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Abstract: In general, an insurance company who experiences two opposing cash flows incoming cash premiums 

and outgoing claims that is also known as classical risk process that satisfies Cramér–Lundberg model. However the 

arrival of the new premium holders and there cash flow over a period of time was not considered in most works. In 

this model, we considered the arrival of new premiums with expectation of surplus process until ruin time with 

dynamic reinsurance strategy. For attaining this condition, we formulated a Value function which is bounded and 

satisfied by the Hamilton Jacobi Bellman (HJB) partial differential equation. We apply the policy iteration method to 

find the maximum the surplus level and corresponding dynamic reinsurance strategy under excess of loss, quota 

share and stop loss reinsurance problems. 

Keywords: Cramér–Lundberg model; ruin probability; insurance; reinsurance; stochastic control; quota share; 

excess of loss; stop loss reinsurance. 

2010 AMS Subject Classification: 93A30.  

 

 

 



2 
S. NAJEEMA, K. VASUDEVAN 

1. INTRODUCTION  

Reinsurance is a method of sharing a part of loss and premiums of a insurer company by another 

company. Insurance company purchase reinsurance. Reinsurance allows insurance companies to 

remain solvent after major claims events, such as major disasters like hurricanes and wildfires. 

Reinsurance has rolesin risk management, tax mitigation and other reasons. The company that 

purchases the reinsurance policy is called a ceding company or cedent or cedant. The company 

issuing the reinsurance policy is known as the reinsurer. Cedent company pays a premium to the 

reinsurer company, who in exchange pays a part of the claims incurred by Cedent. 

 

Proportional reinsurance is a type of reinsurance where one or more reinsurers take a stated 

percentage share of each policy that an insurer issues then the reinsurer will receive that stated 

percentage of the premiums and will pay the stated percentage of claims in exchange the 

reinsurer will allow a ceding commission to the insurer to cover the costs incurred by the insurer.   

Example: Quota share. A non-proportional reinsurance is another type of reinsurance where the 

reinsurer only pays to the insurer if the total claims occurred in given period is more than a fixed 

amount, which is called the retention. Example: Excess of loss, stop loss. 

 

The policy iteration method is an algorithm that manipulates the policy directly instead finding it 

indirectly via the optimal value functions. It determines the value function of a policy. It 

executes a policy and finds the expected infinite discounted reward that will be gained. It can be 

obtained by solving a system of linear equations. Once we know the value of each state under the 

current policy, we look whether value could be improved by changing the first action taken If 

yes, we change the policy to take the new action whenever it is in that situation. This step must 

improve the performance of the policy. When no improvements are possible, then the policy 

must be optimal. 

 

Many papers model optimal reinsurance or optimal investment solving various issues in risk 

theory. In these models, the insurer takes reinsurance and invests its capital in the insurance 

market. Some models use stochastic control theory and related methods to minimize the 

probability of ruin or the maximum expected utility of returning surplus. Taksar and Markussen 

[1] considered the optimal reinsurance policy which minimizes the ruin probability of the cedent. 
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Bai and Guo [2] model the problem of maximizing the expected exponential utility of terminal 

surplus in proportional reinsurance. Asmussen et al. [3] models present the dynamic method of 

excess-of-loss reinsurance retention level and the dividend distribution policy for the purpose of 

maximizing the expected present value of the dividends. Irgens and Paulsen [4] present a model 

for optimal reinsurance and investment strategy with a jump diffusion process in risk market. 

Arian Cani and Stefan Thonhauser[5] developed a model of dynamic reinsurance and optimal 

strategy that maximizes the surplus.  

 

This study is related to problems of optimization in reinsurance. Reinsurance is an insurance for 

insurers that is the transfer of risk from a direct insurer the cedent to a second insurance carrier 

the reinsurer. Insurer passes some of it premium income to a reinsurer who covers certain 

proportion of the claims that occur. In the literature it is proved that reinsurance would be a good 

method for sharing our losses or profits. It reduces risk for cedent and also reduces the 

probability of a direct insurer’s ruin. 

 

In this literature, we optimize the reinsurance that is an interesting research topic in the areas of 

insurance mathematics. Here the objective is to determine value function corresponding to which 

strategy it is optimal. The method is used here is iteration procedure that solve the Hamilton 

Jacobi Equation. And later we apply the method in Excess of loss and problems. An optimal 

insurance arrangement for the insurer company with some constraint from the reinsurer company. 

Many new concepts and methodologies for optimal reinsurance have been studied for everyone’s 

perspective. Researchers introduce the optimum reinsurance strategies. Some researchers 

introduced the method of obtaining premium and objectives and the risk processes. Borch [6] 

proved that stop loss reinsurance can be used to minimize the retained loss. Arrow [7] said that 

stop loss may maximize expected utility of terminal wealth of an insurer. Kaluszka [8] take the 

combination of stop loss and quota share can be used to find optimal strategies to minimize a 

cedent’s retained risk. Centeno [9] defined the optimum excess of loss retentions for two 

dependent risks using two objective functions maximizing insurer’s expected utility of wealth net 

of reinsurance with respect to an exponential utility function and maximizing the adjustment 

coefficient of retained business respectively. The concepts of dynamic reinsurance is a classical 

problem of maximizing the dividends of an insurer before to ruin in a compound Poisson 
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processes such a model was introduced by Azcue and Muler [10]. for general reinsurance 

schemes. Mnif and Sulem [11] has studied the excess of loss reinsurance optimization problems. 

 

2. PROBLEM FORMULATION  

The surplus process keeps on increasing because of premiums are deposited over time at a 

constant rate c >  0. It decreases since the  claims are arriving according to Poisson process 

N = ( 𝑁𝑡 ) t ≥ 0  with intensity λ >  0. The sequence { Yn , n ∈ N } of claims is a positive 

independently and identically distributed random variables with a density function 𝑓𝑦(. )Similarly, 

during the same period the occurrence of the new premium arrival are also according to the 

M = (𝑀𝑡 ) t ≥ 0 .  The sequence { Zn , n ∈ M } of claims is a positive independently and 

identically distributed random variables with a density function 𝑓𝑍(. )With finite mean  μ .all the 

random variables {Yn, Zn, n ∈ N} and 𝑁are independent. 

 

In this model, for a diffusion risk model based on the dynamic reinsurance, we will apply policy 

iteration procedure to optimize the cost function associated to the Hamilton Jacobi Bellman 

Equation. Let (Ω, F, P) be a probability space. In 1903, Cramér–Lundberg introduced an equation 

in ruin theory. It is also called classical compound-Poisson risk model. 

