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1. INTRODUCTION

By the introduction of α-ψ-contraction, an important generalization of Banach contraction

had been made by Samet, Vetro and Vetro [3]. They consider Ψ as a family of nondecreasing

functions ψ : [0,+∞)→ [0,+∞) so that Σ
+∞

n=1ψn(t) < +∞ for t > 0, where ψn denotes the

nth iterate of ψ . They also defined a new type of mapping called α-admissible mapping

for their study. The concept of α-admissible draws the attention of many researchers

and hence generalized further as triangular α-admissible [2], α-orbital admissible and

triangular α-orbital admissible [3]. A new concept known as generalized α∗-ψ-Geraghty
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contraction type for multivalued mappings was introduced in 2017 by Ameer et al. [8].

Moreover, Bakhtin [4], by generalizing metric space, introduced b-metric space. For

more results on various types of contraction mappings and b-metric space, one can see in

[5, 7, 9, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

Here, the concept of generalized rational α∗-contraction for multivalued mappings in the

setting of b-metric spaces is introduced.

2. PRELIMINARIES

We start this section with some definitions.

Definition 1. [4] Let s≥ 1 be a real number and d : X2→ [0,+∞) be a mapping where X 6= φ

such that for all κ,τ,ω ∈ X

(i): d(κ,τ) = 0 implies and is implied by κ = τ ,

(ii): d(κ,τ) = d(τ,κ)

(iii): d(κ,τ)≤ s[d(κ,ω)+d(ω,τ)]

Then we say that d is a b-metric on X.

Definition 2. [3] Let P : X → X and α : X ×X → [0,+∞) be two mappings with the condition

that if α(κ,τ)≥ 1 implies α(Pκ,Pτ)≥ 1, then P is said to be α-admissible .

Definition 3. [10] Let P : X → X and α : X ×X → [0,+∞) be two mappings such that P is α-

admissible and satisfying the property that if α(κ,ω)≥ 1 and α(ω,τ)≥ 1 imply α(κ,τ)≥ 1,

then P is said to be triangular α-admissible.

Definition 4. [11] Let P : X → X and α : X×X → [0,+∞) be two mappings with the condition

that if α(κ,Pκ)≥ 1 implies α(Pκ,P2κ)≥ 1, then P is said to be α-orbital admissible.

Definition 5. [11] Let P : X → X and α : X ×X → [0,+∞) be two mappings such that P is

α-orbital admissible and satisfying the property that if α(κ,τ) ≥ 1 and α(τ,Pτ) ≥ 1 imply

α(κ,Pτ)≥ 1, then P is said to be triangular α-orbital admissible.
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Let us consider a b-metric space (X ,d) and let CB(X) denotes the family of all closed and

bounded subsets of X .For κ ∈ X and M,N ∈CB(X), we define

D(κ,M) = inf
a∈M

d(κ,a) and D(M,N) = sup
a∈M

D(a,N).

Let H : CB(X)2→ [0,+∞) be a mapping defined as

H(M,N) = max{ sup
κ∈M

D(κ,N), sup
τ∈N

D(τ,M)},

for every M,N ∈CB(X). Then, H is a b-metric and it is named as a Hausdorff b-metric induced

by a b-metric space (X ,d).

Lemma 1. [6] Let us consider a b-metric space (X ,d). Then, for any κ,τ ∈ X and any M,N ∈

CB(X), we have the following:

(i): D(κ,N)≤ d(κ,b), for any b ∈ N,

(ii): D(κ,N)≤ H(M,N),

(iii): D(κ,M)≤ s[d(κ,τ)+D(τ,N)].

Lemma 2. [6] Let us consider two nonempty closed and bounded subsets, M and N of a b-

metric space (X ,d) and q < 1. Then, for every a ∈ M, there exists some b ∈ N such that

qd(a,b)≤ H(M,N).

Definition 6. [12] Let α : X ×X → [0,+∞) be a mapping and P : X →CB(X) be a multival-

ued mapping satisfying the property that if α(κ,τ) ≥ 1 implies that α∗(Pκ,Pτ) ≥ 1, where

α∗(M,N) = inf{α(κ,τ) : κ ∈M,τ ∈ N}, then P is said to be α∗-admissible.

