

NEIGHBOR SUM DISTINGUISHING TOTAL CHOOSABILITY OF PLANAR GRAPHS WITHOUT 4-CYCLES ADJACENT TO 3-CYCLES

KITTIKORN NAKPRASIT ${ }^{1}$, PATCHARAPAN JUMNONGNIT ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Khon Kaen University, 40002, Thailand
${ }^{2}$ Division of Mathematics, School of Science, University of Phayao, Thailand, 56000, Thailand

Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let ϕ be a proper total coloring of a graph G with integers as colors. For a vertex v, let $w(v)$ denote the sum of colors assigned to edges incident to v and the color assigned to v. If $w(u) \neq w(v)$ whenever $u v \in E(G)$, then ϕ is called a neighbor sum distinguishing total coloring. A k-assignment L of G is a list assignment L of integers to vertices and edges with $|L(z)|=k$ for each $z \in V(G) \cup E(G)$. A total-L-coloring is a total coloring ϕ of G such that $\phi(v) \in L(v)$ whenever $v \in V(G)$ and $\phi(e) \in L(e)$ whenever $e \in E(G)$. The smallest integer k such that G has a neighbor sum distinguishing total- L-coloring for every k-assignment L is called the neighbor sum distinguishing total choosability of G and is denoted by $C h_{\Sigma}^{\prime \prime}(G)$. Wang, Cai, and Ma [15] proved that every planar graph G without 4-cycles with $\Delta(G) \geq 7$ has $C h_{\sum}^{\prime \prime}(G) \leq \Delta(G)+3$. In this work, we strengthen the result of Wang et al by proving that $C h_{\Sigma}^{\prime \prime}(G) \leq \Delta(G)+3$ for every planar graph G without 4-cycles adjacent to 3-cycles with $\Delta(G) \geq 7$.

Keywords: coloring; discharging method; neighbor sum distinguishing total coloring.
2010 AMS Subject Classification: 05C15.

1. Introduction

We consider only simple, finite, and undirected graphs in this work. For a plane graph G, we use $V(G), E(G), F(G), \delta(G)$, and $\Delta(G)$ to denote the vertex set, edge set, face set, minimum

[^0]degree, and maximum degree of a graph G, respectively. We say that two faces are adjacent if their boundaries share an edge.

A k-vertex (face) is a vertex (face) of degree k, a k^{+}-vertex (face) is a vertex (face) of degree at least k, and a k^{-}-vertex (face) is a vertex (face) of degree at most k. A $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$-face f is a face of degree k where vertices incident to f have degree $d_{1}, d_{2}, \ldots, d_{k}$. A k-face f_{1} with incident vertices $v_{1}, v_{2} \ldots, v_{k}$ in a cyclic order is a spacial k-face of a 3-face f_{2} if the boundaries of f_{1} and f_{2} share exactly two vertices v_{i} and v_{i+1} and at least one of edges $v_{i-1} v_{i}$ and $v_{i+1} v_{i+2}$ is not incident to a 3-face.

Let $\phi: V(G) \cup E(G) \longrightarrow\{1, \ldots, k\}$ be a proper k-total coloring. We denote the sum of colors assigned to edges incident to v and the color on the vertex v by $w(v)$ (i.e., $w(v)=$ $\left.\sum_{u v \in E(G)} \phi(u v)+\phi(v)\right)$. The total coloring ϕ of G is a neighbor sum distinguishing total coloring if $w(u) \neq w(v)$ for each edge $u v \in E(G)$. The smallest integer k such that G has a neighbor sum distinguishing total coloring is called the neighbor sum distinguishing total chromatic number of G, denoted by $\operatorname{tndi} \sum_{\Sigma}(G)$.

Pilśniak and Woźniak [7] introduced neighbor sum total coloring and obtained tndi ${ }_{\Sigma}(G)$ for cycles, cubic graphs, bipartite graphs, and complete graphs. Furthermore, they posed the following conjecture.

