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Abstract. We formulate and analyse a robust mathematical model of the dynamics of gonorrhoea incorporating

passive immunity and control. Our results show that the disease-free and endemic equilibria of the model are

both locally and globally asymptotically stable. A sensitivity analysis of the model shows that the dynamics of

the model is variable and dependent on waning rate, control parameters and interaction of the latent and infected

classes. In particular, the lower the waning rate, the more the exponential decrease in the passive immunity but the

susceptible population increases to the equilibrium and wanes asymptotically due to the presence of the control

parameters and restricted interaction of the latent and infected classes.
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1. INTRODUCTION

Gonorrhoea, a sexually transmitted disease, is a major cause of infertility and other debil-

itating ailments among couples. Thus, it becomes necessary to undertake prompt prevention
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and control activities to tackle the ugly incidence of this sexually transmitted diseases, [6]. It

is caused by a bacterium called Neisseria gonorrhoeae, [20]. According to Mushayabasa and

Bhunu in [11], neisseria gonorrhoea is characterized by a very short period of latency, namely,

2− 10 days and is commonly found in the glummer epithelium such as the urethra and endo-

cervix epithelia of the reproductive track, [5]. Gonorrhoea is transmitted to a new born infant

from the infected mother through the birth canal thereby causing inflammations and eye infec-

tion such as conjunctivitis. It is also spread through unprotected sexual intercourse, [19].

Studies by Usman and Adam [21] and Center for Disease Control Report in [3] show that

male patients of gonorrhoea have pains in the testicles (known as epididymitis), painful urina-

tion due to scaring inside the urethra while in female patients, the disease may ascend the genital

tract and block the fallopean tube leading to pelvic inflammatary disease (PID) and infertility,

see also [14]. Other complications associated with this epidemic include arthritis, endocarditis,

chronic pelvic pain, meningitis and ectopic pregnancy, [15].

Gonorrhoea confers temporal immunity on some individuals in the susceptible class while

some others are not immuned, [19]. This immunity through the immune system plays an im-

portant role in protecting the body against the infection and other foreign substances, [3]. That

is why an immuno-compromised patient has a reduced ability to fight infectious disease such

as gonorrhoea due to certain diseases and genetic disorder, [17]. Such patient may be partic-

ularly vulnerable to opportunistic infection such as gonorrhoea. Hence, immune reaction can

be stimulated by drug-induced immune system such as Thrombocytopenia, [17]. This helps to

reduce the waning rate of passive immunity in the immune class, [2]. However, if the activity

of immune system is excessive or over-reactive due to lack of cell mediated immunity, a hyper-

sensitive reaction develops such as auto-immunity and allergy which may be injurious to the

human body or may even cause death [25].

Statistically, gonorrhoea infection has spread worldwide with more than 360 million new

cases witnessed globally in adults aged 15− 49 years, [3]. In 1999, above over 120 million

people in African countries were reported to have contracted the disease. Over 82 million people

were reported in Nigeria, [3]. Researches abound on the modelling and control of this epidemic

with various approaches and controls, see e.g. [3, 9, 10, 18, 16, 19, 20] and mostly recently
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[1, 24, 13] and [4]. This present study continues the discussion by investigating the dynamics

of the disease by carrying out the sensitivity analysis of the effective reproduction number of

the model. Besides, the theory of epidemiology signifies the phenomenon of bifurcation at

the equilibria. This is a classical requirement for the model’s effective reproduction number,

Re. Although this is necessary, it is no longer sufficient to conclude the effective control or

elimination of gonorrhoea in a population, see e.g. [25]. Therefore in this paper, we consider

the nature of the equilibrium solution near the bifurcation point Re = 1 in the neighbourhood

of the disease-free equilibrium, E0, through sensitivity analysis to determine the most sensitive

parameters to target by a way of intervention strategy.

