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Abstract. In this paper, we have given a new application of HY transform. The convolution property for HY

transform is obtained. We used this new result to solve integral equations and fractional integral equation. Few

examples have been presented to illustrate the efficiency of the property.
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1. INTRODUCTION

Integral transform methods are convenient mathematical methods for solving advance prob-

lems of engineering and sciences which are mathematically expressed in terms of differential

equations, partial differential equations, integro differential equations, fractional differential

equations, etc. During last two decades, many integral transforms are introduced such as Shehu

[1], Sumudu [2], Elzaki [3], Natural [4], Aboodh [5], Pourreza [6], Mohand [7] and Sawi [8].

In 2019, Ahmadi [9] defined a new integral transform which is called HY transform. However,

some properties of this integral transform are not given such as convolution property. Then,

the aim of this paper is to prove convolution property of HY transform which is an important

property used to solve integral equations. The basic definition of HY transform is given in
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Section 2. The convolution property is discussed in Section 3, several test examples to show

the effectiveness of the proposed property are given in Section 4, and finally the conclusion is

summarized in Section 5.

2. MATHEMATICAL PRELIMINARIES

In this section, we present some basic idea about HY transform [8].

Definition 2.1. The HY transform of the function f (t) of exponential order is defined over the

set of functions

A = {∃M > 0, | f (t)|< Meαt , t ∈ [0,∞)}

by the following integral

(1) HY [ f (t)] = F(v) = v
∫

∞

0
e−v2t f (t)dt.

where HY [ f (t)] is called the HY transform of time function. Variables v is the HY transform

variable. It converges if the limit of the integral exists, and diverges if not. The HY−1 will be

the inverse of the HY transform.

The following useful formulas follow directly from equation (1):

(i) HY [1] =
1
v
.

(ii) HY [tn] =
n!

v2n+1 , n = 1,2,3, ....

(iii) HY [t p] =
Γ(p+1)

v2p+1 , p >−1.

(iv) HY [ f (t)+g(t)] = HY [ f (t)]+HY [g(t)]. (Linearity property).

Theorem 2.2. Let HY [ f (t)] = F(v). Then

(2) HY [ f (n)(t)] = v2nF(v)−
n−1

∑
k=0

v2(n−k)−1 f k(0), n≥ 1.

Definition 2.3. The function f1 ∗ f2 =
∫
R f1(t − τ) f2(τ)dτ is called the convolution of both

functions f1 and f2 defined on R.
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3. CONVOLUTION PROPERTY FOR HY TRANSFORM

Theorem 3.1. Let HY [ f (t)] = F(v) and HY [g(t)[= G(v). Then HY transform of ( f ∗g)(t) is

(3) HY [( f ∗g)(t)] =
1
v

F(v)G(v).

Proof. The convolution of two function f (t) and g(t) is

( f ∗g)(t) =
∫ t

0
f (t− τ)g(τ)dτ.

Using HY transform of equation (1), we get

HY [( f ∗g)(t)] = HY
[∫ t

0
f (τ)g(t− τ)dτ

]
,

= v
∫

∞

0
e−v2t

(∫ t

0
f (τ)g(t− τ)dτ

)
dt,

= v
∫

∞

0

∫ t

0
e−v2t f (τ)g(t− τ)dτdt,

= v
∫

∞

0

∫
∞

τ

e−v2t f (τ)g(t− τ)dtdτ.

Now setting b = t− τ , we have

HY [( f ∗g)(t)] = v
∫

∞

0
f (τ)

∫
∞

0
e−v2(b+τ)g(b)dbdτ,

= v
∫

∞

0
e−v2τ f (τ)dτ

∫
∞

0
e−v2bg(b)db,

= F(v)
∫

∞

0
e−v2bg(b)db.(4)

Multiplying both sides of equation (4) by v, we obtain

vHY [( f ∗g)(t)] = F(v)G(v).

Thus

HY{( f ∗g)(t)}= 1
v

F(v)G(v).

This proves the theorem of convolution. �

Corollary 3.2. Let HY [ f (t)] = F(v) and HY [g(t)[= G(v). Then HY transform of ( f ∗g)′(t) is

(5) HY [( f ∗g)′(t)] = vF(v)G(v).
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Proof. From equation (2), we have

HY [ f ′(t)] = v2HY [ f (t)]− v f (0).

That is,

HY [( f ∗g)′(t)] = v2HY [( f ∗g)(t)]− v( f ∗g)(0).

By Theorem 3.1, we obtain

HY [( f ∗g)′(t)] = v2
(

1
v

F(v)G(v)
)
.

