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Abstract. We define an osculating surface to a surface along a curve on the surface in Euclidean 3-space E3.

Then, we analyze the necessary and sufficient condition for that surface to be ruled surface. Finally, we illustrate

the convenience and efficiency of this approach by some representative examples.
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1. INTRODUCTION

The problem of finding surfaces with a given common curve as a special curve play an im-

portant role in geometric design. The first paper related with this type of problem proposed

by Wang et.al. [1]. They parameterized the surface by using the Serret–Frenet frame of the

given curve and gave the necessary and sufficient condition to satisfy the geodesic requirement.

The basic idea is to regard the wanted surface as an extension from the given characteristic

curve, and represent it as a linear combination of the marching-scale functions u(s, t), v(s, t),

w(s, t) and the three vector functions t(s), n(s), b(s), which are the unit tangent, the principal
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normal and the binormal vector of the curve respectively. With the given geodesic curve and

isoparametric constraints, they derived the necessary and sufficient conditions for the correct

parametric representation of the surface pencil. The extension to ruled and developable sur-

faces is also outlined. Kasap et al. [2] generalized the marching-scale functions of Wang and

gave a sufficient condition for a given curve to be a geodesic on a surface. With the inspiration

of work of Wang, Li et al. [3] changed the characteristic curve from geodesic to line of curva-

ture and defined the surface pencil with a common line of curvature. Bayram et al. [4] tackled

the problem of constructing surfaces passing through a given asymptotic curve. Important con-

tributions to surface passing through a given curve have been studied in [5, 6, 7, 8].

However, the relevant work on surfaces through characteristic curve on a surface depending on

the Darboux frame is rare. So, this led us to offer an approach for designing a surface pos-

sessing a given curve on a surface. We call it an osculating surface along the curve. Then, we

analyze the necessary and sufficient condition for that surface to be an osculating ruled surface.

Moreover, we illustrate the convenience and efficiency of this approach by some representative

examples.

2. PRELIMINARIES

In this section, we list some notions, formulas and conclusions for space curves, and ruled

surfaces in Euclidean 3-space E3 which can be found in the textbooks on differential geometry

(See for details [9, 10]).

Let α : I ⊆R→E3 be a unit speed curve; κ(s) and τ(s) denote the natural curvature and torsion

of α = α(s), respectively. We assume α
′′
(s) 6= 0 for all s ∈ [0,L], since this would give us a

straight line. In this paper, α
′
(s) denote the derivative of α with respect to arc length parameter

s. For each point of α(s), the set {t(s), n(s), b(s)} is called the Serret–Frenet frame along α(s),

where t(s) = α
′
(s) is the unit tangent, n(s) = α

′′
(s)/

∥∥∥α
′′
(s)
∥∥∥ is the unit principal normal, and

b(s) = t(s)× n(s) is the unit binormal vector. The arc-length derivative of the Serret–Frenet

frame is governed by the relations:

(1)


t′(s)

n′(s)

b′(s)

=


0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0




t(s)

n(s)

b(s)

 ,
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Let M be a regular surface, and α : I ⊆ R→M is a unit speed curve on M. If we denote the

Darboux frame along the curve α = α(s) by {e1(s), e2(s), e3(s)}; t = e1(s) be the unit tangent

vector, e3 = e3(s) is the surface unit normal restricted to α , and e2= e3×e1 be the unit tangent

to the surface M. Then, the rotation matrix between Serret–Frenet frame and Darboux frame is

(2)


t(s)

n(s)

b(s)

=


1 0 0

0 cosϑ sinϑ

0 −sinϑ cosϑ




e1

e2

e3

 .

Hence, we have the derivative formulae of the Darboux frame as:

(3)


e′1
e′2
e′3

=


0 κg κn

−κg 0 τg

−κn −τg 0




e1

e2

e3

 ,

where

(4)

κn = κ sinϑ =< e′1,e3>,

κg = κ cosϑ = det
(

α
′
,α
′′
,e2

)
,

τg = τ +ϑ
′
= det

(
α
′
,e2,e

′

2

)
.