Definition 7. [13] Consider a b-metric space, (X ,d) and a mapping α : X ×X → [0,+∞). If

every Cauchy sequence {κn} in X with α(κn,κn+1)≥ 1 for all n ∈ N converges in X, then X is

said to be complete.

Lemma 3. [1] Let us consider a b-metric space, (X ,d) with s ≥ 1 and a sequence {κn} in

X. If there exists γ ∈ [0,1) satisfying d(κn+1,κn) ≤ γd(κn,κn−1) for all n ∈ N, then {κn} is a

b-Cauchy sequence.
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Definition 8. [13] Let (X ,d) be a b-metric space. Let P : X → X be a mapping and α,η :

X ×X → [0,+∞) be two functions. we say that P is α-η-continuous mapping on (X ,d) if for

given κ ∈ X and a sequence {κn} in X with α(κn,κn+1)≥ 1 for all n ∈ N such that κn→ κ as

n→+∞, then Pκn→ Pκ as n→+∞.

If η(κn,κn+1) = 1, then P is called an α-continuous mapping.

Let Ψ denote the class of functions ψ : [0,+∞)→ [0,+∞) which is nondecreasing, continu-

ous and ψ(t) = 0 if and only if t = 0.

3. MAIN RESULTS

Following definitions and properties will be needed for our results.

Definition 9. [8] Let P,Q : X→CB(X) be two multi-valued mappings and α : X×X→ [0,+∞)

be a function. Then the pair (P,Q) is said to be triangular α∗-admissible if the following

conditions hold:

(i): (P,Q) is α∗-admissible; that is, α(κ,τ) ≥ 1 implies α∗(Pκ,Qτ) ≥ 1 and

α∗(Qκ,Pτ)≥ 1, where

α∗(M,N) = inf{α(κ,τ) : κ ∈M,τ ∈ N},

(ii): α(κ,ω)≥ 1 and α(ω,τ)≥ 1 imply α(κ,τ)≥ 1.

Definition 10. [8] Let P,Q : X→CB(X) be two multi-valued mappings and α : X×X→ [0,+∞)

be a function. Then the pair (P,Q) is said to be α∗-orbital admissible if the following condition

holds:

(i): α∗(κ,Pκ)≥ 1 and α∗(κ,Qκ)≥ 1 imply α∗(Pκ,Q2κ)≥ 1 and α∗(Qκ,P2κ)≥ 1.

Definition 11. [8] Let P,Q : X→CB(X) be two multi-valued mappings and α : X×X→ [0,+∞)

be a function. Then the pair (P,Q) is said to be triangular α∗-orbital admissible, if the following

conditions hold:

(i): (P,Q) is α∗-orbital admissible.

(ii): α(κ,τ)≥ 1, α∗(τ,Pτ)≥ 1 and α∗(τ,Qτ)≥ 1 imply α∗(κ,Pτ)≥ 1 and α∗(κ,Qτ)≥

1.
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Lemma 4. [8] Let P,Q : X → CB(X) be two multi-valued mappings such that the pair (P,Q)

is triangular α∗-orbital admissible. Assume that there exists κ0 ∈ X such that α∗(κ0,Pκ0)≥ 1.

Define a sequence {κn} in X by κ2i+1 ∈ Pκ2i and κ2i+2 ∈ Qκ2i+1, where i = 0,1,2, . . . . Then

for n,m ∈ N∪{0} with m > n, we have α(κn,κm)≥ 1.

Definition 12. [8] Let (X ,d) be a b-metric space. Let P : X→CB(X) be a multi-valued mapping

and α : X ×X → [0,+∞) be a function. Then it is said that P is an α-continuous multi-valued

mapping on (CB(X),H) if whenever {κn} is a sequence in X with α(κn,κn+1) ≥ 1 for all

n ∈ N∪{0} and κ ∈ X such that limn→+∞ d(κn,κ) = 0, then limn→+∞ H(Pκn,Pκ) = 0.