Therefore

HY [( f ∗g)′(t)] = vF(v)G(v).

�

Theorem 3.3. Let HY [ f (t)] = F(v) and HY [g(t)[= G(v). Then HY transform of ( f ∗g)(n)(t) is

(6) HY [( f ∗g)(n)(t)] = v2n−1F(v)G(v).

Proof. Assuming that equation (6) is true for n = k. From equation (6) and by mathematical

induction, we have that

HY [(( f ∗g)(k)(t))′] = HY
[

d
dt
( f ∗g)(k)(t)

]
,(7)

= v2HY [( f ∗g)(k)(t)]− ( f ∗g)(k)(0),

= v2k−1+2F(v)G(v),

= v2k+1F(v)G(v).

Therefore

HY [( f ∗g)(n)(t)] = v2n−1F(v)G(v).

�
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4. EXAMPLES

Example 4.1 Consider the following Volterra integral equation of first kind

(8) f (x) =
∫ x

0
h(x− t)g(t)dt.

Taking HY transform on both sides of equation (8), we have

HY [ f (x)] = HY
[∫ x

0
h(x− t)g(t)dt

]
,

F(v) = HY [h(x)∗g(x)].

By Theorem 3.1, we obtain

F(v) =
1
v

H(v)G(v),

G(v) = v · F(v)
H(v)

.

Thus,

(9) g(x) = HY−1
[

v · F(v)
H(v)

]
.

Example 4.2 Consider the following Volterra integral equation of second kind

(10) g(x) = f (x)+
∫ x

0
h(x− t)g(t)dt.

Taking HY transform on both sides of equation (10), we have

HY [g(x)] = HY [ f (x)]+HY
[∫ x

0
h(x− t)g(t)dt

]
,

G(v) = F(v)+HY [h(x)∗g(x)].

By Theorem 3.1, we obtain

G(v) = F(v)+
1
v

H(v)G(v),

G(v) =
vF(v)

v−H(v)
.

Then,

(11) g(x) = HY−1
[

vF(v)
v−H(v)

]
.



6 ARAYA WIWATWANICH, DUANGKAMOL POLTEM

Example 4.3 Consider the following Volterra integral equation

(12)
∫ x

0
e2(x−t) f (t)dt = x.

Taking HY transform both sides of (12) and by Theorem 3.1, we obtain

HY
[∫ x

0
e2(x−t) f (t)dt

]
= HY [x],

1
v

(
v

v2 +2

)
F(v) =

1
v3 ,

F(v) =
v2 +2

v3 .

Then,

(13) f (x) = 1+2x.

Example 4.4 Consider the following Volterra integral equation

(14) g(x) = x+
∫ x

0
g(t)sin(x− t)dt.

Taking HY transform on both sides of equation (14) and by Theorem 3.1, we obtain

G(v) = HY [x]+HY [g(x)∗ sin(x)],

=
1
v3 +

1
v

(
v

v4 +1

)
G(v),

=
v4 +1

v7 .

Then,

(15) g(x) = x+
1
6

x3.

Example 4.5 Consider the following integro-differential equation

(16) f ′(x) = 1−
∫ x

0
f (t)dt, f (0) = 0.
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Taking HY transform on both sides of equation (16) and by Theorem 3.1, we obtain

HY [ f ′(x)] = HY [1]−HY [1∗ f (x)],

v2F(v)− v f (0) =
1
v
− 1

v

(
1
v

F(v)
)
,

v2F(v) =
1
v
− 1

v2 F(v),

F(v) =
v

v4 +1
.

Then,

(17) f (x) = sinx.

Example 4.6 Consider the following fractional integral equation

(18) y(t) = g(t)+ Iαy(t), α ∈ R+,

where Iα is the well known Riemann–Liouville fractional integral operator. It is defined by

Iα = 1
Γ(α)

∫ t
0(t− τ)α−1y(τ)dτ .

By substituting 1
Γ(α)

∫ t
0(t−τ)α−1y(τ)dτ instead of Iα in equation (18) and applying the con-

volution Theorem 3.1, we have

Y (v) = G(v)+
1

Γ(α)
HY [tα−1]HY [y(t)],

= G(v)+
1

Γ(α)

Γ(α)

v2α
Y (v),

Y (v) =
v2α

v2α −1
G(v).

Then,

(19) y(t) = HY−1
[

v2α

v2α −1
G(v)

]
where Y (v) is HY [y(t)].
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5. CONCLUSION

In this paper, convolution property of HY transform of is obtained. We have successfully

applied HY transform for the solution of integral equations and fractional integral equations.

For further study, HY transform can be applied for solving other singular integral equations and

their systems.
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