𝑋𝑡
𝑢 =  x +  c t − R(t) + P(t)     t ≥  0                                                       (1) 

where           𝑅 (t)  =  ∑ Yn  and  P(t) =       ∑ 𝑍𝑛
𝑀(𝑡)
𝑛=1                                                (2) 

N(t)
n=1  

Where x denotes initial investment, 𝑅 (t) and P(t) are the rate of claim and premium arrival 

respectively. 

The time of ruin is one of interesting problems in classical ruin theory. The time of ruin is the 

first time that the surplus becomes negative. Let 𝑋𝑢 = (𝑋𝑢
𝑡 )𝑡≥0  be the surplus process and τx  

u be 

the time of ruin to any strategy 𝑢 then,   

τx
u = inf{𝑡 ≥ 0: 𝑋𝑡

𝑢 < 0 | 𝑋0 
𝑢 = 𝑥}                                                                (3) 

The probability of ruin 𝜓(𝑥)  is defined as a function of initial capital 𝑥 ≥  0. 

𝜓(𝑥) =  𝑃 {τx < ∞}                                                                                         (4) 

Let 𝛿 > 0 a discount rate then the expected value of the surplus corresponding to a strategy u is 

called return function. It is defined as follow 
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Vu(𝑥) =    𝐸𝑥 [∫ 𝑒−𝛿𝑡
τx

u

0

𝑋𝑡
𝑢] 𝑑𝑡                                                                      (5)   

We would like to get return function with maximum surplus i.e our problem is to find 

 𝑉(𝑥)  =  𝑠𝑢𝑝𝑢𝜖𝑈Vu(𝑥)                                                                                  (6) 

𝑉(𝑥)is called Value function. 

  

3. RESULTS 

Proposition 1: The bounding values for the value function V(x) when 𝒙 ≥ 𝟎 

Upper Bound:  𝑉(𝑥) ≤  
𝑥

𝛿
+

𝑐+𝑧

𝛿2
  𝑓𝑜𝑟 𝑥 ≥ 0  

Lower Bound:  𝑉(𝑥)  ≥  
𝑥

𝛿
−

𝜆π(y−z)−c

𝛿2 [1 −  𝑒
−𝛿𝑥

𝜆π(y−z)−c  ]𝑓𝑜𝑟 𝑥 ≥ 0 

 

Proof: 

For any given strategy u =  { 𝑢𝑡} 𝑡≥0 ,   𝑐(𝑢𝑠) ≤ c   for all 𝑠 ≥ 0 . So the equation from the 

equation (1) implies  

𝑋𝑡
𝑢𝑡  ≤ 𝑥 + c t + P(t) for all 𝑡 ≥ 0. 

Thus the value of the function under this condition can be given as   

𝑉𝑢(𝑥) ≤ ∫ 𝑒−𝛿𝑡(𝑥 + (c + z)t)dt =
𝑥

𝛿
+

𝑐

𝛿2

∞

0

+
𝑧

𝛿2
 

                              ⟹  𝑉𝑢(𝑥) ≤
𝑥

𝛿
+

𝑐+𝑧

𝛿2                                                                     (7) 

Through the concept of supermom the obtained value function V(x) satisfied the upper bound 

value. 

Similarly the condition for lower bound occurs when the claim was considered as the full 

continuous reinsurance model that was subjective to the ruin time concept that yield the 

following result for 𝑋𝑢0  as, 

𝑋𝑡
𝑢0 = 𝑥 + (𝑐 −  𝜆π(y − z))𝑡 

With time of ruin  𝜏𝑥
𝑢0 =  

𝑥

𝜆π(y−z)−𝐶
 

Then,                 𝑉𝑢0(𝑥)  =
𝑥

𝛿
−

𝜆π(y−z)−c

𝛿2 [1 −  𝑒
−𝛿𝑥

𝜆π(y−z)−C  ] 

      ⟹ 𝑉(𝑥)  ≥  
𝑥

𝛿
−

𝜆π(y−z)−c

𝛿2 [1 −  𝑒
−𝛿𝑥

𝜆π(y−z)−C  ]                                         (8) 
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Proposition 2: when x>y>z ≥0, the value function V, satisfies 

V(𝑥)− V(𝑦) + V(Z) ≤ 
𝑥−𝑦+𝑧

𝛿
+ 𝐶(𝑥, 𝑦, 𝑧)𝑉 (𝑥 − 𝑦 + 𝑧), 𝑤ℎ𝑒𝑟𝑒 𝐶(𝑥, 𝑦, 𝑧) →  0  

𝑎𝑠 | 𝑥 − 𝑦 + 𝑧|  →  0 

𝑉(𝑥) −  𝑉(𝑦)  +  𝑉(𝑍) ≥  
𝑥−𝑦+𝑧

𝛿+𝜆
+𝜖 

Proof: 

For a given and 𝜖1 > 0for any given 𝑥 >  0.  Consider a strategy 𝑢 with 𝜖-optimal was given by 

Vu(𝑥) ≤  E𝑥 [∫ 𝑒−𝛿𝑡
τ𝑥

u

0

𝑋𝑡
𝑢 𝑑𝑡] + 𝜖1 

Similarly for initial capital 𝑦 with 𝑥 > 𝑦 > 𝑧 ≥ 0 that is up to time 𝜏𝑧
𝑢, 

𝑉𝑢(𝑦) ≤  𝐸𝑦 [∫ 𝑒−𝛿𝑡
𝜏𝑦

𝑢

0

𝑋𝑡
𝑢 𝑑𝑡] + 𝜖2 

⟹ 𝑉(𝑥) −  𝑉(𝑦) +  𝑉(𝑧) ≤ 𝐸𝑥 [∫ 𝑒−𝛿𝑡
𝜏𝑥

𝑢

0

𝑋𝑡
𝑢 𝑑𝑡] −  𝐸𝑦 [∫ 𝑒−𝛿𝑡

𝜏𝑦
𝑢

0

𝑋𝑡
𝑢 𝑑𝑡] 

                                                       + 𝐸𝑧 [∫ 𝑒−𝛿𝑡
𝜏𝑧

𝑢

0

𝑋𝑡
𝑢 𝑑𝑡] +  𝜖                           (9) 