Now, we introduce the concept of a pair of generalized rational α∗-contraction type for multi-

valued mappings and used it to obtain common fixed point.

Definition 13. In a b-metric space (X ,d), α : X ×X → [0,+∞) be a function and ε > 1. We

say that two multivalued mappings P,Q : X → CB(X) is a pair of generalized rational α∗-

contraction type for multivalued mappings if there exists κ,τ ∈ X with α(κ,τ)≥ 1 and satisfies

(1) H(Pκ,Qτ)≤ 1
sε

M(κ,τ)

where

M(κ,τ) = max
{

d(κ,τ),D(κ,Pκ),D(τ,Qτ),
D(κ,Pκ)D(κ,Qτ)+D(τ,Qτ)D(τ,Pκ)

1+ s[D(κ,Pκ)+D(τ,Dτ)]
,

D(κ,Pκ)D(κ,Qτ)+D(τ,Qτ)D(τ,Pκ)

1+D(κ,Qτ)+D(τ,Pκ)

}
(2)

Theorem 1. In a b-metric space (X ,d) with s ≥ 1 and α : X ×X → [0,+∞) be a function.

Let P,Q : X → CB(X) be a pair of generalized rational α∗-contraction type for multivalued

mappings.

(i): (X ,d) is an α-complete;

(ii): (P,Q) is triangular α∗-orbital admissible;

(iii): α∗(κ0,Pκ0)≥ 1 for κ0 ∈ X;

(iv): P and Q are α-continuous.

κ∗ is a common fixed point of P and Q in X.



6 SINGH, STEPHEN, DEVI, ROHEN

Proof. First, let s > 1 and κ0 ∈ X be so that α∗(κ0,Pκ0)≥ 1. Let κ1 ∈ Pκ0 so that α(κ0,κ1)≥ 1

and κ1 6= κ0. Due to inequality (1)

0 < D(κ1,Qκ1)≤ H(Pκ0,Qκ1)≤
1
sε

M(κ0,κ1)

Using Lemma 2 for q = 1
s < 1, there exists κ2 ∈ Qx1 such that

(3)
1
s

d(κ1,κ2)≤ H(Pκ0,Qκ1)≤
1
sε

M(κ0,κ1)

where

M(κ0,κ1) = max
{

d(κ0,κ1),D(κ0,Pκ0),D(κ1,Qκ1),

D(κ0,Pκ0)D(κ0,Qκ1)+D(κ1,Qκ1)D(κ1,Pκ0)

1+ s[D(κ0,Pκ0)+D(κ1,Qκ1)]
,

D(κ0,Pκ0)D(κ0,Qκ1)+D(κ1,Qκ1)D(κ1,Pκ0)

1+D(κ0,Qκ1)+D(κ1,Pκ0)

}
= max

{
d(κ0,κ1),d(κ0,κ1),D(κ1,Qκ1),

d(κ0,κ1)D(κ0,Qκ1)+D(κ1,Qκ1)d(κ1,κ1)

1+ s[d(κ0,κ1)+D(κ1,Qκ1)]
,

d(κ0,κ1)D(κ0,Qκ1)+D(κ1,Qκ1)d(κ1,κ1)

1+D(κ0,Qκ1)+d(κ1,κ1)

}
= max

{
d(κ0,κ1),D(κ1,Qκ1),

d(κ0,κ1)s[d(κ0,κ1)+D(κ1,Qκ1)]

1+ s[d(κ0,κ1)+D(κ1,Qκ1)]
,

d(κ0,κ1)D(κ0,Qκ1)

1+D(κ0,Qκ1)

}
= max{d(κ0,κ1),D(κ1,Qκ1)}

If max{d(κ0,κ1),D(κ1,Qκ1)}= D(κ1,Qκ1), then by (3)

0 < D(κ1,Qκ1)≤
1
sε

D(κ1,Qκ1)

a contradiction, hence

max{d(κ0,κ1),D(κ1,Qκ1)}= d(κ0,κ1)