Conjecture 1. [7] If G is a graph with at least two vertices, then $\operatorname{tndi}_{\Sigma}(G) \leq \Delta(G)+3$.
The conjecture is verified for K_{4}-minor free graphs by Li, Liu, and Wang [6], for planar graphs with large maximum degrees by Li et al [5], and for triangle free planar graphs with maximum degree at least 7 by Wang, Ma, and Han [16]. The conjecture is also shown to be true for planar graphs with other conditions [2, 3, 4, 8, 13].

A k-assignment L of G is a list assignment L of integers to vertices and edges with $|L(z)|=k$ for each $z \in V(G) \cup E(G)$. A total-L-coloring is a total coloring ϕ of G such that $\phi(z) \in L(z)$ when $z \in V(G) \cup E(G)$. We call that G has a neighbor sum distinguishing total-L-coloring (or $n s d$ total-L-coloring) if G has a total-L-coloring such that $w(u) \neq w(v)$ for each $u v \in E(G)$. The smallest integer k such that G has a neighbor sum distinguishing total-L-coloring for every k assignment L, denoted by $C h_{\Sigma}^{\prime \prime}(G)$, is called the neighbor sum distinguishing total choosability of G.

Qu et al [9] proved that $C h_{\Sigma}^{\prime \prime}(G) \leq \Delta(G)+3$ for every planar graph G with $\Delta(G) \geq 13$. Yao et al [17] studied $C h_{\sum}^{\prime \prime}(G)$ of d-degenerate graphs. More results about the neighbor sum distinguishing total choosability for planar graphs can be seen in [10, 11, 12, 14]. Wang, Cai, and Ma [15] studied the neighbor sum distinguishing total choosability for planar graphs without 4-cycles and proved the following theorem.

Theorem 1. ([15]). If G is a planar graph without 4-cycles with $\Delta(G) \geq 7$, then $C h_{\Sigma}^{\prime \prime}(G) \leq$ $\Delta(G)+3$.

In this paper, we strengthen Theorem 1 by extending the result to planar graphs without 4-cycles adjacent to 3-cycles.

2. Helpful Lemmas

The first lemma is an easy observation about plane graphs without 4 -cycles adjacent to 3cycles.

Lemma 2. If H is a plane graph without 4-cycles adjacent to 3-cycles, then a 3-face in H is adjacent to neither 4-face nor another 3-face. Consequently, if v is a k-vertex in H, then v is incident to at most $\left\lfloor\frac{k}{2}\right\rfloor 3$-faces.

The two following lemmas are required to prove the results about minimal counterexamples.

Lemma 3. ([9]). Suppose that m and n are positive integers such that $m \geq n$, and L_{i} is a set of at least n integers $(i=1, \ldots, m)$. Let $T_{m}\left(L_{1} \ldots, L_{m}\right)=\left\{\sum_{i=1}^{m} x_{i} \mid x_{i} \in L_{i}, i \neq j \Longrightarrow x_{i} \neq x_{j}\right\}$. Then $T_{m}\left(L_{1} \ldots, L_{m}\right) \geq m n-m^{2}+1$.

Lemma 4. ([1]). Let \mathbb{F} be a field, and let $P=P\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial in $\mathbb{F}\left[x_{1} \ldots, x_{n}\right]$. Suppose that the degree $\operatorname{deg}(P)$ of P equals $k_{1}+\cdots+k_{n}$ where k_{i} is a nonnegative integer $(i=1, \ldots, n)$, and the coefficient of $\prod_{i=1}^{n} x_{i}^{k_{i}}$ in P is nonzero. If S_{1}, \ldots, S_{n} are subsets of \mathbb{F} with $\left|S_{i}\right|>k_{i}$, then there are $s_{i} \in S_{i}(i=1, \ldots, n)$ such that $P\left(s_{1}, \ldots, s_{n}\right) \neq 0$.

We also use the following helpful observation. For a 3^{-}-vertex v, there are at most 3 adjacent vertices, 3 incident edges, and the sum at v must be different from at most 3 sums at adjacent
neighbors. Since $|L(u)| \geq 10$, we may delete the color at u and recolor it later to have an appropriate coloring. Thus we will omit the recoloring of 3^{-}-vertices in subsequent arguments.