Where the terms Ex, Ey, and Ez are the initial values for respective process. With the path-wise 

argument the time for ruin probability is same for all the process through the fixed path ω. All 

processes move parallel and will be ruined at some time, and then the inequality statement in 

preposition can be written as, 

𝑉(𝑥) −  𝑉(𝑦) +  𝑉(𝑧) ≤  E𝑥 [∫ 𝑒−𝛿𝑡𝑋𝑡
𝑢 𝑑𝑡

τ𝑥
u

0

] −  E𝑦 [∫ 𝑒−𝛿𝑡𝑋𝑡
𝑢 𝑑𝑡

τ𝑦
u

0

] + E𝑧 [∫ 𝑒−𝛿𝑡𝑋𝑡
𝑢 𝑑𝑡

τ𝑧
u

0

]

+ E𝑥 [1ℊℂ ∫ 𝑒−𝛿𝑡𝑋𝑡
𝑢 𝑑𝑡

τ𝑥
u

τ𝑦
u−τ𝑧

u
] +  𝜖 

≤  
𝑥 − 𝑦 + 𝑧

𝛿
+ E𝑥 [1ℊℂ ∫ 𝑒−𝛿𝑡𝑋𝑡

𝑢 𝑑𝑡
τ𝑦

u

0

] + 𝜖      

                                         ≤
𝑥−𝑦+𝑧

𝛿
+ E[1ℊℂ ] 𝑉(𝑥 − 𝑦 + 𝑧)] +  𝜖                               (10) 

The optimal value of strategy depends on the starting values of x, y and z that varies on ℊℂ. The 

second inequality in the preposition 2 is observed as: 

E𝑥 [∫ 𝑒−𝛿𝑡𝑋𝑡
𝑢 𝑑𝑡

τ𝑦
u

0
]- E𝑦 [∫ 𝑒−𝛿𝑡𝑋𝑡

𝑢 𝑑𝑡
τ𝑦

u

0
]+E𝑧 [∫ 𝑒−𝛿𝑡𝑋𝑡

𝑢 𝑑𝑡
τ𝑦

u

0
] 

= E [∫ 𝑒−𝛿𝑡 (𝑥 − 𝑦 + 𝑧) 𝑑𝑡
τ𝑦

u

0
] ≤ ∫ 𝑒−𝛿𝑡 (𝑥 − 𝑦 + 𝑧) 𝑑𝑡

∞

0
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Since by using the path-wise argument ℊ = {𝜔 ∈ Ω|τ𝑥
u(𝜔) = τ𝑦

u(𝜔) = τ𝑧
u(𝜔)} 

When y≥ 0 and 𝜖>0, the allowable strategy �̅�, andx>y,then 

𝑉(𝑥) −  𝑉(𝑦) +  𝑉(𝑧) ≥  E𝑥 [∫ 𝑒−𝛿𝑡𝑋𝑡
𝑢 𝑑𝑡

τ𝑥
�̅�

0

] −  E𝑦 [∫ 𝑒−𝛿𝑡𝑋𝑡
𝑢 𝑑𝑡

τ𝑦
�̅�

0

] 

                                                   +E𝑧 [∫ 𝑒−𝛿𝑡𝑋𝑡
𝑢 𝑑𝑡

τ𝑧
�̅�

0

]  − 𝜖                           (11) 

Similarly when the ruin functions are same for both the investment and the claims and the first 

claim takes place at time T, then 

𝑉(𝑥) −  𝑉(𝑦) +  𝑉(𝑧) ≥  E𝑥 [∫ 𝑒−𝛿𝑡𝑋𝑡
𝑢 𝑑𝑡

τ𝑥
�̅�

0

] −  E𝑦 [∫ 𝑒−𝛿𝑡𝑋𝑡
𝑢 𝑑𝑡

τ𝑦
�̅�

0

] + E𝑧 [∫ 𝑒−𝛿𝑡𝑋𝑡
𝑢 𝑑𝑡

τ𝑧
�̅�

0

]      

+ E𝑥 [1ℊℂ ∫ 𝑒−𝛿𝑡𝑋𝑡
𝑢 𝑑𝑡

τ𝑥
u

τ𝑦
u−τ𝑧

u
] −  𝜖 ≥  E [∫ 𝑒−𝛿𝑡 (𝑥 − 𝑦 + 𝑧) 𝑑𝑡

T

0

] 

                   𝑉(𝑥) −  𝑉(𝑦) +  𝑉(𝑧) ≥
𝑥−𝑦+𝑧

𝛿+𝜆
−  𝜖                                                      (12) 

Lemma 1: The obtained value function was lower bound by 
𝑥

𝛿
−

c+z− λμ

𝛿(𝛿+𝜆)
 which states that  

𝑉(𝑥) ≥  
𝑥

𝛿
−

c + z −  λμ

𝛿(𝛿 + 𝜆)
 

Proof: 

When the function n(x) is differentiated through the Dynkin’s formula 

Ex(𝑒−𝛿𝑡ʌ𝜏𝑛(𝑋𝑡ʌ𝜏))  =  n(x) +  Ex ∫ 𝑒−𝛿𝑠 [𝐿𝑛(𝑋𝑠) −  𝛿𝑛(𝑋𝑠)]𝑑𝑠
𝑡ʌ𝜏

0

 

We assume that,  

𝑛(𝑥) = {

𝑥

𝛿
                           𝑥 ≥  0,

0                                𝑥 < 0
 

𝐿𝑛(𝑋𝑠) −  𝛿𝑛(𝑋𝑠) ≥ −𝑋𝑠 +
c+z− λμ

𝛿
, by using the formula. 

Ex(𝑒−𝛿𝑡ʌ𝜏𝑛(𝑋𝑡ʌ𝜏)) + Ex ∫ 𝑒−𝛿𝑠𝑋𝑠𝑑𝑠
𝑡ʌ𝜏

0

 

≥  n(x) +  Ex ∫ 𝑒−𝛿𝑠 [
𝑐 + 𝑧 − 𝜆𝜇

𝛿
] 𝑑𝑠

𝑡ʌ𝜏

0

 

                                               ≥   n(x) +  Ex ∫ 𝑒−𝛿𝑠 [
𝑐+𝑧−𝜆𝜇

𝛿
]𝑑𝑠

𝑡ʌ𝑇1

0
                            (13) 
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Since 𝑛(𝑋𝑡ʌ𝜏)  is monotone and bounded convergence 

Ex(∫ 𝑒−𝛿𝑠𝑋𝑠 𝑑𝑠
𝜏

0

 ) ≥   n(x) +
𝑐 + 𝑧 − 𝜆𝜇

𝛿(𝛿 + 𝜆)
 

Also, we know that,𝑛(𝑥) = {
𝑥

𝛿
, 𝑥 ≥ 0,

0, 𝑥 < 0
 

⟹V(x) ≥ Ex(∫ 𝑒−𝛿𝑠𝑋𝑠 𝑑𝑠
𝜏

0
 ) ≥   

𝑥

𝛿
+

𝑐+𝑧−𝜆𝜇

𝛿(𝛿+𝜆)
                                                                  (14) 

 

Lemma 2: The local Lipchitz continuous condition was observed in the value function. 

