can deteriorate and pass from one state to another and we will assume that the

state of an infected can also improve and change the infection level, for example from an advanced

state to a secondary state or from a secondary state to a primary state.

Optimal control theory is well used as an available and effective option for decision-makers to de-

velop and simulate control strategies, see [7], [1], [4], [11], [18], [19]. We use an optimal control

strategy to control the spread of infectious diseases by setting four controls. The first two controls
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are introduced to reduce the deterioration of patient’s condition and the others controls are consid-

ered for improve the patient’s condition. The two controls are considered in order to minimize the

number of death and infected in critical cases, increase the number of recovered individuals and

this with an optimal cost.

The paper is organized as follows: In section 2, the HIV model is described and basic properties

are given. Local stability analysis of the HIV disease-free equilibrium is presented in section 3.

The analysis of the optimal control strategies is presented, we first show the existence of solutions

of the system, after that we will prove the existence of optimal control in section 4. In section 5,

we give the numerical method and the simulation results. Finally a conclusion is summarized in

section 6.

2. A MATHEMATICAL MODEL AND BASIC PROPERTIES

2.1. Structure of the model. We propose a continuous model SIIQR to describe the interaction

within a population where the disease HIV exists. where S(t), I1(t), I2(t),Q(t),R(t) are the number

of susceptible population, infective population step 1, infective population step 2, infective popu-

lation under the stone , recovered population,respectively.

We assume that the total size of population N(t) is constant, in the rest of paper i.e,

S(t)+ I1(t)+ I2(t)+Q(t)+R(t) = N(t). t ≥ 0

The graphical representation of the proposed model is shown in Figure (1).

Figure (1): The schematic diagram of the HIV model
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We consider the following system of five non-linear differential equations

dS
dt = Λ−µS− (β1I1 +β2I2)S

dI1
dt = β1I1S+δ2I2−δ1I1− γ1I1−µI1−σ1I1

dI2
dt = β2I2S+δ4Q+δ1I1− γ2I2−δ2I2−δ3I2−µI2−σ2I2 (1.1)
dQ
dt = δ3I2− γ3Q−δ4Q−µQ−σ3Q
dR
dt = σ1I1 +σ2I2 +σ3Q−µR

where S(0)≥ 0; I1(0)≥ 0; I2(0)≥ 0; Q(0)≥ 0 and R(0)≥ 0 are the given initial states.

Where Λ represents new birth rate in susceptible human population, β1 represents the transmis-

sion coefficient from susceptible individuals to infected step 1 and β2 represents the transmission

coefficient from susceptible individuals to infected step 2 ? µ represents the natural death rate in

all compartments. δ1 represents the rate of transmission of infected step 1 to infected step 2. δ2

represents the rate of transmission of infected step 2 to infected step 1. δ3 represents the rate of

transmission of infected step 2 to infected hospitalized. δ4 represents the rate of transmission of

hospitalized to infected step 2. σ1,σ2 and σ3 represents the transmission coefficient of infected

step 1 ,infected step 2 and the hospitalized cases to the recovered cases. γ1, γ2 and γ3 respectively

represent the death rate of infected step 1 ,infected step 2 and the hospitalized cases.

For the rest of this paper, we will consider the system (1.1) in its following form

dS
dt = Λ−µS− (β1I1 +β2I2)S

dI1
dt = β1I1S+δ2I2−m1I1

dI2
dt = β2I2S+δ4Q+δ1I1−m2I2 (1.2)
dQ
dt = δ3I2−m3Q
dR
dt = σ1I1 +σ2I2 +σ3Q−µR

where 
m1 = δ1 + γ1 +µ +σ1

m2 = γ2 +δ2 +δ3 +µ +σ2

m3 = γ3 +δ4 +µ +σ3.