We call κg = κg(s) a geodesic curvature, κn = κn(s) a normal curvature, and τg = τ −ϑ

′
a

geodesic torsion of α(s), respectively. In terms of these quantities, the geodesics, asymptotic

lines, and line of curvatures on a smooth surface may be characterized, as loci along which

κg = 0, κn = 0, and τg = 0, respectively. Further, we have:

(5)
κ(s) =

√
κ2

g +κ2
n ,

τg(s) = ϑ
′
+ τ.


3. OSCULATING SURFACES

In this section, we consider an osculating surface along a regular curve α = α(s) on the

surface M such that the surface tangent plane is coincident with the subspace Sp{e1,e2}, that is

expressing the surface in terms of the local Darboux frame along α(s) as:

(6) MO : P(s, t) = α(s)+u(s, t)e1(s)+v(s, t)e2(s); 0≤ t ≤ T, 0≤ s≤ L,



4 R. A. ABDEL-BAKY AND M. KHALIFA SAAD

where u(s, t), and v(s, t) are all C1 functions. If the parameter t is seen as the time, the functions

u(s, t), and v(s, t) can then be viewed as directed marching distances of a point unit in the time

t in the direction e1; and e2, respectively, and the position vector α(s) is seen as the initial

location of this point on M. It is easily checked that the two tangent vectors of MO are given by:

(7)
Ps(s, t) = (1+us− vκg)e1 +(uκg +uκg)e2 +(vτg +uκn)e3,

Pt(s, t) = ute1 + vte2.


The lower case subscript letters s, and t denote partial derivatives corresponding to the indicated

variable, e.g., Ps =
∂P
∂ s , Pt =

∂P
∂ t . Thus, the normal vector of MO is

(8) N(s, t) := Ps×Pt = η1(s, t)e1 +η2(s, t)e2 +η3(s, t)e3,

where

(9)

η1(s, t) =−vt(uκn + vτg),

η2(s, t) = ut(uκn + vτg),

η3(s, t) = vt(1+us− vκg)−ut(us +uκg).


Our goal is to find the necessary and sufficient conditions for which the surface MO is oscu-

lating to the surface M along α(s). First, since α(s) is an isoparametric curve on the surface

MO, there exists a parameter t0 ∈ [0,T ] such that P(s, t0) = α(s), 0≤ t0 ≤ T, 0≤ s≤ L, that is,

(10)
u(s, t0) = v(s, t0) = 0,

us(s, t0) = vs(s, t0) = 0.


Secondly, when t = t0, i.e., along the curve α(s) of M, the surface normal is

(11) N(s, t0) = vt(s, t0)e3.

This is the reason why we call MO, the osculating surface of M along the curve α(s). Then we

have the following theorem.

Theorem 1. The surface MO is an osculating surface along the curve α(s) of M if and
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only if

(12)

u(s, t0) = v(s, t0) = 0,

us(s, t0) = vs(s, t0) = 0,

vt(s, t0) 6= 0, 0≤ t0 ≤ T, 0≤ s≤ L.


We will call the set of surfaces defined by Eqs. (6) and (12) isoparametric osculating surfaces,

since the common curve is an isoparametric curve on these surfaces. Any osculating surface

MO defined by Eq. (6) and satisfying Eqs. (12) is a member of them. For the purposes of

simplification and better analysis, next we study the case when the marching-scale functions

u(s, t), and w(s, t) can be written as follows:

(13)
u(s, t) = l(s)U(t),

v(s, t) = n(s)V (t).

Here l(s), n(s),U(t) and V (t) are C1 functions, not identically zero. Thus, from Theorem 1, we

can get the following corollary.

Corollary 1. The necessary and sufficient condition for MO being an osculating surface

along the curve α(s) of M is:

(14)
U(t0) =V (t0) = 0, l(s) = const. 6= 0, n(s) = const. 6= 0,
dV (t0)

dt = const. 6= 0, 0≤ t0 ≤ T, 0≤ s≤ L.