Proof:  

When x>0 and 𝜖>0, then the allowable strategy u, 

𝑉(𝑥) ≤  E𝑥 [∫ 𝑒−𝛿𝑡𝑋𝑡
𝑢 𝑑𝑡

τ𝑥
u

0

] +  𝜖 

Similarly when the investment is considered to be y and let T be the time for the first claim under 

the condition, T >
𝑥−𝑦+𝑧

𝑐(𝑢)
the value function V is of the form, 

𝑉(𝑦) ≥ E𝑦 [∫ 𝑒−𝛿𝑡𝑋𝑡
𝑢 𝑑𝑡

τ𝑦
u𝑦

0

] 

Under the condition that investment was higher than the claims and the premium arrivals 

 i.e. x> y, z which implies that 𝑥 > 𝑦 − 𝑧 ≥ 0 

⟹       0 ≤  𝑉(𝑥) −  𝑉(𝑦) + V(z)  

≤ 𝑉(𝑥)(1 − 𝑒
−(𝛿+𝜆)

𝑥−𝑦+𝑧

𝑐(𝑢) )  − 𝑒
−𝜆

𝑥−𝑦+𝑧

𝑐(𝑢) (
𝑐 + 𝛿𝑦 − 𝛿𝑧 − (𝑐 + 𝛿𝑥)𝑒

−𝛿
𝑥−𝑦+𝑧

𝑐(𝑢)

𝛿2
)  + 𝜖 

= (𝑉(𝑥)
𝛿 + 𝜆

𝑐(𝑢)
(𝑥 − 𝑦 + 𝑧) + 𝒪(𝑥 − 𝑦 + 𝑧)2) +

𝑥

𝑐(𝑢)
(𝑥 − 𝑦 + 𝑧) 

                                       +𝒪((𝑥 − 𝑦 + 𝑧)2) + 𝜖                                                    (15) 

⟹ Vis lipschitz Continuous. 

 

Lemma 3: The value function V satisfies Hamilton Jacobi Equation (HJB). 

𝑠𝑢𝑝𝑢𝜖𝑈 {𝑥 + (𝑐(𝑢) + 𝑧)𝑉 ′(𝑥) − (𝛿 + 𝜆)𝑉(𝑥)  

+ 𝜆 ∫ 𝑉(𝑥 − 𝑟( 𝑦, 𝑧, 𝑢))𝑑𝐹𝑌(𝑦)
𝜌(𝑥,𝑢)

0

}                      = 0             (16)            
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Proof:  

In the dynamic programming methods of solving optimization problems for every 𝐹𝑡  and a  

stopping time 𝑆 ≥  0 . Value function can be obtained from the following equation 

V(x)  =      𝑠𝑢𝑝𝑢𝜖𝑈𝐸𝑥[ ∫ 𝑒−𝛿𝑡𝜏𝑥
𝑢ʌ𝑆

0
𝑋𝑡

𝑢𝑑𝑡 + 𝑒−𝛿(𝜏𝑥
𝑢ʌ𝑆)𝑉(𝑋𝜏𝑥

𝑢ʌ𝑆
𝑢 )]                               (17)                            

Let 𝑥 >  0, 𝑧 >  0, ℎ > 0and strategy𝑢 ∈  𝑈 be as follows �̃�  =  (𝑢𝑡)  t ≥ 0 such that 𝑢𝑡 = 𝑢 in  

t 𝜖 [0, h] and 𝑢𝑡 = �̃�𝑡−ℎ  for 𝑡 > 0 for some  �̃�𝜖𝑈. For small ℎ > 0  

such that 𝑥 + (𝑐(𝑢) + 𝑧)ℎ >  0. 

Let 𝑇 be time of the first claim occurrence and set S= min{𝑇 , h}. Then the equation form  

0 ≥ 𝐸𝑥 [∫ 𝑒−𝛿𝑡(𝑥 + (𝑐(𝑢) + 𝑧)𝑡)
𝑆

0

 𝑑𝑡 + 𝑒−𝛿𝑡𝑉(𝑋𝑆
𝑢) − 𝑉(𝑥)]           (18) 

Since 𝑢is a constant control it applies on the interval [0, S] we can apply Rolski [13] and get that 

𝑉 lies in the domain of the generator where generator 𝐴𝑢 is a constantly controlled process 

𝑋𝑢Rolski[13] implies  

𝐴𝑢(𝑛(𝑥)) =  𝑐(𝑢)𝑛′(𝑥) −  𝜆𝑛(𝑥) + 𝜆 ∫ 𝑛(𝑥 − 𝑟(𝑥, 𝑦, 𝑧))𝑑𝐹𝑌(𝑦)
𝜌(𝑥,𝑢)

0

 

Since absolutely continuous map 𝑡 →  𝑉(𝑥 + (𝑐(𝑢) + 𝑧)𝑡) and the boundary is empty and we 

proved the integrable condition. So Dynkin formula, and equation (18) implies  

0 ≥ 𝐸𝑥[∫ 𝑒−𝛿𝑡(𝑥 + (𝑐(𝑢) + 𝑧)𝑡
𝑆

0

)𝑑𝑡

+ ∫ 𝑒−𝛿𝑡[(𝑐(𝑢)𝑉′(𝑥 + (𝑐(𝑢) + 𝑧)𝑡 − (𝛿 + 𝜆)𝑉(𝑥 + (𝑐(𝑢) + 𝑧)𝑡)
𝑆

0

+ 𝜆 ∫ 𝑉(𝑥 + (𝑐(𝑢) + 𝑧)𝑡
𝜌(𝑥+(𝑐(𝑢)+𝑧)𝑡,𝑢)

0

− 𝑟(𝑦, 𝑧, 𝑢))𝑑𝐹𝑌(𝑦)]dt]                                                 (19) 

Divide both sides by ℎwe have   

0 ≥
1

ℎ
𝐸𝑥[∫ 𝑒−𝛿𝑡𝑥 + (𝑐(𝑢) + 𝑧)𝑡)