2.2. Basic properties of the model.
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Proposition 1. The set

Ω = {(S, I1, I2,Q,R) ∈ R5
+,S, I1, I2,Q,R > 0 and S+ I1 + I2 +Q+R <

Λ

µ
}

is a positively invariant and attracting region for the disease transmission model given by our

system with initial conditions.

Proof. Summing up the five equations in our system and denoting

S(t)+ I1(t)+ I2(t)+Q(t)+R(t) = N(t)

we get
dN(t)

dt = Λ−µ(S+ I1 + I2 +Q+R)− γ1I1− γ2I2− γ3Q ≤ Λ−µN(t)
dN(t)

dt +µN(t) ≤ Λ

Now integrating both sides of the above inequality and using the theory of differential inequality

, we obtain

0 < N ≤ N(0)e−µt +
Λ

µ
(1− e−µt).

Clearly, 0 < N ≤ Λ

µ
as t −→ ∞ . if N(0) ≤ Λ

µ
, N(t) ≤ Λ

µ
∀t ≥ 0.Thus, the set Ω is positive invari-

ant,i.e., all initial solutions belong to Ω remain in Ω for all t > 0.

2.2.1. Positivity of states.

Theorem 1. If S(0)≥ 0, I1(0)≥ 0, I2(0)≥ 0, Q(0)≥ 0 and R(0)≥ 0, then the solutions of system

equation (1.2) S(t), I1(t), I2(t), Q(t) and R(t) are positive for all t > 0.

Proof. From the first equation of the system (1.2), we have

dS(t)
dt

= Λ−µS(t)− (β1I1(t)+β2I2(t))S(t)

dS(t)
dt

= Λ−A(t)S(t)(1)

where

A(t) = µ +(β1I1 +β2I2)
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We multiply equation (1) by exp(
∫ t

0 A(s)ds),we find

dS(t)
dt

exp(
∫ t

0
A(s)ds) = (Λ−A(t)S(t))exp(

∫ t

0
A(s)ds)

dS(t)
dt

exp(
∫ t

0
A(s)ds)+A(t)S(t)exp(

∫ t

0
A(s)ds) = Λexp(

∫ t

0
A(s)ds)

Therefore

d
dt
[S(t)exp(

∫ t

0
A(s)ds)] = Λexp(

∫ t

0
A(s)ds).

Taking integral with respect to s from 0 to t, we get

(2) S(t)exp(
∫ t

0
A(s)ds)− s(0) = Λ

∫ t

0
(exp

∫ w

0
A(s)ds)dw.

Multiplying the equation (2) by exp(−
∫ t

0 A(s)ds),we get

S(t)− s(0)exp(−
∫ t

0
A(s)ds) = Λexp(−

∫ t

0
A(s)ds).

∫ t

0
(
∫ w

0
A(s)ds)dw

then,

S(t) = S(0)exp(−
∫ t

0
A(s)ds)+Λexp(−

∫ t

0
A(s)ds).

∫ t

0
(
∫ w

0
A(s)ds)dw≥ 0.

So, the solution S(t) is positive.

Similarly, from the others equations of system (1.2), we have

I1(t)≥ I1(0)exp(−(β1S(t)−m1)) ≥ 0

I2(t)≥ I2(0)exp(−(β2S(t)−m2)) ≥ 0

Q(t)≥ Q(0)exp(m3) ≥ 0

R(t)≥ R(0)exp(µ) ≥ 0.

Therefore, we can see that the solutions S(t); I1(t); I2(t);Q(t) and R(t) of the system (1.2) are

positive for all t ≥ 0. This completes the proof.
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3. STABILITY ANALYSIS OF THE MODEL

3.1. Equilibrium point. Free equilibrium point of the spread dynamic of HIV disease is

E0 = (S, I1, I2,Q,R) = (
Λ

µ
,0,0,0,0)

3.2. Reproduction number analysis. By using the concepts of next generation matrix and re-

production number presented in [5, 20], we compute the reproduction number of the system (1.2).