Note that to obtain the osculating surfaces, we can first design the marching-scale functions in

Eq. (14), and then apply them to Eq. (6) to derive the final parameterizations. For convenience

in practice, the marching-scale functions can be further constrained to be in more restricted

forms and still possess enough degrees of freedom to define a large class of osculating surfaces

along the curve α(s) of M. Specifically, let us suppose that u(s, t), and v(s, t) can be chosen in

two different forms:

(1) If we choose

(15)


u(s, t) =

p
∑

k=1
a1kl(s)kU(t)k,

v(s, t) =
p
∑

k=1
a2km(s)kV (t)k.
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Thus, we can simply express the sufficient condition for which MO being an osculating surface

along the curve α(s) of M as:

(16)

 U(t0) =V (t0) = 0,

a21 6= 0, m(s) 6= 0, and dV (t0)
dt 6= 0,

where l(s), m(s),U(t), and V (t) are C1 functions, ai j ∈R (i = 1,2; j = 1,2, ..., p) and l(s), and

n(s) are not identically zero.

(2) If we choose

(17)


u(s, t) =

p
f (∑
k=1

a1kl(s)kU(t)k),

v(s, t) = g(
p
∑

k=1
a2kn(s)kV (t)k),

then, we can rewrite the condition (14) as:

(18)

 U(t0) =V (t0) = v(t0) = f (0) = g(0) = 0,

a21 6= 0, dV (t0)
dt = const 6= 0, n(s) 6= 0, g

′
(0) 6= 0,

where l(s), n(s), U(t), V (t), f , and g are C1 functions.

Example 1. We consider a surface of revolution parameterized by

M : X(s, t) = (s,es sin t,es cos t) .

The curve

α(s) =
(
s,es sins2,es coss2) , s ∈ R,

is a regular curve on the surface M. In this case, the Darboux frame is computed as follows:

e1(s) =
.

α(s)∥∥ .
α(s)

∥∥ =

(
1√

1+ e2s (1+4s2)
,
es (2scoss2 + sins2)√

1+ e2s (1+4s2)
,
es (coss2−2ssins2)√

1+ e2s (1+4s2)

)
,

and

e3(s) =
Xs×Xt

‖Xs×Xt‖

=

(
− e2s
√

e2s + e4s
,

es sins2
√

e2s + e4s
,

es coss2
√

e2s + e4s

)
,
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e2(s) =


− 2s e2s
√

e2s+e4s
√

1+e2s(1+4s2)
,

es(cos(s2)+e2s cos(s2)−2s e2s sin(s2))
√

e2s+e4s
√

1+e2s(1+4s2)
,

−es(2s e2s cos(s2)+sin(s2)+e2s sin(s2))
√

e2s+e4s
√

1+e2s(1+4s2)

 .

Using Eq.(6), the osculating surface family can be represented as:

MO : P(s, t) =


s,

es sin(s2),

es cos(s2)



+u(s, t)



1√
1+e2s(1+4s2)

,

es(2scos(s2)+sin(s2))√
1+e2s(1+4s2)

,

es(cos(s2)−2ssin(s2))√
1+e2s(1+4s2)

+ v(s, t)


− 2s e2s
√

e2s+e4s
√

1+e2s(1+4s2)
,

es(cos(s2)+e2s cos(s2)−2s e2s sin(s2))
√

e2s+e4s
√

1+e2s(1+4s2)
,

−es(2s e2s cos(s2)+sin(s2)+e2s sin(s2))
√

e2s+e4s
√

1+e2s(1+4s2)

 .

It is very clear that the functions u(s, t), and v(s, t) can control the shape of the surface, and if

these functions are given, then we immediately obtain an osculating surface in this family. So,

we consider the following cases:

Case(1): We choose u(s, t) = ssin t, and v(s, t) = t coss, and t ∈ [0,T ]. Obviously, Eqs. (14) are

satisfied, and the osculating surface is given by

MO : P(s, t) =



s− 2st e2s cos(s)
√

e2s+e4s
√

1+e2s(1+4s2)
+ s sin(s)√

1+e2s(1+4s2)
,

es sin(s2)+
est cos(s)((1+e2s)cos(s2)−2e2sssin(s2))

√
e2s+e4s

√
1+e2s(1+4s2)

+
ess(2s cos(s2)+sin(s2))sin(s)√

1+e2s(1+4s2)
,

es cos(s2)− est cos(s)(2e2ss cos(s2)+(1+e2s)sin(s2))
√

e2s+e4s
√

1+e2s(1+4s2)
+

ess(cos(s2)−2s sin(s2))sin(s)√
1+e2s(1+4s2)


.