𝑆

0

𝑑𝑡

+ ∫ 𝑒−𝛿𝑡[(𝑐(𝑢)𝑉′(𝑥 + (𝑐(𝑢) + 𝑧)𝑡 − (𝛿 + 𝜆)𝑉(𝑥 + (𝑐(𝑢) + 𝑧)𝑡)
𝑆

0

+ 𝜆 ∫ 𝑉(𝑥 + (𝑐(𝑢) + 𝑧)𝑡)
𝜌(𝑥+(𝑐(𝑢)+𝑧)𝑡,𝑢)

0

− 𝑟(𝑦, 𝑧, 𝑢))𝑑𝐹𝑌(𝑦)]dt] 
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The first term in the right is Riemann integrable and  𝑉is continuous so ℎ →  0 implies  

0 ≥  𝑥 −  (𝛿 +  𝜆)𝑉(𝑥)  −  (𝛿 +  𝜆)𝑉(𝑥)  +  𝜆 ∫ 𝑉(𝑥 + (𝑐(𝑢) + 𝑧)𝑡)
𝜌(𝑥,𝑢)

0

− 𝑟(𝑦, 𝑧, 𝑢))𝑑𝐹𝑌(𝑦) + 𝑙𝑖𝑚𝑖𝑡ℎ→0

1

ℎ
𝐸𝑥[∫ 𝑒−𝛿𝑡𝑐(𝑢) 𝑉 ′(𝑥 + (𝑐(𝑢) + 𝑧)𝑡)𝑑𝑡

𝑆

0

] 

Consider the limit 

𝑙𝑖𝑚𝑖𝑡ℎ→0

1

ℎ
𝐸𝑥[∫ 𝑒−𝛿𝑡𝑐(𝑢) 𝑉 ′(𝑥 + (𝑐(𝑢) + 𝑧)𝑡)𝑑𝑡

𝑆

0

] 

= 𝑙𝑖𝑚𝑖𝑡ℎ→0
1

ℎ
𝑒−𝜆ℎ [∫ 𝑒−𝛿𝑡𝑐(𝑢) 𝑉 ′(𝑥 + (𝑐(𝑢) + 𝑧)𝑡)𝑑𝑡

ℎ

0
] 

+
1

ℎ
[ ∫ 𝜆𝑒−𝜆𝑠[∫ 𝑒−𝛿𝑡𝑐(𝑢) 𝑉 ′(𝑥 + (𝑐(𝑢) + 𝑧)𝑡)𝑑𝑡

𝑠

0
]

ℎ

0
𝑑𝑠 = (𝑐(𝑢) + 𝑧) 𝑉 ′(𝑥)          (20) 

Applying Lebesgue’s Differentiation concepts and  Wheeden and Zygmund[14] Sine   𝑉 ′(𝑥)is 

Lebesgue integrable because of bounded and monotonic properties .                  

                     ⟹    𝑙𝑖𝑚𝑖𝑡ℎ→0

1

ℎ
[∫ 𝜆𝑒−𝜆𝑠 [∫ 𝑒−𝛿𝑡𝑐(𝑢) 𝑉′(𝑥 + (𝑐(𝑢) + 𝑧)𝑡)𝑑𝑡

𝑠

0

]
ℎ

0

𝑑𝑠] = 0   

Since 𝑠 =  0 integrand ds is also zero 𝑢 ∈  𝑈 is arbitrary 

0 ≥ 𝑠𝑢𝑝𝑢𝜖𝑈 {𝑥 + (𝑐(𝑢)+𝑧)𝑉 ′(𝑥) − (𝛿 + 𝜆)𝑉(𝑥)  + 𝜆 ∫ 𝑉(𝑥 − 𝑟( 𝑦, 𝑧, 𝑢))𝑑𝐹𝑌(𝑦)
𝜌(𝑥,𝑢)

0

}     (21) 

In this step we will prove that left hand side of equation(16) is less than or equal to zero. Let  

S = min{𝑇 , h},  where ℎ >  0 and let  𝑢1 = (𝑢𝑡
1)𝑡 ≥ 0 be ℎ

2
−optimal strategy so the  right hand 

side of (17) can be written as 

V(x)  =      𝑠𝑢𝑝𝑢𝜖𝑈𝐸𝑥 [∫ 𝑒−𝛿𝑡
𝑠

0

(𝑥 + ∫ (𝑐(𝑢𝑠) + 𝑧)
𝑡

0

𝑑𝑠) 𝑑𝑡 + 𝑒−𝛿𝑠𝑉(𝑋𝑠
𝑢)] 

                     < 𝐸𝑥 [∫ 𝑒−𝛿𝑡
𝑠

0

(𝑥 + ∫ (𝑐(𝑢𝑠
1)

𝑡

0

+ 𝑧)𝑑𝑠) 𝑑𝑡 + 𝑒−𝛿𝑠𝑉 (𝑋𝑠
𝑢𝑠

1

)] + ℎ
2 +  𝜖ℎ              (22) 

Where 𝜖 >  0 is arbitrary. Suppose 𝑇1 ∼  Exp(𝜆) now above equation becomes  

0 < 𝐸𝑥[∫ 𝑒−𝛿𝑡
𝑠

0

(𝑥 + ∫ (𝑐(𝑢𝑠
1) + 𝑧)

𝑡

0

𝑑𝑠) 𝑑𝑡] + (𝑒−(𝛿+𝜆)ℎ − 1)𝐸𝑥[𝑉(𝑥 + ∫ (𝑐(𝑢𝑠
1) + 𝑧)

ℎ

0

𝑑𝑠)] 

+ 𝐸𝑥[  ∫ 𝜆
ℎ

0
𝑒−𝜆𝑡 ∫ 𝑉 (𝑥 + ∫ (𝑐(𝑢𝑠

1)
𝑡

0
+ 𝑧)𝑑𝑠)

𝜌(𝑥+∫ (𝑐(𝑢𝑠
1)+𝑧)

𝑡
0 𝑑𝑠, 𝑢𝑡

1)

0
− 𝑟(𝑦, 𝑧, 𝑢𝑡

1)𝑑𝐹𝑌(𝑦) 𝑑𝑡] +

𝐸𝑥[𝑉 (𝑥 + ∫ (𝑐(𝑢𝑠
1)

ℎ

0
+ 𝑧)𝑑𝑠 − 𝑉(𝑥))] + ℎ

2 + 𝜖ℎ 

=  𝐴 +  𝐵 +  𝐶 +  𝐷 +  ℎ2 + 𝜖ℎ                                                                     (23) 
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Divide the above equation (21) by h, then using the dominated convergence Theorem the 

expression B can be expressed as 

      𝑙𝑖𝑚𝑖𝑡ℎ→0
1

ℎ
(𝑒−(𝛿+𝜆)ℎ − 1)𝐸𝑥 [𝑉 (𝑥 + ∫ (𝑐(𝑢𝑠

1)
ℎ

0
+ 𝑧)𝑑𝑠)] = − (𝛿 + 𝜆)𝑉(𝑥)     (24) 