Where F =

 β1I1S

β2I2S

 and V =

 δ2I2−m1I1

δ4Q+δ1I1−m2I2


Suppose f is Jacobian matrix from F and v is Jacobian matrix from V . So, at the free equilibrium

disease E0 = (Λ

µ
,0,0,0,0) obtained :

f =

 β1
Λ

µ
0

0 β2
Λ

µ

 and v =

 m1 −γ2

−γ1 m2


the inverse matrix v−1 = 1

m1m2−γ1γ2

 m2 γ2

γ1 m1

 and ζ = 1
m1m2−γ1γ2

than ,

f v−1 = ζ

 β1m2 β1γ2

β2γ1 β2m1


for,

det( f v−1−λ I) = ζ ((β1m2−λ )(β2m1−λ )− (β1γ2β2γ1)) = 0.

We obtained R0 from the absolute biggest of eigenvalues from fv−1 so

R0 =
ζ

2
((β1m2 +β2m1)+

√
(β1m2−β2m1)2 +4β1β2γ1γ2).

? If R0 < 1 it means that every individual infected can transmit the disease to less than one new

patients so that HIV sickness cannot have developed in the population.

? If R0 > 1 it means that individuals infected can transmit the disease to more than new one patients

so that HIV sickness can spreading in the population.
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3.3. Local stability analysis of the HIV disease-free equilibrium.

Theorem 2. the system (1.2) is locally asymptotically stable at the free aquilibrium point E0 =

(Λ

µ
,0,0,0,0) if R0 < 1 .Whereas, E0 = (Λ

µ
,0,0,0,0) is unstable if R0 > 1.

Proof. To proof the stability from the free equilibrium of disease E0, we proced to the linearization

of system by determining the Jacobian matrix.

The Jacobian matrix of E0 follows:

J0 =

 β1
Λ

µ
−m1 γ2

γ1 β2
Λ

µ
−m2


and

det(J0−λ I) =

 β1
Λ

µ
−m1−λ γ2

γ1 β2
Λ

µ
−m2−λ

 .

Stability at the point of free equilibrium disease can be seen from the value of the eigen at matrix

jacobian, if all the parts of the value of real eigen Jacobian matrix are negative.so E0 locally

asyptotically stable.

The eigenvalue of the Jacobien matrix are :

λ1 =

Λ

µ
(β1 +β2)− (m1 +m2)−

√
(Λ

µ
(β1−β2)−m1 +m2)2 +4γ1γ2

2

λ2 =

Λ

µ
(β1 +β2)− (m1 +m2)+

√
(Λ

µ
(β1−β2)−m1 +m2)2 +4γ1γ2

2
.

If R0 < 1, then

ζ

2
((β1m2 +β2m1)+

√
(β1m2−β2m1)2 +4β1β2γ1γ2)< 1

⇒ ζ

2 β1m2 < 1 , ζ

2 β2m1 < 1 and ζ 2

4 ((β1m2−β2m1)
2 +4β1β2γ1γ2)< 1.
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We have

� λ1 < 0 ⇒ Λ

µ
(β1 +β2)− (m1 +m2)−

√
(
Λ

µ
(β1−β2)−m1 +m2)2 +4γ1γ2 < 0

⇒ Λ

µ
(β1 +β2)− (m1 +m2)<

√
(
Λ

µ
(β1−β2)−m1 +m2)2 +4γ1γ2

⇒ Λ

µ
(β1 +β2)m2− (m1m2 + γ1γ2)> 0.

T hen, i f
Λ

µ
(β1 +β2)− (m1 +m2)< 0 ⇒ λ1 < 0

andi f
Λ

µ
(β1 +β2)− (m1 +m2)> 0 ⇒ Λ

µ
(β1 +β2)−m1 > m2

⇒ 4
Λ

µ
(β1 +β2)m2−4m1m2 +4γ1γ2 > 0.