By (3), we have

d(κ1,κ2)≤
1

sε−1 d(κ0,κ1)
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Similarly, for κ2 ∈ Qκ1 and κ3 ∈ Pκ2, we have

(4)
1
s

d(κ2,κ3)≤ H(Qκ1,Pκ2)≤
1
sε

M(κ1,κ2)

where

M(κ1,κ2) = max
{

d(κ1,κ2),D(κ1,Pκ1),D(κ2,Qκ2),

D(κ1,Pκ1)D(κ1,Qκ2)+D(κ2,Qκ2)D(κ2,Pκ1)

1+ s[D(κ1,Pκ1)+D(κ2,Qκ2)]

D(κ1,Pκ1)D(κ1,Qκ2)+D(κ2,Qκ2)D(κ2,Pκ1)

1+D(κ1,Qκ2)+D(κ2,Pκ1)

}
= max{d(κ1,κ2),D(κ2,Pκ2)}

Due to inequality (1)

(5) 0 < D(κ2,Pκ2)≤ H(Qκ1,Pκ2)≤
1
sε

M(κ1,κ2)

If M(κ1,κ2) = D(κ2,Pκ2), then by (5)

0 < D(κ2,Pκ2)<
1
sε

D(κ2,Pκ2)

which is impossible. Thus

max
{

d(κ1,κ2),D(κ2,Pκ2)
}
= d(κ1,κ2)

and by (4)

d(κ2,κ3)≤
1

sε−1 d(κ1,κ2)

Now, let {κn} be a sequence in X so that κ2i+1 ∈ Pκ2i and κ2i+2 ∈ Qκ2i+1, i = 0,1,2, . . . . So

α∗(κ0,Pκ0)≥ 1 and (P,Q) is triangular α∗-orbital admissible, by Lemma 4

α(κn,κn+1)≥ 1,∀ n ∈ N∪{0}.

Then,

(6) 0 < D(κ2i+1,Qκ2i+1)≤ H(Pκ2i,Qκ2i+1)≤
1
sε

M(κ2i,κ2i+1)

and

(7)
1
s

d(κ2i+1,κ2i+2)≤ H(Pκ2i,Qκ2i+1)≤
1
sε

M(κ2i,κ2i+1)
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for n ∈ N∪{0}, where

M(κ2i,κ2i+1)

= max
{

d(κ2i,κ2i+1),D(κ2i,Pκ2i),D(κ2i+1,Qκ2i+1),

D(κ2i,Pκ2i)D(κ2i,Qκ2i+1)+D(κ2i+1,Qκ2i+1)D(κ2i+1,Pκ2i)

1+ s[D(κ2i,Pκ2i)+D(κ2i+1,Qκ2i+1)]
,

D(κ2i,Pκ2i)D(κ2i,Qκ2i+1)+D(κ2i+1,Qκ2i+1)D(κ2i+1,Pκ2i)

1+D(κ2i,Qκ2i+1)+D(κ2i+1,Pκ2i)

}
= max

{
d(κ2i,κ2i+1),d(κ2i,κ2i+1),d(κ2i+1,κ2i+2),

d(κ2i,κ2i+1),D(κ2i,Qκ2i+1)+D(κ2i+1,Qκ2i+1)d(κ2i+1,κ2i+1)

1+ s[d(κ2i,κ2i+1)+D(κ2i+1,Qκ2i+1)]
,

d(κ2i,κ2i+1)D(κ2i,Qκ2i+1)+D(κ2i+1,Qκ2i+1)d(κ2i+1,κ2i+1)

1+D(κ2i,Qκ2i+1)+d(κ2i+1,κ2i+1)

}
= max

{
d(κ2i,κ2i+1),D(κ2i+1,Qκ2i+1),

d(κ2i,κ2i+1)s[d(κ2i,κ2i+1)+D(κ2i+1,Qκ2i+1)]

1+ s[d(κ2i,κ2i+1)+D(κ2i+1,Qκ2i+1)]
,

d(κ2i,κ2i+1)D(κ2i,Qκ2i+1)

1+D(κ2i,Qκ2i+1)

}
= max{d(κ2i,κ2i+1),D(κ2i+1,Qκ2i+1)}

we get,

M(κ2i,κ2i+1)≤max{d(κ2i,κ2i+1),D(κ2i+1,Qκ2i+1)}.