The equation (22) shows the continuity of V. similarly for C,  

𝑙𝑖𝑚𝑖𝑡ℎ→0

1

ℎ
𝐸𝑥 [∫ 𝜆

ℎ

0

𝑒−𝜆𝑡 ∫ 𝑉 (𝑥 + ∫ (𝑐(𝑢𝑠
1)

𝑡

0

+ 𝑧)𝑑𝑠)
𝜌(𝑥+∫ (𝑐(𝑢𝑠

1)+𝑧)
𝑡

0 𝑑𝑠, 𝑢𝑡
1)

0

− 𝑟(𝑦, 𝑧, 𝑢𝑡
1)𝑑𝐹𝑌(𝑦) 𝑑𝑡]                                                (25) 

By using the Wheeden and Zygmund (1977) 

= 𝜆 ∫ 𝑉(𝑥 − 𝑟(𝑦, 𝑧, 𝑢0
1))𝑑𝐹𝑌(𝑦)

𝜌(𝑥,𝑢0
1)

0

}                                    (26) 

Using absolute continuity property of V, D becomes 

𝑙𝑖𝑚𝑖𝑡ℎ→0

1

ℎ
𝐸𝑥[𝑉 (𝑥 + ∫ (𝑐(𝑢𝑠

1)
ℎ

0

+ 𝑧)𝑑𝑠) 𝑉(𝑥)] 

 = 𝑙𝑖𝑚𝑖𝑡ℎ→0

1

ℎ
𝐸𝑥[∫ 𝑉 ′(𝑥 + 𝑦 − 𝑧)𝑑𝑦

∫ (𝑐(𝑢𝑠
1)+𝑧)𝑑𝑠

ℎ

0

0

 

                            = 𝑙𝑖𝑚𝑖𝑡ℎ→0

1

ℎ
𝐸𝑥 [∫ 𝑐(𝑢𝑡

1 + 𝑧)𝑉 ′ (𝑥 + ∫ (𝑐(𝑢𝑠
1) + 𝑧)

𝑡

0

𝑑𝑠 ) 𝑑𝑡
ℎ

0

]  

                                            = (𝑐(𝑢0
1) + 𝑧)𝑉 ′(𝑥)                                                            (27)  

Similarly A can be obtained as 

𝑙𝑖𝑚𝑖𝑡ℎ→0

1

ℎ
𝐸𝑥 [∫ 𝑒−𝛿𝑡

𝑆

0

(𝑥 + ∫ (𝑐(𝑢𝑠
1) + 𝑧)𝑑𝑠

𝑡

0

) 𝑑𝑡] = 𝑥           (28) 

Finally, we get  

                  0 ≤ 𝑥 + (𝑐(𝑢0
1) + 𝑧)𝑉 ′(𝑥) −  (𝛿 +  𝜆)𝑉(𝑥)  

               +𝜆 ∫ 𝑉(𝑥 − 𝑟(𝑦, 𝑧, 𝑢0
1))𝑑𝐹𝑌(𝑦)

𝜌(𝑥,𝑢0
1)

0

} + 𝜖                   (29) 

Since 𝜖 is arbitrary the equation (30) provide the proof for lemma 3. 

Supu{𝑥 + (𝑐(𝑢) + 𝑧)𝑉 ′(𝑥) − (𝛿 + 𝜆)𝑉(𝑥) + 𝜆 ∫ 𝑉(𝑥 − 𝑟(𝑦, 𝑧, 𝑢)) 𝑑𝐹𝑌(𝑦)
𝜌(𝑥,𝑢)

0
} = 0      (30)     

Let 𝑈 =  {𝑢 ∈  𝑈 | 𝑐(𝑢)  ≥  0}and 𝑉(𝑥)is monotonic 
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 𝑉 ′(𝑥) = 𝑖𝑛𝑓𝑢∈�̅� {
(𝛿+𝜆)𝑉(𝑥)−𝑥−𝜆 ∫ 𝑉(𝑥−𝑟(𝑦,𝑧,𝑢)) 𝑑𝐹𝑌(𝑦)

𝜌(𝑥,𝑢)

0

𝑐(𝑢)+𝑧
}               (31)  

                  ≤
(𝛿 + 𝜆)𝑉(𝑥) − 𝑥 − 𝜆 ∫ 𝑉(𝑥 − 𝑟(𝑦, 𝑧, 𝑢)) 𝑑𝐹𝑌(𝑦)

𝜌(𝑥,𝑢)

0

𝑐(𝑢) + 𝑧
 

 ≤
(𝛿 + 𝜆) (

𝑥

𝛿
+

𝑐+𝑧

𝛿2 ) − 𝑥 − 𝜆 ∫
(𝑥−𝑦+ 𝑧)

𝛿

𝑥

0
𝑑𝐹𝑌(𝑦)

𝑐 + 𝑧
 

    ⟹   𝑉 ′(𝑥) ≤
(𝛿 + 𝜆)

𝑐+𝑧

𝛿2 +
𝜆𝜇

𝛿
+ 𝐻(𝑥)

𝑐 + 𝑧
                                                    (32) 

Where  𝐻(𝑥) =
𝜆

𝛿
 (𝑥 + 𝑧)(1 − 𝐹𝑌(𝑥)) ≥ 0  also 𝐻(𝑥) =

𝜆

𝛿
∫ (𝑥+𝑧)𝑑𝐹𝑌(𝑦)

∞

𝑥
 ≤

𝜆𝜇

𝛿
 

equality (32) becomes now 

                               ⟹     𝑉 ′(𝑥) ≤
(𝛿+𝜆)

𝑐+𝑧

𝛿2 +
2𝜆𝜇

𝛿

𝑐+𝑧
                                                                 (33) 

This completes the characterization of the value function V(x). 