So the reality of an eigenvalue λ1 is negative

Wehave� λ2 < 0 ⇔ Λ

µ
(β1 +β2)− (m1 +m2)+

√
(
Λ

µ
(β1−β2)−m1 +m2)2 +4γ1γ2 < 0

⇔ (
Λ

µ
(β1−β2)−m1 +m2)

2 +4γ1γ2 < ((m1 +m2)−
Λ

µ
(β1 +β2))

2

⇔ Λ

µ
(β2m1 +β1m2−

Λ

µ
β1β2)−

Λ

µζ
< 0

if Λ

µ
(β1 +β2)− (m1 +m2)< 0⇒ Λ

µ
(β1 +β2)< m1 +m2 and if R0 < 1, then

ζ

2
((β1m2 +β2m1)+

√
(β1m2−β2m1)2 +4β1β2γ1γ2) < 1

((β1m2 +β2m1)+
√
(β1m2−β2m1)2 +4β1β2γ1γ2) <

2
ζ

(β1m2−β2m1)
2 +4β1β2γ1γ2 <

4
ζ 2 −

4
ζ
(β1m2 +β2m1))

2 +(β1m2 +β2m1)
2

β1β2(γ1γ2−m1m2) <
1
ζ
(

1
ζ
− (β1m2 +β2m1))

Λ

µ
(β2m1 +β1m2−

Λ

µ
β1β2)−

Λ

µζ
< 0(3)

It is easy to see that if R0 < 1 ⇒ λ2 < 0
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3.4. Global stabilty of the HIV disease-free equilibrium. To show that the system (1.2) is

globally asymptotically stable, we use the Lyapunov function theory for the HIV disease free

equilibrium.

Theorem 3. The system (1.2) at the free equilibruim E0 = (Λ

µ
,0,0,0,0) is globally asymptotically

stable if R0 ≤ 1 and unstable otherwise.

Proof. Let the following Lyapunov function:

V : ∆−→ R

V (I1, I2,Q) =
Λ

µ
((m1−

Λ

µ
β1)(I2 +Q)+δ1I1)

where

∆ = {(I1, I2,Q) ∈Ω/I1 > 0, I2 > 0,Q > 0}

Then, the time derivative of the Lyapunov function is given by:

dV (I1, I2,Q)

dt
=

Λ

µ
((m1−

Λ

µ
β1)(β2SI2 +δ1I1 +δ4Q−m2I2 +δ3I2−m3Q)+β1SI1 +δ2I2−m1I1)

dV (I1, I2,Q)

dt
=

Λ

µ
(β1m2 +β2m1−

Λ

µ
β1β2−

1
ζ
)SI2−

Λ

µ
δ1β1(S0−S)I1−

Λ

µ
(m1−

Λβ1

µ
)(m3−δ4)Q

− Λ

µ
((m1−

Λβ1

µ
)(m2−δ3)+(S(β1m2−

Λ

µζ
)−δ1δ2))I2

from the equation (3)

(β1m2 +β2m1−
Λ

µ
β1β2−

1
ζ
)< 0 f or R0 < 1

than

dV (I1, I2,Q)

dt
< 0 f or (β1m2 +β2m1−

Λ

µ
β1β2−

1
ζ
)< 0.

Note dV (I1,I2,Q)
dt = 0 if and only if I1 = 0, I2 = 0 and Q= 0. Hence, by Lasalle’s invariance principle,

E0 is globally asymptotically stable in Ω.
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4. THE OPTIMAL CONTROL PROBLEM

As all we know that the VIH exist from a long time ago. Every day the scientists try and try

to find the efficacy treatment, but we still haven’t found the medicine yet. So we have to control

the VIH to reduce the number of patients. In our paper we will propose the controls u1 and v1 are

introduced to minimize deterioration of patients condition and u2 and v2 to improve the condition

of patients.

Figure (2): The schematic diagram of the HIV model with the optimal control .