2. MATERIALS AND METHODS

We formulate a modified SIR model by extending an existing one to incorporate passive

immunity. Let Q(t) be passive immune class, S(t) the susceptible compartment, L(t) the latent

class, I(t) the infectious class, T (t) the treated class and R(t) be the recovered compartment

over time t. Let the parameters of the model be σ as level of recruitment, υ as waning rate of

immunity, µ as rate of natural mortality, λ as contact rate between the susceptible and the latent

classes, η as treatment rate of latent class, γ as induced death rate due to the infection, α as

treatment rate of infected compartment, β as infectious rate of latent class, ω as recovery rate

of treated class, δ as rate at which recovered class becomes susceptible again, θ as infectious

rate from the susceptible class direct to the infectious class, k1 as control measure given to latent

class and k2 as control measure given to infected class.

Next, assume the recruitment into the population is by birth or immigration; all the parameters

of the model are positive; some proportions of new birth are immunized against the infection;

the immunity conferred on the new birth wanes after sometime; and that the rate of contact

of the disease due to interaction, λ , rate is due to the movement of the infected population.

Consequently, the total population at time t is N(t) = Q(t)+ S(t)+L(t)+ I(t)+T (t)+R(t).

The existing schematic model diagram is given as Figure 1 and that of the extended model as 2:
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FIGURE 1. The diagram of the model; see [19].

FIGURE 2. The model with control

So, the system of equations for the model without control is (1):

dQ
dt = f σ −υQ−µQ
dS
dt = υQ+(1− f )σ +δR−µS−θS−θSI
dL
dt = θSI−ηL−µL−βL
dI
dt = βL+θS−µI− γI−αI

dR
dt = ωT −µR−δR
dT
dt = αI +ηL−µT −ωT


(1)
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and those with control is (2):

dQ
dt = f σ −υQ−µQ
dS
dt = υQ+(1− f )σ −θS(1− k2)+δR−µS−θSI
dL
dt = θSI−βL−µL−η(1+ k1)L
dI
dt = βL+θS(1− k2)− ((µ + γ)+α(1+ k2))I

dR
dt = ωT −µR−δR
dT
dt = η(1+ k1)L+α(1+ k2)I−µT −ωT


(2)

By sensitivity theory, see e.g. [2, 5, 9, 18] and [12], it is expected that a significant perturba-

tion in the model parameters leads to a change in the behaviour of the equilibrium solution of

the model. We proceed to study the qualitative properties of the model through the variation of

the model parameters such as in [6] and [8].

3. MAIN RESULTS

We firstly prove the positivity of the solution set of the model.

Lemma 3.1. The extended gonorrhoea model equations admit non-negative solution set.

Proof. A direct computation of the model equations (2) gives

Q(t) =
f σ

µ +υ
+ c1e−(µ+υ)t > 0;

S(t) =
υQ+(1− f )σ +δR
µ +θ(1− k2)+θ I

+ c2e−(µ+θ(1−k2)+θ I)t > 0⇒ S(t)> 0;

L(t) =
θ IS

µ +β +η(1+ k1)
+ c3e−(µ+β+η(1+k1))t > 0⇒ L(t)> 0;

I(t) =
βL+θS(1− k2)

µ + γ +α(1+ k2)
+ c4e−(µ+γ+α(1+k2))t > 0;

R(t) =
ωT

µ +δ
+ c5e−(µ+δ )t > 0⇒ R(t)> 0 and

T (t) =
η(1+ k1)L+α(1+ k2)I

µ +ω
+ c6e−(µ+ω)t > 0⇒ T (t)> 0

for arbitrary positive constants c1,c2, · · · ,c6. �

Next, we show that there exists a feasible solutions region for the model.
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Proposition 3.2. Let ẋ = f (x) in D ⊂ Rn
+ be a system of equations in the feasible solutions

region of the model, (2). Then the solutions x(t) are feasible for all t ≥ 0 if x(t) ∈ D⊂ R6
+.

Proof. It suffices to prove that the solution set x(t) = {(Q(t),S(t),L(t), I(t),T (t),R(t))} enters

the invariant region D⊂ R6
+. Since N = Q+S+L+ I +R+T, it follows that

dN
dt

=
dQ
dt

+
dS
dt

+
dL
dt

+
dI
dt

+
dR
dt

+
dT
dt

.

This implies that

dN
dt

= σ −µN− γI ≤ σ −µN⇒ dN
dt
≤ σ −µN.

Solving gives

N ≤ σ −qe−µt

µ
with N(0) = N0≤ σ −qe−µt

µ

where q is arbitrary constant and q = σ −µN(0). Therefore,

N(t)≤ σ

µ
− (σ −µN(0))e−µt

µ
.