The surfaces M, MO, and M∪MO along to the curve α are shown in Figs. 1(a,b), 2(a,b).
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(A) (B)

FIGURE 1. (a) The curve α (b) The surface M.

(A) (B)

FIGURE 2. (a) The osculating surface MO. (b) The surfaces MO and M along

the curve α .

Case(2): If we choose u(s, t) = (1+ sin(t))+
4
∑

k=2
a1k(1+ sin(t))k,

v(s, t) = cos(t)+
4
∑

k=2
a2k cosk(t), t0 = 0, t0 = 3π/2, a1k, a2k ∈ R, and t ∈ [0,2π], then Eqs.

(14) are satisfied.

Hence, the osculating surface can be represented as follows:

MO : P(s, t) = {P1(s, t),P2(s, t),P3(s, t)} ,
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where

P1(s, t) =

 s− 2e2ss(1+cos(t)+(1+cos(t))2+2(1+cos(t))3+3(1+cos(t))4)
√

e2s+e4s
√

1+e2s(1+4s2)
+

1+sin(t)+(1+sin(t))2+2(1+sin(t))3+3(1+sin(t))4√
1+e2s(1+4s2)

 ,

P2(s, t) =


es sin(s2)+

es(7+21cos(t)+25cos2(t)+14cos3(t)+3cos4(t))((1+e2s)cos(s2)−2e2ss sin(s2))
√

e2s+e4s
√

1+e2s(1+4s2)
+

es(2s cos(s2)+sin(s2))(1+sin(t)+(1+sin(t))2+2(1+sin(t))3+3(1+sin(t))4)√
1+e2s(1+4s2)

 ,

P3(s, t) =


es cos(s2)−

es(7+21cos(t)+25cos2(t)+14cos3(t)+3cos4(t))(2e2ss cos(s2)+(1+e2s)sin(s2))
√

e2s+e4s
√

1+e2s(1+4s2)
+

es(cos(s2)−2s sin(s2))(1+sin(t)+(1+sin(t))2+2(1+sin(t))3+3(1+sin(t))4)√
1+e2s(1+4s2)

 .

In this case, the surfaces MO, and M∪MO along the curve α are shown in Figs. 3(a,b).

(A) (B)

FIGURE 3. (a) The osculating surface MO. (b) The surface MO and M along the

curve α .

Example 2. Let a surface M given by

M : X(s, t) =
(

cos(s)− t√
2

cos(s),sin(s)− t√
2

sin(s),
s√
2

)
,
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where the curve

α(s) =
(

cos(s)− scos(s)√
2

,sin(s)− ssin(s)√
2

,
s√
2

)
.

In this case, we get

e1(s) =


−
√

2cos(s)+(−2+
√

2s)sin(s)
√

2
√

4−2
√

2s+s2
,

−(−2+
√

2s)cos(s)+
√

2sin(s)
√

2
√

4−2
√

2s+s2
,

1√
4−2
√

2s+s2

 ,

e3(s) =

(
sin(s)√

3−2
√

2v+ v2
,− cos(s)√

3−2
√

2v+ v2
,

√
2− v√

3−2
√

2v+ v2

)
,

e2(s) =


(−3+

√
2s+(

√
2−s)s)cos(s)+(

√
2−s)sin(s)√

3−2
√

2s+s2
√

4−2
√

2s+s2
,

(−
√

2+s)cos(s)+(−3+
√

2s+(
√

2−s)s)sin(s)√
3−2
√

2s+s2
√

4−2
√

2s+s2
,

− 1√
3−2
√

2s+s2
√

4−2
√

2s+s2

 .