So the mathematical controled system is given by following difference equations and schemati-

cally given by figure 2.



dS
dt = Λ−µS− (β1I1 +β2I2)S

dI1
dt = β1I1S+(1+u2)δ2I2− (1−u1)δ1I1− γ1I1−µI1−σ1I1

dI2
dt = β2I2S+(1+ v2)δ4Q+(1−u1)δ1I1− γ2I2− (1+u2)δ2I2− (1− v1)δ3I2−µI2−σ2I2 (1.3)
dQ
dt = (1− v1)δ3I2− γ3Q− (1+ v2)δ4Q−µQ−σ3Q
dR
dt = σ1I1 +σ2I2 +σ3Q−µR

and the problem is to minimize the objective functional

J(u1,u2,v1,v2) = AI1(T )+BI2(T )+
∫ T

0
(AI1(t)+BI2(t)+

M
2

u2
1 +

N
2

u2
2 +

K
2

v2
1 +

F
2

v2
2)dt
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In other words, we seek the optimal controls u∗1, u∗2, v∗1 and v∗2 such that

J(u∗1,u
∗
2,v
∗
1,v
∗
2) = minJ(u1,u2,v1,v2) (u1,u2,v1,v2) ∈U

where U is the set defined by

U = { (u1,u2,v1,v2) ∈ [0,1]4 / 0≤ u1min ≤ u1 ≤ u1max ≤ 1, 0≤ u2min ≤ u2 ≤ u2max ≤ 1,

0≤ v1min ≤ v1 ≤ v1max ≤ 1, 0≤ v2min ≤ v2 ≤ v2ax ≤ 1}

4.1. The optimal control: Existence. We first show the existence of solutions of the system,

after that we will prove the existence of optimal control.

Theorem 4. Consider the control problem with the system. There are four optimal controls

(u∗1,u
∗
2,v
∗
1,v
∗
2) ∈U4 such that

J(u∗1,u
∗
2,v
∗
1,v
∗
2) = min(J(u1,u2,v1,v2)) (u1,u2,v1,v2) ∈U

Proof. We will use Fleming and Rishel [6] to proof the existence of the optimal control :

? It follows that the set of controls and corresponding state variables is not empty. we will use a

simplified version of an existence result.

? The control space

U = {(u1,u2,v1,v2) ∈ [0,1]4 / 0≤ u1min ≤ u1 ≤ u1max ≤ 1, 0≤ u2min ≤ u2 ≤ u2max ≤ 1,

0≤ v1min ≤ v1 ≤ v1max ≤ 1, 0≤ v2min ≤ v2 ≤ v2max ≤ 1}

is convex and closed by definition

? J(u1,u2,v1,v2) is convex in U

? All the right-hand sides of equations of system are continuous, bounded above by a sum of

bounded control and state, and can be written as a linear function of u1, u2, v1, and v2 with

coefficients depending on the time and state.

? The integrand in the objective functional,

AI1(t)+BI2(t)+
M
2

u2
1 +

N
2

u2
2 +

K
2

v2
1 +

F
2

v2
2,
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is clearly convex on U .

? It rests to show that there exist constants ζ1,ζ2,ζ3,ζ4,ζ5 > 0 and ζ such that

AI1(t)+BI2(t)+
M
2

u2
1 +

N
2

u2
2 +

K
2

v2
1 +

F
2

v2
2

satisfait

The state variables are being bounded; let ζ1 = in ft∈[0,T ](AI2(t)+BQ(t)), ζ2 =M, ζ3 =N, ζ4 =K,

ζ5 = F and ζ = 2, then, it follows that

AI1(t)+BI2(t)+
M
2

u2
1 +

N
2

u2
2 +

K
2

v2
1 +

F
2

v2
2 ≥ ζ1 +ζ2 | u1 |ζ +ζ3 | u2 |ζ +ζ4 | v1 |ζ +ζ5 | v2 |ζ

Then, from Fleming and Rishel, we conclude that there exists an optimal control.