Observe that as t→ ∞, the population size approaches the carrying capacity σ

µ
. That is,

0 < N ≤ σ

µ
⇒ N→ σ

µ
.

Hence, the feasible solution set of the system enters the invariant region D⊂ R6
+, and

S > 0,Q > 0,L≥ 0, I ≥ 0,T ≥ 0,R≥ 0.

Whenever N ≤ σ

µ
, every solution with initial condition in D remains in that region for t > 0.

Hence, the region D is positively invariant or bounded with σ

µ
as the upper bound, x(t)∈D. �

Lemma 3.3. The extended model admits disease-free and endemic equilibria.

Proof. Setting the right hand side of the system (2) equal to zero supposes there is no gonorrhoea
infection in the population, i.e. L = I = R = T = 0 which gives the disease-free equilibria. On
the other hand, suppose L 6= 0, I 6= 0, R 6= 0 and T 6= 0, one solves to obtain the endemic



A SENSITIVITY ANALYSIS OF A GONORRHOEA DYNAMICS AND CONTROL MODEL 7

equilibrium state of the model to be

Q∗ =
f σ

µ +υ
;

S∗ =
(µ +δ )(µ +ω) f σ +(µ +υ)(µ +δ )(µ +ω)σ(1− f )+(µ +υ)δω(α +η)

(µ +υ)(µ +δ )(µ +ω)
;

L∗ =
(λ )(µ +δ )(µ +ω) f σ +(µ +υ)(µ +δ )(µ +ω)σ(1− f )+(µ +υ)δω(α +η)

(µ +β +η)(µ +υ)(µ +δ )(µ +ω)
;

I∗ =
(µ +δ )(µ +ω) f σ +(µ +υ)(µ +δ )(µ +ω)σ(1− f )+(µ +υ)δω(α +η)(βλ +(µ +β +η)θ)

(µ +α + γ)(µ +β +η)(µ +υ)(µ +δ )(µ +ω)
;

R∗ =
ω(α +η)

(µ +δ )(µ +ω)
and T ∗ =

α +η

µ +ω
.

�

Now, we recall that the basic reproduction number R0 is the expected number of secondary

infection produced in a completely susceptible population by a typical or one infected individ-

ual. It determines how long an infectious disease prevails in a given population, see e.g. [22].

When R0 < 1, it indicates that with time the disease will die out of the population thereby giv-

ing it a clean health bill. But if R0 is greater than one, we expect the disease will persist in the

population. So for the infection to die out of the population, R0 must be less than 1. We have

the following result.

Theorem 3.4. The basic reproduction number of the extended model 0 < R0� 1.

Proof. Following [7], we obtain the basic reproduction number R0 from the model (1) without

control measures, using next generation matrix method.

So, let

fi =


θ IS

θS

0


so that

∂ fi

∂x j
= F =


0 θS 0

0 0 0

0 0 0

 ;
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and let

vi =


βL+µL+ηL

µI + γI +αI−βL−θS

µT +ωT −ηL−αI


so that

∂vi

∂x j
=


(β +µ +η) 0 0

−β (µ + γ +α) 0

−η −α (µ +ω)

 .

The matrix formed by the co-factors of the determinant is

V =


(µ + γ +α)(µ +ω) β (µ +ω) αβ +η(µ + γ +α)

0 (β +µ +η)(µ +ω) α(β +µ +η)

0 0 (β +µ +η)(µ + γ +α)


with inverse

V−1 =


1

β+µ+η
0 0

β

(β+µ+η)(µ+α+γ)
1

µ+γ+α
0

αβ+η(µ+α+γ)
(µ+α+γ)(µ+ω)

α

µ+γ+α)(µ+ω)
1

µ+ω

 .

Thus,

|FV−1−λ I|=

∣∣∣∣∣∣∣∣∣
βθS

(β+µ+η)(µ+γ+α) −λ
θS

µ+γ+α
0

0 0−λ 0

0 0 0−λ

∣∣∣∣∣∣∣∣∣= 0

implies

λ
2(

(βθS)
(β +µ +η)(µ + γ +α)

−λ ) = 0.