Also, using Eq. (6), the osculating surface family can be represented as:

MO : P(s, t) =
(

cos(s)− s cos(s)√
2

,sin(s)− s sin(s)√
2

,
s√
2

)

+u(s, t)


−
√

2cos(s)+(−2+
√

2s)sin(s)
√

2
√

4−2
√

2s+s2
,

−(−2+
√

2s)cos(s)+
√

2sin(s)
√

2
√

4−2
√

2s+s2
,

1√
4−2
√

2s+s2



+v(s, t)


(−3+

√
2s+(

√
2−s)s)cos(s)+(

√
2−s)sin(s)√

3−2
√

2s+s2
√

4−2
√

2s+s2
,

(−
√

2+s)cos(s)+(−3+
√

2s+(
√

2−s)s)sin(s)√
3−2
√

2s+s2
√

4−2
√

2s+s2
,

− 1√
3−2
√

2s+s2
√

4−2
√

2s+s2

 .

It is very clear that the functions u(s, t), and v(s, t) can control the shape of the surface, and if

these functions are given, then we immediately obtain an osculating surface in this family. So,

we consider the following cases:

Case(1): We choose u(s, t) = es sin t, and v(s, t) = sin t coss, and t ∈ [0,T ]. Obviously, Eqs.

(14) are satisfied, and the osculating surface is given by
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MO : P(s, t) =



cos(s)− scos(s)√
2

+
cos(s)((−3+2

√
2s−s2)cos(s)+(

√
2−s)sin(s))sin(t)√

3−2
√

2s+s2
√

4−2
√

2s+s2
+

es(−
√

2cos(s)+(−2+
√

2s)sin(s))sin(t)
√

2
√

4−2
√

2s+s2
,

sin(s)− ssin(s)√
2
− es((−2+

√
2s)cos(s)+

√
2sin(s))sin(t)

√
2
√

4−2
√

2s+s2
+

cos(s)((−
√

2+s)cos(s)+(−3+2
√

2s−s2)sin(s))sin(t)√
3−2
√

2s+s2
√

4−2
√

2s+s2
,

s√
2
+

(
es
√

3−2
√

2s+s2−cos(s)
)

sin(t)
√

3−2
√

2s+s2
√

4−2
√

2s+s2


.

The surfaces M, MO, and M∪MO along the curve α are shown in Figs. 4(a,b), 5(a,b).

(A) (B)

FIGURE 4. (a) The base curve α . (b) The surface M.

(A) (B)

FIGURE 5. (a) The osculating surface MO. (b) The surface MO and M along to

the curve α .
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Case(2): If we choose u(s, t) = (1+ sin(t))+
4
∑

k=2
a1k(1+ sin(t))k,

v(s, t) = cos(t)+
4
∑

k=2
a2k cosk(t), t0 = 0, t0 = 3π/2, a1k, a2k ∈ R, and t ∈ [0,2π], then Eqs.

(14) are satisfied. Hence, the osculating surface can be represented as follows:

MO : P(s, t) = {P1(s, t),P2(s, t),P3(s, t)} ,

where

P1(s, t) =


cos(s)− scos(s)√

2
+

(7+21cos(t)+25cos2(t)+14cos3(t)+3cos4(t))((−3+2
√

2s−s2)cos(s)+(
√

2−s)sin(s))√
3−2
√

2s+s2
√

4−2
√

2s+s2
+

(−
√

2cos(s)+(−2+
√

2s)sin(s))(1+sin(t)+(1+sin(t))2+2(1+sin(t))3+3(1+sin(t))4)
√

2
√

4−2
√

2s+s2

 ,

P2(s, t) =


sin(s)− ssin(s)√

2
−

(7+21cos(t)+25cos2(t)+14cos3(t)+3cos4(t))((
√

2−s)cos(s)+(3−2
√

2s+s2)sin(s))√
3−2
√

2s+s2
√

4−2
√

2s+s2
−

((−2+
√

2s)cos(s)+
√

2sin(s))(1+sin(t)+(1+sin(t))2+2(1+sin(t))3+3(1+sin(t))4)
√

2
√

4−2
√

2s+s2

 ,

P3(s, t) =

 s√
2
− 1+cos(t)+(1+cos(t))2+2(1+cos(t))3+3(1+cos(t))4√

3−2
√

2s+s2
√

4−2
√

2s+s2
+

1+sin(t)+(1+sin(t))2+2(1+sin(t))3+3(1+sin(t))4√
4−2
√

2s+s2

 .