4.2. Characterization of the optimal control. In order to derive the necessary conditions for

the optimal control, we apply Pontryagin’s maximum principle [3, 10] to the Hamiltonian H at

time t defined by

H(t) = AI1(t)+BI2(t)+
M
2

u2
1 +

N
2

u2
2 +

K
2

v2
1 +

F
2

v2
2 +

5

∑
i=1

λi fi(S, I1, I2,Q,R)

where fi is the right side of the difference equation of the ith state variable

Theorem 5. Given the optimal controls u∗1,u
∗
2,v
∗
1,v
∗
2 and the solutions S, I1, I2,Q , and R of the

corresponding state system (1.3), there exists adjoint variables λ1,λ2,λ3,λ4, and λ5 satisfying

λ
′
1 = −∂H

∂S
= λ1(µ +(β1I1 +β2I2))−λ2β1I1−λ3β2I2

λ
′
2 = −∂H

∂ I1
=−A+λ1β1S−λ2(β1S− (1−u1)δ1− (γ1 +µ +σ1))−λ3(1−u1)δ1−λ5σ1

λ
′
3 = −∂H

∂ I2
=−B+λ1β2S−λ2(1+u2)σ2−λ3(β2S− (1+u2)δ2− (1− v1)δ3−µ−σ2)

−λ4(1− v1)δ3−λ5σ2

λ
′
4 = −∂H

∂Q
=−λ3(1+ v2)δ4 +λ4(γ3 +(1+ v2)δ4 +µ +σ3)−λ5σ3

λ
′
5 = −∂H

∂R
= λ5µ
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With the transversality conditions at time T: λ1(T ) = 0,λ2(T ) =−A,λ3(T ) =−B,λ4(T ) = 0 and

λ5(T ) = 0.

Furthermore, for t ∈ [0,T ], the optimal controls u∗1,u
∗
2,v
∗
1 and v∗2 are given by

u∗1 = min(1,max(0,
(λ3−λ2)δ1I1

M
))

u∗2 = min(1,max(0,
(λ3−λ2)δ2I2

N
))

v∗1 = min(1,max(0,
(λ4−λ3)δ3I2

K
))

v∗2 = min(1,max(0,
(λ4−λ3)δ4Q

F
))

Proof. The Hamiltonian is defined as follows:

f1(S, I1, I2,Q,R) = Λ−µS− (β1I1 +β2I2)S

f2(S, I1, I2,Q,R) = β1I1S+(1+u2)δ2I2− (1−u1)δ1I1− γ1I1−µI1−σ1I1

f3(S, I1, I2,Q,R) = β2I2S+(1+ v2)δ4Q+(1−u1)δ1I1− γ2I2− (1+u2)δ2I2− (1− v1)δ3I2

−µI2−σ2I2

f4(S, I1, I2,Q,R) = (1− v1)δ3I2− γ3Q− (1+ v2)δ4Q−µQ−σ3Q

f5(S, I1, I2,Q,R) = σ1I1 +σ2I2 +σ3Q−µR.

For t ∈ [0,T ], the adjoint equations and transversality conditions can be obtained by using Pon-

tryagin’s maximum principle [3, 10] such that

λ
′
1 = −∂H

∂S
= λ1(µ +(β1I1 +β2I2))−λ2β1I1−λ3β2I2

λ
′
2 = −∂H

∂ I1
=−A+λ1β1S−λ2(β1S− (1−u1)δ1− (γ1 +µ +σ1))−λ3(1−u1)δ1−λ5σ1

λ
′
3 = −∂H

∂ I2
=−B+λ1β2S−λ2(1+u2)σ2−λ3(β2S− (1+u2)δ2− (1− v1)δ3−µ−σ2)