Let G be a minimal non $(\Delta+3)$-choosable plane graph (with respect to $|V(G)|+|E(G)|$). Let H be the graph obtained by removing all the 2^{-}-vertices from G. For a vertex v in G, we use $d_{G}(v)$ (or $d_{H}(v)$) to denote the degree of v in G (or in H.) We have that the graph H satisfies all the following lemmas regardless of conditions on cycles.

Lemma 5. ([15]).
(a) $\delta(H) \geq 3$.
(b) Each 4^{-}-vertex in H is not adjacent to a 3-vertex.
(c) Each 3-face in H is either a $\left(3,5^{+}, 5^{+}\right)$-face or a $\left(4^{+}, 4^{+}, 5^{+}\right)$-face.

Lemma 6. If a vertex u has $d_{H}(u)=3$, then $d_{G}(u)=3$.
Proof. Suppose to the contrary that H has a vertex u with $d_{H}(u)=3$ but $d_{G}(u) \geq 4$. It follows that u is adjacent to three 3^{+}-vertices u_{1}, u_{2}, u_{3}, and $t 2^{-}$-vertices v_{1}, \ldots, v_{t} where $t=d_{G}(u)-$ $d_{H}(u) \geq 1$. Let $G^{\prime}=G-\left\{u v_{1}, \ldots, u v_{t}\right\}$. Let L be a $(\Delta(G)+3)$-assignment that G has no nsd total- L-coloring. By the minimality of G, there is an nsd total- L-coloring for G^{\prime} where L is restricted to the graph G^{\prime}.
(1) $t=1$.

First, we delete the colors on vertices u and v_{1}.
To extend an nsd total- L-coloring to G, a color for $u v_{1}$ must be different from the colors of edges incident to u and v_{1}. Let S_{1} denote the set of legal colors that can be assigned to $u v_{1}$. Then we have $\left|S_{1}\right| \geq\left|L\left(v u_{1}\right)\right|-4=\Delta(G)-1 \geq 6$. Similarly, a color for u must be different from the colors assigned to $u u_{i}$ and $u_{i}(i=1,2,3)$. Let S_{2} denote the set of legal colors that can be assigned to u. Then we have $\left|S_{2}\right| \geq|L(u)|-6=\Delta(G)-3 \geq 4$.

Next, we aim to make the sum obtained at u distinct from the sums at u_{1}, u_{2}, and u_{3}. Let w_{0} be the temporary sum at u and let w_{i} be the sum at $u_{i}(i=1,2,3)$. We use x_{1} for a color assigned to $u v_{1}$ and use x_{2} for a color assigned to u. Altogether, we want to find x_{1} and x_{2} such that the following polynomial is non-zero:

$$
P\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}+w_{0}-w_{1}\right)\left(x_{1}+x_{2}+w_{0}-w_{2}\right)\left(x_{1}+x_{2}+w_{0}-w_{3}\right) .
$$

We have $\operatorname{deg}(P)=4$ and the coefficient of $x_{1}^{3} x_{2}$ is 2 (calculated by Scilab). By Lemma 4, there exist $x_{1} \in S_{1}$ and $x_{2} \in S_{2}$ such that $P\left(x_{1}, x_{2}\right) \neq 0$. Finally, we recolor the 2^{-}-vertex v_{1} to extend an nsd total- L-coloring to G which contradicts the choice of G.
(2) $t \geq 2$.

We delete the colors on vertices v_{1}, \ldots, v_{t}. To extend an nsd total- L-coloring to G, a color for $u v_{i}$ must be different from the colors of edges incident to u and v_{i}, and from the color of u. Let S_{i} denote the set of legal colors that can be assigned to $u v_{i}(i=1, \ldots, t)$. Then $\left|S_{i}\right| \geq\left|L\left(u v_{i}\right)\right|-5=$ $\Delta(G)-2 \geq 5$. It follows from Lemma 3 that $T_{t}\left(S_{1}, \ldots, S_{t}\right) \geq 2 \times 4-2^{2}+1=5$ when $t=2$, and $T_{t}\left(S_{1}, \ldots, S_{t}\right) \geq 3 \times 4-3^{2}+1=4$ when $t=3$. Note that $\left|S_{i}\right| \geq \Delta(G)-2 \geq t+1$ since $\Delta(G) \geq t+3$. By Lemma $3, T_{t}\left(S_{1}, \ldots, S_{t}\right) \geq t(t+1)-t^{2}+1 \geq 5$ when $t \geq 4$. Thus we can find $x_{i} \in S_{i}(i=1, \ldots, t)$ that are mutually distinct such that the sum at u is distinct from the sums at u_{1}, u_{2}, and u_{3}. Finally, we recolor the 2^{-}-vertices v_{1}, \ldots, v_{t} to extend an nsd total-L-coloring to G which contradicts the choice of G.