In this case, the surfaces MO, and M∪MO along to the curve α are shown in Figs. 6(a,b).

(A) (B)

FIGURE 6. (a) The osculating surface MO. (b) The surface MO and M along to

the curve α .
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4. OSCULATING RULED SURFACES

A ruled surface is a surface generated by a straight line L moving along a curve. The various

positions of the generating lines are called the rulings or generators of the surface. If it’s tangent

planes in points of L are winding about L, the ruling L is called regular. If the tangent planes

of points of L do not wind, i.e. there is only one tangent plane shared by all points of L, the

ruling is called torsal. Ruled surfaces having only torsal rulings are called torsal ruled surfaces

or developable ruled surfaces.

In this subsection, we will discuss the construction of osculating ruled surfaces. Suppose that

MO is a ruled surface along the curve α(s) of M, then there exists t0 such that P(s, t0) = α(s).

This follows that the ruled surface can be expressed as

MO : P(s, t) = P(s, t0)+(t− t0)e(s), 0≤ s≤ L, with t, t0 ∈ [0,T ],

where e(s) denotes the direction of the rulings. According to the Eq. (6), we have

(19) (t− t0)e(s) = u(s, t)e1(s)+v(s, t)e2(s), 0≤ s≤ L, with t, t0 ∈ [0,T ],

which is a system of two equations with two unknown functions u(s, t), and v(s, t). For simplic-

ity, we omit variable s. The solutions of the above system can be deduced as

(20)
u(s, t) = (t− t0)< e,e1 >= det(e,e2,e3),

v(s, t) = (t− t0)< e,e2 >= det(e,e3,e1).

The above equations are just the necessary and sufficient conditions for which MO is a ruled

surface with a directrix α(s) on M.

Now, we need to check if MO is an osculating ruled surface with a directrix α(s) of M by

using the conditions given in Theorem 1. It is evident that in this case, these conditions become

(21)
det(e,e2,e3) =< e,e1 >= 0,

det(e,e3,e1) =< e,e2 >6= 0.

It follows that the at any point on the curve α(s); the ruling direction e(s) must be in the plane

Sp{e2,e3}. On the other hand, the ruling direction e(s) and the vector e3(s) must not be parallel.

This leads to

(22) e(s) = βe2 + γe3, β 6= 0, 0≤ s≤ L,
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for some real functions β (s), and γ(s). Substituting it into the expressions in Eq. (20), we get:

(23) u(s, t) = β (s)t, v(s, t) = γ(s)t; β (s) 6= 0, 0≤ s≤ L.

Hence, the isoparametric ruled surfaces with a directrix α(s) on M can be expressed as:

(24)
MO : P(s, t) = α(s)+ te(s),

e(s) = βe2 + γe3, 0≤ s≤ L, 0≤ t ≤ T,


where the functions γ(s), and β (s) 6= 0 can control the shape of the ruled surfaces. However,

the normal vector to the ruled surface MO is

(25) N(s, t) = [1− t (βκg + γκn)]e1 + t
(

β
′
− γτg

)
e2 + t

(
γ
′
+βτg

)
e3,

and thus when t = 0, i.e., along the curve α(s), the surface normal is

(26) N(s,0) = e3.

So, the normal vector of MO at P(s, t0) = α(s) is coincident with the normal vector of M at

α(s). This is the reason why we call MO the osculating ruled surface of M along α(s).

Theorem 2. The necessary and sufficient condition for MO being an osculating ruled

surface along α(s) of M is that there exist a parameter t0 ∈ [0,T ], and the functions γ(s), and

β (s) 6= 0, so that MO can be represented by Eq. (24).

By Theorem 2, we not only prove the existence of the osculating surface, but also give the

concrete expression of the surface. Every member of the isoparametric osculating ruled surfaces

along α(s) of M is decided by two family parameters γ(s), and β (s) 6= 0, i.e., by the direction

vector function e(s).