Theorem 1: Let g(0) > 0 be a random initial value, then the exclusive a.e. differential solution to  

𝑤 ′(𝑥) = 𝑖𝑛𝑓 {
(𝛿+𝜆)𝑤(𝑥)−𝑥−𝜆 ∫ 𝑤(𝑥−𝑟(𝑦,𝑧,𝑢)𝑑𝐹𝑌(𝑦)

𝜌(𝑥,𝑢)
0

𝑐(𝑢)+𝑧
} with g(0) = w (0) 

Proof: 

Let x0 ≥0and a continuous function f :[ 0,x0]→ ℝ be given. Fix h > 0 and set  

ℂ = {𝑤: [x0, x0 + ℎ] → ℝ} 

For w to be continuous, w(x0) = f (x0), then the operator 𝛵𝑤(𝑥) = 𝑓(𝑥0)  +

∫ 𝑖𝑛𝑓𝑢∈�̅� {
(𝛿+𝜆)𝑤(𝑠)−𝑠−𝜆 ∫ 𝑤(𝑠−𝑟(𝑦,𝑧,𝑢)𝑑𝐹𝑌(𝑦)

𝜌(𝑠−𝑥0,𝑢)

0

𝑐(𝑢)+𝑧
 −

𝜆 ∫ 𝑤(𝑠−𝑟(𝑦,𝑧,𝑢)𝑑𝐹𝑌(𝑦)
𝜌(𝑠,𝑢)

𝜌(𝑠−𝑥0,𝑢)

𝑐(𝑢)+𝑧
 }

𝑥

𝑥0
𝑑𝑠 

The minimizer will exists in the form of u(s), then we get 

𝛵𝑤1(𝑥) − 𝛵𝑤2(𝑥)≤ 

∫ {
(𝛿+𝜆)(𝑤1(𝑠)−𝑤2(𝑠))−𝜆 ∫ (𝑤1(𝑠−𝑟(𝑦,𝑧,𝑢2(𝑠))−𝑤2(𝑠−𝑟(𝑦,𝑧,𝑢2(𝑠)))𝑑𝐹𝑌(𝑦)

𝜌(𝑠−x0,𝑢2 (𝑠))
0

𝑐(𝑢2(𝑠))+𝑧
}

𝑥

x0
ds 

                                                                                   ≤ ℎ
(𝛿+2𝜆)

𝐿
|𝑠∈[𝑥0,𝑥0+ℎ]

sup
𝑤1(𝑠)  − 𝑤2(𝑠)| 

When the role of w1and w2 , the obtained value of h is 
𝐿

2(𝛿+2𝜆)
 

|𝛵𝑤1(𝑥) − 𝛵𝑤2(𝑥)|≤ 
1

2
|𝑠∈[𝑥0,𝑥0+ℎ]

sup
𝑤1(𝑠)  − 𝑤2(𝑠)|                                                     (34) 
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By this construction, we can perceive that the solution is absolutely continuous on ℝ+, since one 

may alter the grid for the construction procedure and finally the analytical characterization of V 

is obtained. 

Theorem 2:  Let ℝ → ℝ with w(x) = 0 when x<0 that are bounded linearly by 
𝑥

𝛿
+

𝐶+𝑍

𝛿2  which is 

an absolute continuous solution to (31), then v(x) = w (x). 

Proof: Let t>0 then u= ut and the path of (𝑋𝑡
𝑢) are subjected to variation , then using the stietjes 

integral, the following expression was obtained as , 

  𝑒𝛿𝑡⋀𝜏𝑥
𝑢

𝑤(𝑋𝑡⋀𝜏𝑥
𝑢

𝑢 ) − 𝑤(𝑥)  =  ∫ 𝑒−𝛿𝑠𝑡⋀𝜏𝑥
𝑢

0
 [−𝛿𝑤(𝑋𝑠

𝑢) + (𝑐(𝑢𝑠)+𝑧)𝑤 ′(𝑋𝑠
𝑢)]𝑑𝑠 

+ ∑ 𝑒−𝛿𝑇𝑥[𝑤(𝑋𝑇𝑥

𝑢 ) −

𝑇𝑥≤𝑡⋀𝜏𝑥
𝑢

𝑤(𝑋𝑇𝑥−
𝑢 )] 

For the process N, defined as Nt for 𝑡 ≥ 0 is given by 

      Nt = ∑ 𝑒−𝛿𝑇𝑥[𝑤(𝑋𝑇𝑥

𝑢 ) −𝑇𝑥≤𝑡 𝑤(𝑋𝑇𝑥

𝑢 _) = −𝜆 ∫ 𝑒−𝛿𝑠𝑡

0
[∫ 𝑤(

𝜌(𝑥𝑠
𝑢,𝑢𝑠)

0
𝑋𝑠

𝑢 − 𝑟(𝑦, 𝑧, 𝑢𝑠)𝑑𝐹𝑌(𝑦) −

                                                                                                                            𝑤(𝑋𝑠
𝑢)]ds 

With expectation the above equation can be given as 

𝐸𝑥[𝑒−𝛿𝑡⋀𝜏𝑥
𝑢

𝑤(𝑋𝑡⋀𝜏𝑥
𝑢

𝑢 )

=  𝑤(𝑥) + 𝐸𝑥[∫ 𝑒−𝛿𝑠
𝑡⋀𝜏𝑥

𝑢

0

 [−(𝛿 + 𝜆)𝑤(𝑋𝑠
𝑢) + (𝑐(𝑢𝑠)+𝑧)𝑤 ′(𝑋𝑠

𝑢)]

+ 𝜆 [∫ 𝑤(
𝜌(𝑥𝑠

𝑢,𝑢𝑠)

0

𝑋𝑠
𝑢 − 𝑟(𝑦, 𝑧, 𝑢𝑠)𝑑𝐹𝑌(𝑦)] ds 

We know that  

𝑤 ′(𝑋𝑠
𝑢) = 𝑖𝑛𝑓 {

(𝛿 + 𝜆)𝑤(𝑋𝑠
𝑢) − 𝑥 − 𝜆 ∫ 𝑤(𝑋𝑠

𝑢 − 𝑟(𝑦, 𝑧, 𝑢)𝑑𝐹𝑌(𝑦)
𝜌(𝑥,𝑢)

0

𝑐(𝑢) + 𝑧
} 

This implies that, 

𝐸𝑥[𝑒−𝛿𝑡⋀𝜏𝑥
𝑢

𝑤(𝑋𝑡⋀𝜏𝑥
𝑢

𝑢 ) ≤  𝑤(𝑥) − 𝐸𝑥 [∫ 𝑒−𝛿𝑠
𝑡⋀𝜏𝑥

𝑢

0

𝑋𝑠
𝑢ds ]                       (35) 

From Schmidli (2008, Lem.2.2), we know that controlled surplus tends to infinity. So use the 

bounded convergence to get the following, 

  𝐸𝑥[∫ 𝑒−𝛿𝑠𝑡⋀𝜏𝑥
𝑢

0
𝑋𝑠

𝑢ds ]  ≤  𝑤(𝑥) 

Hence, v(x) = w (x). 
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4. NUMERICAL ILLUSTRATIONS 

For analysing the value function through the different types of reinsurance strategies, we 

consider two types of claim distributions in gamma and exponential form. Let us consider 

𝐹𝑌(𝑦) =   𝛾2𝑦𝑒−𝛾𝑦 in gamma function and  𝐹𝑌(𝑦) =  𝛽𝑒−𝛽𝑦 in exponential form. The optimized 

strategies are estimated for quota share, excess loss and stop loss. In the current work, the 

expected principle value read as C= (1+𝜂)𝜆𝜇 and the reinsurance scheme was given as r(y,z,u) = 

uyz with the control parameter. 