Lemma 7. Each 5-vertex in H is adjacent to at most one 3-vertex.

Proof. Suppose to the contrary that H has a 5 -vertex v adjacent to 3 -vertices u_{1} and u_{2}. Let v_{1}, v_{2}, and v_{3} be the remaining neighbors of v in H, and let w_{1}, \ldots, w_{t} be the 2^{-}-neighbors of v in G where $t=d_{G}(v)-d_{H}(v)$.
(1) $t \leq 2$.

Let $G^{\prime}=G-\left\{v u_{1}, v u_{2}, v w_{1}, \ldots, v w_{t}\right\}$. Let L be a $(\Delta(G)+3)$-assignment that G has no nsd total-L-coloring. By the minimality of G, there is an nsd total- L-coloring for G^{\prime} where L is restricted to the graph G^{\prime}.

We delete the colors on vertices $u_{1}, u_{2}, w_{1}, \ldots, w_{t}$. We use x_{i} for a color assigned to $v u_{i}(i=$ $1,2)$ and use x_{2+j} for a color assigned to $v w_{j}(j=1, \ldots, t)$. To extend an nsd total-L-coloring to G, a color for $v u_{i}$ where $i=1,2$ must be different from the colors of edges $v v_{1}, v v_{2}, v v_{3}$ and the colors of edges incident to u_{i}, and the color of the vertex v. Let S_{i} denote the set of legal colors that can be assigned to $v u_{i}$. From Lemma 6, each of u_{1} and u_{2} has exactly three neighbors in G. Then we have $\left|S_{i}\right| \geq|L(u v)|-6=\Delta(G)-3$. Similarly, a color for $v w_{j}$ where $j=1, \ldots, t$ must be different from the colors of edges $v v_{1}, v v_{2}, v v_{3}$ and the colors of edges incident to $u w_{j}$,
and the color of the vertex v. Let S_{2+j} denote the set of legal colors that can be assigned to $v w_{j}$. Then we have $\left|S_{2+j}\right| \geq|L(u)|-5=\Delta(G)-2$.

Next, we aim to make the sum obtained at v distinct from the sums at v_{1}, v_{2}, and v_{3}. Let w_{0} be the temporary sum at v and let w_{i} be the sum at $v_{i}(i=1,2,3)$. Altogether, we want to find x_{1}, \ldots, x_{2+t} such that the following polynomial is non-zero:

$$
P\left(x_{1}, \ldots, x_{2+t}\right)=\prod_{1 \leq i<j \leq 2+t}\left(x_{i}-x_{j}\right) \prod_{i=1}^{3}\left(\sum_{r=1}^{2+t} x_{r}+w_{0}-w_{i}\right)
$$

If $t=0$, then we have $\operatorname{deg}(P)=4$ and the coefficient of $x_{1}^{3} x_{2}$ is 2 (calculated by Scilab). Note that $\left|S_{1}\right|,\left|S_{2}\right| \geq 4$. By Lemma 4, there exist $x_{1} \in S_{1}$ and $x_{2} \in S_{2}$ such that $P\left(x_{1}, x_{2}\right) \neq 0$.

If $t=1$, then we have $\operatorname{deg}(P)=6$ and the coefficient of $x_{1}^{2} x_{2} x_{3}^{3}$ is 1 (calculated by Scilab). Note that $\left|S_{1}\right|,\left|S_{2}\right| \geq 4$ and $\left|S_{3}\right| \geq 5$. By Lemma 4, there exist $x_{1} \in S_{1}, x_{2} \in S_{2}$, and $x_{3} \in S_{3}$ such that $P\left(x_{1}, x_{2}, x_{3}\right) \neq 0$.