Therefore, either λ
2 = 0 or λ =

(βθS)
(β +µ +η)(µ + γ +α)

. So for λ 6= 0 we obtain the R0 to be

(3) R0 =
(βθS)

(β +µ +η)(µ + γ +α)
=

σβθ(µ +υ)−µ f )
µ(µ +α + γ)(µ +β +η)(µ +υ)

.
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Parameter/Variable β θ µ η γ α δ υ ω σ

Value 0.01 0.5 0.2 0.1 0.01 0.2 0.8 0.4 0.7 0.4

Parameter/Variable d1 = k1 d2 = k2 f S Q R T L I

Value 0.5 0.8 0.91 2000 1000 500 1000 1000 500

TABLE 1. Parameters/variables and values.

Using the data Table 1, we quickly observe that

R0 = 0.1566070960� 1.

When control measure is given to a model, we compute the effective reproduction number, Re,

similarly. From (2) let

fi =


θ IS

θ(1− k2)S

0


So that

∂ fi

∂x j
=


0 θS 0

0 0 0

0 0 0

 .

and also

vi =


βL+µL+η(1+ k1)L

µI + γI +α(1+ k2)I−βL−θS(1− k2)

µT +ωT −η(1+ k1)L−α(1+ k2)I


so that

∂vi

∂x j
E0 =V =


(β +µ +η(1+ k1)) 0 0

−β (µ + γ +α(1+ k2)) 0

−η(1+ k1) −α(1+ k2) (µ +ω)

 .

The co-factors matrix is then(µ + γ +α(1+ k2))(µ +ω) −β (µ +ω) αβ (1+ k2)+η(1+ k1)(µ + γ +α(1+ k2)

0 (β +µ +η(1+ k1))(µ +ω) −α(1+ k2)(β +µ +η(1+ k1))

0 0 (β +µ +η(1+ k1)(µ + γ +α(1+ k2))

.
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So, following the same procedure for the computation of reproduction number, we get the eigen-

values:

λ
2 = 0 or λ =

(βθS)
(β +µ +η(1+ k1))(µ + γ +α(1+ k2))

.

Therefore, the effective reproduction number

(4) Re =
(βθS)

(β +µ +η(1+ k1))(µ + γ +α(1+ k2))
.

It can be observed here that the effective reproduction number is far less than the basic repro-

duction number i.e. Re << R0 since

(βθS)
(β +µ +η(1+ k1))(µ + γ +α(1+ k2))

<
(βθS)

(β +µ +η)(µ + γ +α)
.

Using the data in Table 1, we see that

Re =
σβθ((µ +υ)−µ f )

µ(µ +α + γ)(µ +β +η)(µ +υ)
<

(1− k2)(α + γ +µ)(β +µ +η)

(α(1+ k2)+ γ +µ)(η(1+ k1)+β +µ))

= 0.09700176367 < 0.1566070960� 1.

This gives the result. �

One can as well use the Routh-Hurwitz criteria, see [23], to assess the local stability of the

model. In this technique, an equilibrium point is called asymptotically stable if the trace of the

Jacobian of the next generation matrix of the model is less than zero. This means that all the

roots of the characteristic polynomial have negative real parts. We have the next result.

Theorem 3.5. The extended model, (2), is asymptotically stable.

Proof. From the model system (1) we set

f1 = f σ − (υ +µ)Q

f2 = υQ+(1− f )σ −θ(1− k2)S+δR−µS−θ IS

f3 = θSI− (β +µ +η(1+ k1))L

f4 = βL+θS(1− k2)− (µ + γ +α(1+ k2))I

f5 = ωT − (µ +δ )R

f6 = η(1+ k1)L+α(1+ k2)I−µT −ωT.
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At the disease-free equilibrium, the Jacobian matrix, J|(DFE), of the model and the associated

characteristics determinant |J−λ I|= 0 implies

(−(µ +υ)−λ )(−(µ +θ(1− k2))−λ )(−(β +µ +η(1+ k1)−λ )(−α(1+ k2)

+γ +µ)−λ )(−(µ +δ )−λ )(−(µ +ω)−λ ) = 0.