If max{d(κ2i,κ2i+1),D(κ2i+1,Qκ2i+1)}= D(κ2i+1,Qκ2i+1), then from (6), we have

0 < D(κ2i+1,Qκ2i+1)≤
1
sε

D(κ2i+1,Qκ2i+1)

a contradiction and hence

max{d(κ2i,κ2i+1),D(κ2i+1,Qκ2i+1)}= d(κ2i,κ2i+1).

Further, by (7) we get

d(κ2i+2,κ2i+1)≤
1

sε−1 d(κ2i+1,κ2i).

Thus d(κn+1,κn+2) ≤ 1
sε−1 d(κn,κn+1) holds for all n ∈ N∪{0} and hence {xn} is a Cauchy

sequence.
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Due to the α-completeness of (X ,d) and α(κn,κn+1)≥ 1 we have, κ∗ ∈ X for all n∈N∪{0}

such that

lim
n→+∞

d(κn,κ∗) = 0⇒ lim
i→+∞

d(κ2i+1,κ
∗) = 0 and lim

i→+∞
d(κ2i+2,κ

∗) = 0.

Due to α-continuity of Q, lim
n→+∞

H(Qκ2i+1,Qκ
∗) = 0.

Thus,

D(κ∗,Qκ
∗) ≤ s[d(κ∗,κ2i+1)+D(κ2i+1,Qκ

∗)]

≤ s[d(κ∗,κ2i+1)+H(Qκ2i+1,Qκ
∗)]

→ s[0+0] = 0

so, κ∗ ∈ Qκ∗. Similarly, κ∗ ∈ Pκ∗.

Hence, κ∗ ∈ X is a common fixed point of P and Q. �

Theorem 2. In a b-metric space (X ,d) with s ≥ 1 and α : X ×X → [0,+∞) be a function.

Let P,Q : X → CB(X) be a pair of generalized rational α∗-contraction type for multivalued

mappings.

(i): (X ,d) is an α-complete;

(ii): (P,Q) is triangular α∗-orbital admissible;

(iii): α∗(κ0,Pκ0)≥ 1 for κ0 ∈ X;

(iv): if {κn} is a sequence in X such that α(κn,κn+1) ≥ 1 for all n ∈ N ∪ {0} and

κn → κ∗ ∈ X as n→ +∞, then there exists a subsequence {κn(k)} of {κn} such that

α(κn(k),κ
∗)≥ 1 for all k ∈ N∪{0}.

κ∗ is a common fixed point of P and Q in X.

Proof. Similar to the proof of Theorem 1, let {κn} be a sequene in X as κ2i+1 ∈ Pκ2i and

κ2i+2 ∈ Qκ2i+1 where i = 0,1,2, . . . with α(κn,κn+1) ≥ 1, for all n ∈ N∪{0} such that {xn}

converges to κ∗ ∈ X . By condition (iv), there exists a subsequence {κn(k)} of {κn} such that
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α(κn(k),κ
∗)≥ 1 for all k. Therefore,

1
s

D(κ∗,Qκ
∗) ≤ d(κ∗,κ2n(k)+1)+D(κ2n(k)+1,Qκ

∗)

≤ d(κ∗,κ2n(k)+1)+H(Pκ2n(k),Qκ
∗)

≤ d(κ∗,κ2n(k)+1)+
1
sε

M(κ2n(k),κ
∗)(8)

where

M(κ2n(k),κ
∗)

= max
{

d(κ2n(k),κ
∗),D(κ2n(k),Pκ2n(k)),D(κ∗,Qκ

∗),

D(κ2n(k),Pκ2n(k))D(κ2n(k),Qκ∗)+D(κ∗,Qκ∗)D(κ∗,Pκ2n(k))