−λ4(1− v1)δ3−λ5σ2

λ
′
4 = −∂H

∂Q
=−λ3(1+ v2)δ4 +λ4(γ3 +(1+ v2)δ4 +µ +σ3)−λ5σ3

λ
′
4 = −∂H

∂R
= λ5µ
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For, t ∈ [0,T ] the optimal controls u∗1,u
∗
2,v
∗
1, and v∗2 can be solved from the optimality condition,

∂H
∂S = 0, ∂H

∂ I1
= 0, ∂H

∂ I2
= 0, ∂H

∂Q = 0, ∂H
∂R = 0 and to find the optimal controls for t ∈ [0,T ],

∂H
∂u1

= Mu1 +(λ2−λ3)δ1I1 = 0

∂H
∂u2

= Nu2 +(λ2−λ3)δ2I2 = 0

∂H
∂v1

= Kv1 +(λ3−λ4)δ3I2 = 0

∂H
∂v2

= Fv2 +(λ3−λ4)δ4Q = 0

Then, we have u1 =
(λ3−λ2)δ1I1

M ,u2 =
(λ3−λ2)δ2I2

N ,v1 =
(λ4−λ3)δ3I2

K ,u1 =
(λ4−λ3)δ4Q

F .

By the bounds in U of the controls, we deduce that u∗1,u
∗
2,v
∗
1, and v∗2 are given the form in the

theorem.

5. NUMERICAL SIMULATIONS

To validate the analytical results established in previous section, we conduct the numerical

simulation by taking an example. The system (1.1) is simulated by fixing the default values

of the parameters as Λ = 70, β1 = 0.0000405, β2 = 0.0000483, γ1 = 0.01, γ2 = γ3 = 0.02,

δ1 = 9.2274e− 03 δ2 = 8.0037e− 03, δ3 = 2.8595e− 03, δ4 = 1.8595e− 03, σ1 = 0,σ2 = 0,

σ3 = 0. All simulations are performed using Matlab. The initial values are taken as S = 5726,

I1 = 70, I2 = 40, Q = 10 and R = 0.

Population size without control



A MATHEMATICAL SIMULATION AND OPTIMAL CONTROL OF A VIH MODEL 17

Figure 1: Simulation results of the HIV model without controls. Described the evolution of the states S, I1, I2, Q and

R without controlfrom day 1 to day 50.

Population size with control

Figure 2: Simulation results of the HIV model with the controls u1, v1, u2 and v2. Described the evolution of the states

S, I1, I2, Q and R with control from day 1 to day 50.
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Population size without and with control

Figure 3: Simulation results of the HIV model without and with controls u1, v1, u2 and v2. Described the evolution of

the states S, I1, I2, Q and R with control from day 1 to day 50.

From the Figure 3, we can notice very well the difference between the number of cases at each

level S, I1, I2, Q and R, before and after the optimal control that we applied.

For the patients in the first level, the difference starts from day 10 until we reach day 50 with 4800

cases without control and 2900 with the optimal control, this is a difference of about 1900 cases.

As for the patients in the second level we see that after day 10 the difference begins to increase

until day 25 as the number of cases was 2950 without control and 1870 with control, then on day

50 we find 2600 cases without control and 1050 with control, this is a difference of about 1550

cases. And for the patients under the stone we observe that the difference began to widen from the

day 15 until it reaches on the day 50 to 190 cases without control and 110 cases with the control,
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this is a difference of about 80 cases. Starting from the three levels, we find that the control gave a

big difference in the decrease in the number of cases.

6. CONCLUSION

In this paper, we consider a HIV mathematical model with three different levels of infection. We

suppose the stats of infected can be deteriorate and also can be improved from one state to another

state. The stability of equilibrium point are discussed, the optimal control has been considered and

four controls have been introduced representing the effort to reduce the displacement of infection

states. The Pontrygin’s maximum principale is used to characterize the optimal control. A compar-

ison between individual with optimal control and no control is presented. A numerical simulation

has been given to demonstrate the use of the obtained results.
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