For deriving numerical approximations to the value function and to the optimal strategy, we 

implemented the program we have illustrated in the introduction to this section. In contrast to the 

case of excess of loss reinsurance, the proportional situation turned out to be numerically 

demanding, requiring lots of computational efforts for arriving at passably satisfying results. 

With VSR, the strategy U1 (x) can be computed as 

   U1(x) = arg  max𝑢𝜖�̅� {
𝑥 + (𝑐(𝑢) + 𝑧)

𝜕

𝜕𝑥
𝑉𝑆𝑅(𝑥) − (𝛿 + 𝜆)𝑉𝑆𝑅(𝑥)

+𝜆 ∫ 𝑉𝑆𝑅(𝑥 − 𝑟(𝑦, 𝑧, 𝑢)𝑑𝐹𝑌(𝑦)
𝜌(𝑥,𝑢)

0

}               (36)  

With value of C, we can write  

 𝑉(𝑥) =
𝑥

𝛿
+

𝜂𝜇𝜆 + 𝑍

𝛿2
                                                                                     (37) 

The parameter set for quota share and non-proportional reinsurance was given in the table 1for 

gamma distribution of claims. Using equation (5) and (36) , along the table 1 values, the strategy 

U for the quota share was given in figure 1 that represent the gamma distribution of claims. Here 

the convergence or optimization of strategy occurs at the value of x= 50. 

 

Figure 1: Illustration of optimal strategy in quota share 
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According to the graphical representation the value function is continuously increasing with 

respect to the investment level. Since the optimal strategy in quota share is both the function are 

proportional. Similarly with the equation (5) and (36), the excess loss strategy for the model was 

plotted and shown in figure 2 based on the values of table 2. This is again for the gamma 

distribution of the claims and the convergence was likely to occur at the value of x= 70.  For the 

stop loss reinsurance, we made the assumption that stop loss can occur only when there was 

more than 70% of excess loss. With the stop loss reinsurance the convergence was attained only 

at the range of 80. This value of x was greater than that of both the quota share loss and the 

excess loss. 

 

Table 1: Set of parameters for Quota share reinsurance 

ϒ η 𝜽 λ 𝛿 

0.2 0.1 0.11 1 0.1 

 

Table 2: Set of parameters for Non-proportional reinsurance 

 

 

 

 

Figure 2: Illustration of optimal strategy in XL reinsurance 

 

ϒ η 𝜽 λ 𝛿 

0.2 0.08 0.15 1 0.1 
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According to the above graphical representation the value function is continuously increasing 

with respect to the investment level. But at some certain level the value function will get the XL 

this doesn’t affect the investment since this non-proportional relation. 

 

Figure 3: Illustration of optimal strategy in stop loss 

 

According to the above graphical representation the value function is continuously increasing 

with respect to the investment level. But at some certain level the value function will get the XL 

this doesn’t affect the investment since this non-proportional relation. If the excess loss strategy 

is continues more than 70% then stop loss. 

 

Now let us consider c(u) = λμ(u(1+ 𝛳)- (ϴ-η)), 

𝑢∗ =  
(𝛿 + 𝜆)𝑉(𝑥) − 𝑥 + 𝜆𝜇(𝜃 − 𝜂)𝑉 ′(𝑥) − 𝜆 ∫ 𝑉(𝑥 − 𝑢∗(𝑥)𝑦 + 𝑧)𝑑𝐹𝑌(𝑦)

𝑥

𝑢∗(𝑥)

0

𝜆𝜇(1 + 𝜃)𝑉 ′(𝑥)
 

  ≈≥
(𝛿 + 𝜆)(

𝑥

𝛿
+

𝜂𝜇𝜆+𝑍

𝛿2
) − 𝑥 + 𝜆𝜇(𝜃 − 𝜂)

1

𝛿
− 𝜆 ∫ [

(𝑥−𝑢∗(𝑥)𝑦+𝑧)

𝛿
+

𝜂𝜇𝜆+𝑍

𝜕2
] 𝑑𝐹𝑌(𝑦)

𝑥

𝑢∗(𝑥)

0

𝜆𝜇(1 + 𝜃)
1

𝛿

 

                        𝑢∗ ≈
𝜃 + 𝑢∗

1 + 𝜃
                                                                               (38) 

When considering the exponential form of claims, the optimal strategy for the quota share was 

estimated through the set of parameters in table 3. Then by using the equation (37) and (38), the 

convergence of x value was observed at the value of 6 as in figure 4. Similarly through the set of 
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parameters for the non-proportional reinsurance in table 4, the optimum strategy for the XL 

reinsurance and stop loss reinsurance as shown in figure 5 and 6. 

 

Table 3: Set of parameters for Quota share reinsurance 

ꞵ η 𝜽 λ 𝜹 

1 0.6 0.61 1 0.01 

 

Table 4: Set of parameters for Quota share reinsurance 

ꞵ η 𝜽 λ 𝜹 

1 0.5 0.65 1 0.01 

 

Figure 4: Illustration of optimal strategy in Quota share reinsurance 

 

Figure 5: Illustration of optimal strategy in XL reinsurance 



18 
S. NAJEEMA, K. VASUDEVAN 

 

Figure 6: Illustration of optimal strategy in stop loss reinsurance 

 

5. CONCLUSION 

The current paper discusses the optimal dynamic reinsurance based on the value function 

formulated with the criteria that involves the premium arrival through the risk theory. The 

theorems and characteristics of the formulated value function were deliberated along with its 

proof. The numerical illustration for the both the proportional and non-proportional reinsurance 

was estimated. The current work observes that the new premium arrival had some positive 

influence in the reinsurance strategies based on the value function that provide the economic 

benefits. 
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