1+ s[D(κ2n(k),Pκ2n(k))+D(κ∗,Qκ∗)]
,

D(κ2n(k),Pκ2n(k))D(κ2n(k),Qκ∗)+D(κ∗,Qκ∗)D(κ∗,Pκ2n(k))

1+D(κ2n(k),Qκ∗)+D(κ∗,Pκ2n(k))

}
= max

{
d(κ2n(k),κ

∗),D(κ2n(k),Pκ2n(k)),D(κ∗,Qκ
∗),

D(κ2n(k),Pκ2n(k))D(κ2n(k),Qκ∗)+D(κ∗,Qκ∗)D(κ∗,Pκ2n(k))

1+ s[D(κ2n(k),Pκ2n(k))+D(κ∗,Qκ∗)]
,

D(κ2n(k),Pκ2n(k))D(κ2n(k),Qκ∗)+D(κ∗,Qκ∗)D(κ∗,Pκ2n(k))

1+D(κ2n(k),Qκ∗)+D(κ∗,Pκ2n(k))

}
(9)

Applying k → +∞, we get limk→+∞ M(κ2n(k),κ
∗) = D(κ∗,Qκ∗) . Let κ∗ /∈ Qκ∗, then

D(κ∗,Qκ∗)> 0,

a contradiction. Applying k→+∞, we get

1
s

D(x∗,Qx∗)≤ d(x∗,x2n(k)+1)+D(x2n(k)+1,Qx∗),

which contradicts ε > 1, and hence κ∗ ∈Qκ∗ i.e. κ∗ is the fixed point of Q. Similarly, we have

κ∗ ∈ Pκ∗. Thus, κ∗ ∈ X is the common fixed point of P and Q. �

Corollary 1. In a complete b-metric space (X ,d) with s ≥ 1 and α : X ×X → [0,+∞) be a

function. Let P : X → CB(X) be a generalized rational α∗-contraction type for multi-valued

mappings

(i): (X ,d) is an α-complete;
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(ii): P is triangular α∗-orbital admissible;

(iii): α∗(κ0,Pκ0)≥ 1 for κ0 ∈ X;

(iv): P is an α-continuous multi-valued mapping or if {κn} is a sequence in X such that

α(κn,κn+1)≥ 1 for all n∈N∪{0} such that κn→ κ∗ ∈ X as n→+∞, then there exists

a subsequence {κn(k)} of {κn} such that α(κn(k),κ
∗)≥ 1 for all k ∈ N∪{0}.

κ∗ is a fixed point of P in X.

Following corollary can be otained by putting ψ(t) = t in Theorems 1 and 2.

Corollary 2. In a complete b-metric space (X ,d) with s ≥ 1 and α : X ×X → [0,+∞) be a

function. Let P,Q : X →CB(X) be two multivalued mappings

(i): (X ,d) is an α-complete;

(ii): there exists g ∈ G such that for κ,τ ∈ X with α(κ,τ)≥ 1, the pair (P,Q) satisfies the

following inequality:

s3H(Pκ,Qτ)≤ g(M(κ,τ)).(M(κ,τ)),

where

M(κ,τ) = max
{

d(κ,τ),D(κ,Pκ),D(τ,Qτ),

D(κ,Pκ)D(κ,Qτ)+D(τ,Qτ)D(τ,Pκ)

1+ s[D(κ,Pκ)+D(τ,Qτ)]
,

D(κ,Pκ)D(κ,Qτ)+D(τ,Qτ)D(τ,Pκ)

1+D(κ,Qτ)+D(τ,Pκ)

}
;

(iii): (P,Q) is triangular α∗-orbital admissible;

(iv): α∗(κ0,Pκ0)≥ 1 for κ0 ∈ X;

(v): P and Q are α-continuous or if {κn} is a sequence in X such that α(κn,κn+1) ≥ 1

for all n ∈ N∪{0} such that κn→ κ∗ ∈ X as n→+∞, then there exists a subsequence

{κn(k)} of {κn} such that α(κn(k),κ
∗)≥ 1 for all k ∈ N∪{0}.