Example 3. We consider a surface parameterized by

M : X(s, t) =

(
1+ coss−

√
2t sins√

3+ coss
,

√
2t coss√

3+ coss
+ sins,

√
2t coss√

3+ coss
+2sin

s
2

)
.

This surface is a ruled surface such that the base curve is

α(s) = (1+ coss,sins,2sin
( s

2

)
), s ∈ R.
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Thus, α(s) is a regular curve on the surface M. Then, we obtain

e1(s) =
.

α(s)∥∥ .
α(s)

∥∥ =

(
−
√

2sins√
3+ coss

,

√
2coss√

3+ coss
,

√
2cos

( s
2

)
√

3+ coss

)
,

and

e3(s) =
Xs×Xt

‖Xs×Xt‖

=
1√

13+3coss

(
−3sin

( s
2

)
− sin

(3s
2

)
√

2
,2
√

2cos3
( s

2

)
,−2
√

2

)
,

e2(s) =
1√

(3+ cos(s))(13+3cos(s))


4
(
cos4( s

2)+ cos(s)
)
,

(6+ cos(s))sin(s),

2sin( s
2)

 .

Thus, using Eq. (23), the osculating surface family can be represented as:

MO : P(s, t) =
{

1+ coss,sins,2sin
s
2

}
+

t

β (s)


−
√

2sins√
3+coss

,
√

2coss√
3+coss

,
√

2cos( s
2)√

3+coss

+ γ(s)



4(cos4( s
2 )+cos(s))√

(3+cos(s))(13+3cos(s))
,

(6+cos(s))sin(s)√
(3+cos(s))(13+3cos(s))

,

2sin( s
2 )√

(3+cos(s))(13+3cos(s))



 .

The functions β (s) and γ(s) can control the shape of the surface and it is very clear that if these

functions are given, then we immediately obtain an osculating surface in the family. In the

following, we consider two cases:

Case(1): We choose β (s) = sins, and γ(s) = s. Obviously, Eqs. (19)-(23) are satisfied, and the

osculating surface in this family is given by:

MO : P(s, t) =



1+ cos(s)+
t
(

4scos4( s
2 )+4scos(s)−

√
26+6cos(s)sin(s)2

)
√

3+cos(s)
√

13+3cos(s)
,

sin(s)+
t
(

6s+cos(s)
(

s+
√

26+6cos(s)
))

sin(s)
√

3+cos(s)
√

13+3cos(s)
,(

2+ 2st√
3+cos(s)

√
13+3cos(s)

)
sin( s

2)+
√

2t cos( s
2 )sin(s)√

3+cos(s)


.

The surfaces M, MO, and M∪MO along the curve α, are shown in Figs. 7(a,b), 8(a,b).
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(A) (B)

FIGURE 7. (a) The base curve α (b) The ruled surface M.

(A) (B)

FIGURE 8. (a) The osculating surface MO. (b) The surfaces MO and M along

the curve α .

Case(2): If we choose β (s) = s2 and γ(s) = 2s, then the osculating surface in this family is

given by:

MO : P(s, t) =



1+ cos(s)+
st
(

3+12cos(s)+cos(2s)−s
√

26+6cos(s)sin(s)
)

√
3+cos(s)

√
13+3cos(s)

,

sin(s)+
st
(

scos(s)
√

26+6cos(s)+12sin(s)+sin(2s)
)

√
3+cos(s)

√
13+3cos(s)

,
√

2s2t cos( s
2 )√

3+cos(s)
+2
(

1+ 2st√
3+cos(s)

√
13+3cos(s)

)
sin( s

2)


.

The surfaces M, MO, and M∪MO along the curve α, are shown in Figs. 9(a,b).
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(A) (B)

FIGURE 9. (a) The osculating surface MO. (b) The surfaces MO and M along

the curve α .

5. CONCLUSION

In the three-dimensional Euclidean space E3, an osculating surface to a surface along a curve

on this surface has been defined. Then, the necessary and sufficient conditions for that surface

to be a ruled surface have been investigated. Meanwhile, we have illustrated the convenience

and efficiency of this approach by some representative examples.
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