Therefore,

λ1 = −(µ +υ),

λ2 = −(µ +θ(1− k2)),

λ3 = −(β +η(1+ k1)+µ),

λ4 = −(γ +α(1+ k2)+µ),

λ5 = −(µ +δ ),

λ6 = −(µ +ω);

where λ1,λ2,λ3,λ4,λ5 and λ6 corresponding to λ j, j = 1,2, · · ·6 are the eigenvalues. Since all

the eigenvalues are negative, we conclude that the model is asymptotically stable. �

We observe that this result indicates that the control interventions in the model such as the use

of condom, education enlightenment programme and treatment are effective enough to almost

wipe out the disease in a limited time.

One can also discuss the global stability of the Model. Here, we use Lyapunov direct method,

(see e.g. [23]), to derive sufficient condition for the global stability of the system.

Theorem 3.6. [23]. Let D be an open subset of R6 and ẋ = f (x) a system of differential equa-

tions for x ∈ D. Let V : D→ R6 be a smooth function. Suppose V is positive definite around a

critical point x∗ ∈ D, i.e., V (x∗) = 0 and V (x)> 0, for all x ∈ D with x 6= x∗. Then, the critical

solution x = x∗ is asymptotically stable in the sense of Lyapunov if the time derivative V̇ < 0.

For Proof, see e.g. [23]. We can now present one of the main results of this study.

Theorem 3.7. The equilibrium point solution is globally asymptotically stable.
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Proof. In R0 =
βθS

(α + γ +µ)(β +η +µ)
, let µ0 = α + γ +µ and µ1 = β +η +µ.

Then R0 =
βθS
µ0µ1

so that
µ0µ1R0

β
= θS. Since R0 < 1, then R0−1 < 0 and so

µ0µ1

β
(R0−1)< 0.

If we choose ε > 0 sufficiently small such that σ = µ1
β
−ε where β+η+µ

β
is the mean number

of susceptible people that are infected by one infectious individual during the infectious time

and σ is the recruitment rate direct to susceptible class.

Now, define a Lyapunov function V (L, I) by

(5) V = L+σ I.

Clearly, V is a positive definite function and so we can show that its time derivative V̇ is negative

definite. That is,

dV
dt

=
dL
dt

+
dI
dt

σ

= θ IS− (β +η +µ)L+σ(βL− (α +µ + γ)I)

= θ IS−µ1L+σβL−σ µ0I < 0.

Take co-efficients of L and I to have that

Lc = σβ −µ1

Ic = θS−µ0σ .

From Lc we have that

(
µ1

β
− ε)β −µ1 =−εβ < 0⇒ θS−µ0(

µ1

β
− ε) = θS− µ0µ1

β
+ εµ0

µ0µ1R0

β
− µ0µ1

β
+ εµ0 =

µ0µ1

β
(R0−1)+ εµ0 < 0.

This implies,
dV
dt

=
dL
dt

+σ
dI
dt

< 0.

Hence, V̇ < 0 as required. �

Finally, we conduct the sensitivity analysis of the model on the effective reproduction number.
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Theorem 3.8. The dynamics of the model is variable and dependent on the waning rate, the

control parameters and the interaction between the latent and infected classes.

Proof. Following [5], we prove Theorem (3.8) using the sensitivity index function of the effec-

tive reproduction number given by

(6) γRe(·) =
∂Re

∂ (·)
× (·)

Re
.

So, the variation of the treatment rate of the infected class is

γRe(α) =
α

Re
× ∂

∂α
Re =−(

α((β +µ +η(1+ c))(1+ k))
(β +µ +η(1+ c))(µ +Ω+α(1+ k))

).

Now taking Ω = 0.01,α = 0.2,β = 0.01,c = 0.5,η = 0.1,k = 0.8,µ = 0.2], we have

γRe(α) =−0.6315789474.

Similarly, the variation of the rate at which the the recovered class becomes susceptible again is

γRe(δ ) =
δ

R[e]
× ∂

∂δ
R[e] = λ ((

α((β +µ +υ(1+ f ))(1+ k))
(β +µ +υ(1+ f ))(µ +δ +θ(1+ k))

)).

Take δ = 0.4,θ = 0.5,β = 0.01, f = 0.91,υ = 0.4,k = 0.8,µ = 0.2 to have

γRe(δ ) = +1.000000000.