κ∗ is a common fixed point of P and Q.
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4. CONSEQUENCES

Definition 14. Let (X ,d) be a b-metric space. Let α : X ×X → [0,+∞) be a function and

P,Q : X → X be two mappings. The pair (P,Q) is said to be a generalized rational α-ψ-

Geraghty contraction type mapping, if there exists g ∈ G and ψ ∈Ψ such that for all κ,τ ∈ X

with α(κ,τ)≥ 1, the pair (P,Q) satisfies the following inequality

ψ(s3d(Pκ,Qτ))≤ g(ψ(M(κ,τ))).ψ(M(κ,τ)).

where

M(κ,τ) = max
{

d(κ,τ),D(κ,Pκ),D(τ,Qτ),

d(κ,Pκ)d(κ,Qτ)+d(τ,Qτ)d(τ,Pκ)

1+ s[d(κ,Pκ)+d(τ,Qτ)]
,

d(κ,Pκ)d(κ,Qτ)+d(τ,Qτ)d(τ,Pκ)

1+d(κ,Qτ)+d(τ,Pκ)

}
.

Theorem 3. In a b-metric space (X ,d) with s≥ 1 and α : X ×X → [0,+∞) be a function. Let

P,Q : X → X be a pair of generalized rational α-ψ-Geraghty contraction type for multi-valued

mappings

(i): (X ,d) is an α-complete;

(ii): (P,Q) is triangular α-orbital admissible;

(iii): α(κ0,Pκ0)≥ 1 for κ0 ∈ X;

(iv): P and Q are α-continuous.

κ∗ is a common fixed point of P and Q in X.

Theorem 4. In a b-metric space (X ,d) with s≥ 1 and α : X ×X → [0,+∞) be a function. Let

P,Q : X → X be a pair of generalized rational α-ψ-Geraghty contraction type for multivalued

mappings

(i): (X ,d) is an α-complete b-metric space;

(ii): (P,Q) is triangular α-orbital admissible;

(iii): α(κ0,Pκ0)≥ 1 for κ0 ∈ X;
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(iv): if {κn} is a sequence in X such that α(κn,κn+1) ≥ 1 for all n ∈ N ∪ {0} and

κn → κ∗ ∈ X as n→ +∞, then there exists a subsequence {κn(k)} of {κn} such that

α(κn(k),κ
∗)≥ 1 for all k ∈ N∪{0}.

κ∗ is a common fixed point of P and Q in X.

Corollary 3. Let (X ,�) be a partially ordered set. Let there exists a complete b-metric space

(X ,d). Suppose P,Q : X → X are two mappings satisfying the following conditions:

(i): there exists g ∈ G and ψ ∈ ψ such that

ψ(s3d(Pκ,Qτ))≤ g(ψ(M(κ,τ))).ψ(M(κ,τ)),

where

M(κ,τ) = max
{

d(κ,τ),D(κ,Pκ),D(τ,Qτ),

d(κ,Pκ)d(κ,Qτ)+d(τ,Qτ)d(τ,Pκ)

1+ s[d(κ,Pκ)+d(τ,Qτ)]
,

d(κ,Pκ)d(κ,Qτ)+d(τ,Qτ)d(τ,Pκ)

1+d(κ,Qτ)+d(τ,Pκ)

}
;

for all κ,τ ∈ X with κ � τ;

(ii): P and Q are nondecreasing;

(iii): κ0 � Pκ0 for κ0 ∈ X;

(iv): either P and Q are continuous or if {κn} is a nondecreasing sequence such that

κn → κ∗ ∈ X as n→ +∞, then there exists a subsequence {κn(k)} of {κn} such that

κn(k) � κ∗ for all k ∈ N∪{0}.

x∗ is a common fixed point of P and Q in X.

CONCLUSION

In this paper, the concept of generalized rational α∗-ψ-Geraghty contraction for multival-

ued mappings is introduced. Further, the concept is used in the setting of b-metric space to

prove three common fixed point theorems and some corollaries. Some consequences are also

discussed. An application is also presented in differential equation.
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