Continuing this way, we obtain the sensitivity index table of the model as Table 2:

Parameters Sensitivity indices γRe(·)

θ +1

σ +1

β +0.97222222218

υ +0.2902711325

γ −0.01754385965

k1 −0.1388888889

µ −2.176703880

η −0.4166666667

α −0.6315789474

f −0.4354066982

k2 −0.4280701754
TABLE 2. Sensitive parameters and values.
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Graphically, we have the effect of increasing waning rate on the susceptible and immune

classes as Figure 3 while Figure 4 shows the effect of a higher waning rate.

FIGURE 3. Waning rate υ = 0.2.

FIGURE 4. Waning rate υ = 0.6.

The graphs indicate that when the waning rate υ is low (i.e., υ = 0.2), the passive immune

population decreases exponentially with time, while when the waning rate is high, (i.e., υ =

0.6), the passive immune population decreases faster and varnishes with time. The continuous

decay in the population of the immune class (Q) with time is due to the fact that the immunity

conferred on the individuals in this class is temporal and hence, expires with time. However, the

susceptible population increases slower to the turning point at about one year and three months

as the waning rate υ is low and increases faster as the waning rate υ is high as shown in Figure

3 and Figure 4 respectively. In both cases, the susceptible class later decreases with time due to

the interaction among the latent, infected and the susceptible classes coupled with the natural

mortality rate µ.

Next figures show the effect when the control measures are removed and when they are

introduced. Figure 5 shows when k1 = k2 = 0 that the susceptible individuals first increased

after 45 days due to recruitment into it, and the trajectory decreases with time as more people
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are getting infected with the disease.

FIGURE 5. When k1 = 0 = k2.

In the same way the latent and the infected population show exponential increase because more

people are getting infected without control measure. However, the treated and the recovered

population show drastic exponential decay with time as a result of no control measure.

Figure (6) suggests that susceptible population increases exponentially with time since more

people get treated, recovered and join the susceptible class again because of increase in control

measure. Also the recovered class increases with time for about 7 months as the control measure

is high (i.e., k1 = 0.7 and k2 = 0.9), and started decreasing again asymptotically with time

because recovery from gonorrhoea is with temporal immunity. However, the trajectory of the

latent and the infected classes decreased to zero with time due to increase in control measure.

FIGURE 6. Effect when k1 = 0.7 and k2 = 0.9.

Figure (7) indicates that when the interaction rate is low (i.e., θ = 0.3), the latent and the

infected classes decrease exponentially with time, and even varnishes in the long run since

there will be almost nobody to contact and suffer the disease. It is also shown that when the

interaction rate θ = 0, the basic reproduction number of the disease becomes zero.
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FIGURE 7. Effect when λ = θ I, θ = 0, and when θ = 0.3.

We conclude that

lim
θ→0

R0 = lim
θ→0

(βθS)
(β +µ +η)(µ + γ +α)

= 0.

At this point, the contact rate λ becomes zero and hence, nobody suffers the disease. �

4. CONCLUSION

Based on the analysis and results of this work, we observed that the solution set of the state

variables of the extended model are all positive for t ≥ 0. This clearly showed that the population

we are studying is not a zero population. We obtained an important threshold parameter called

the effective reproduction number Re using the next generation matrix method. The result of the

effective reproduction number is less than one. The local and global stability were investigated

using Routh-Hurtz criteria and Lyapunov method respectively and both were asymptotically

stable for Re < 1.

From the graphical illustrations, we concluded that immune population continues to decay

exponentially due to temporal immunity conferred on the individuals in the immune class. We

also concluded that reproduction number of the infection grows when there is no control mea-

sure in the model and decays when control measure is applied in the model. Also from the

analysis, it can be seen that the disease can be totally eliminated from the community, because

the sensitivity index shows that the lower the waning rate ν , the more the exponential decrease

in the passive immunity but the susceptible population increases to the equilibrium and wanes

asymptotically due to the presence of the control parameters and restricted interaction of the

latent and infected classes.
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The sensitivity analysis of the effective reproduction number further shows that the rate of

expiration of immunity υ , coupled with the interaction rate θ , recruitment rate σ and the infec-

tious rate β are the most sensitive parameters to be targeted by way of intervention strategy.
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