If $t=2$, then we have $\operatorname{deg}(P)=9$ and the coefficient of $x_{1}^{2} x_{3}^{4} x_{4}^{3}$ is 1 (calculated by Scilab). Note that $\left|S_{1}\right|,\left|S_{2}\right| \geq 4$ and $\left|S_{3}\right|,\left|S_{4}\right| \geq 5$. By Lemma 4, there exist $x_{1} \in S_{1}, x_{2} \in S_{2}, x_{3} \in S_{3}$, and $x_{4} \in S_{4}$ such that $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \neq 0$.

Thus we can find $x_{i} \in S_{i}(i=1, \ldots, 2+t)$ that are mutually distinct such that the sum at v is distinct from the sums at v_{1}, v_{2}, and v_{3}. Finally, we recolor the 3^{-}-vertices $u_{1}, u_{2}, w_{1}, \ldots, w_{t}$ to extend an nsd total- L-coloring to G which contradicts the choice of G.
(2) $t \geq 3$.

Let $G^{\prime}=G-\left\{v w_{1}, \ldots, v w_{t}\right\}$. Let L be a $(\Delta(G)+3)$-assignment that G has no nsd total- L coloring. By the minimality of G, there is an nsd total- L-coloring for G^{\prime} where L is restricted to the graph G^{\prime}.

We delete the colors on vertices $u_{1}, u_{2}, w_{1}, \ldots, w_{t}$. We use x_{i} for a color assigned to $v w_{i}(j=$ $1, \ldots, t)$. Let $i=1, \ldots, t$. To extend an nsd total-L-coloring to G, a color for $v w_{i}$ must be different from the colors of edges $v u_{1}, v u_{2}, v v_{1}, v v_{2}, v v_{3}$ and the colors of edges incident to w_{i}, and the color of the vertex v. Let S_{i} denote the set of legal colors that can be assigned to $v w_{i}$. Then we have $\left|S_{i}\right| \geq|L(u v)|-7=\Delta(G)-4 \geq(t+5)-4=t+1$. By Lemma 3, $T_{t}\left(S_{1}, \ldots, S_{t}\right) \geq$ $t(t+1)-t^{2}+1 \geq 4$ when $t \geq 3$. Thus we can find $x_{i} \in S_{i}(i=1, \ldots, t)$ that are mutually distinct
such that the sum at u is distinct from the sums at v_{1}, v_{2}, and v_{3}. Finally, we recolor the 3^{-}vertices $u_{1}, u_{2}, w_{1}, \ldots, w_{t}$ to extend an nsd total-L-coloring to G which contradicts the choice of G.

3. MAin Results

Theorem 2. If G is a planar graph without 4 -cycles adjacent to 3 -cycles with $\Delta(G) \geq 7$, then $C h_{\Sigma}^{\prime \prime}(G) \leq \Delta(G)+3$.

Proof. Suppose to the contrary that G is a minimal counterexample with respect to $|V(G)|+$ $|E(G)|$. Let the graph H be defined as in the previous section. The initial charge is defined to be $\mu(x)=d(x)-4$ for each $x \in V(H) \cup F(H)$. Then by Euler's formula and by the Handshaking lemma, we have

$$
\sum_{v \in V(H)} \mu(v)+\sum_{f \in F(H)} \mu(f)=-8
$$

Now, we derive a new charge $\mu^{*}(x)$ for each $x \in V(H) \cup F(H)$ by transferring charge from one element to another and the summation of new charge $\mu^{*}(x)$ remains -8 . If we show that $\mu^{*}(x) \geq 0$ for each $x \in V(H) \cup F(H)$, then we obtain a contradiction and a counterexample does not exist.

The discharging rules are defined as follows: Let $w(x \rightarrow y)$ be the charge transferred from x to y where $x, y \in V(H) \cup F(H)$.
(R1) Let f be a 3-face incident to a vertex u and adjacent to a face g.
(R1.1) If u is a 5-vertex, then $w(u \rightarrow f)=\frac{1}{3}$.
(R1.2) If u is a 6^{+}-vertex, then

$$
w(u \rightarrow f)= \begin{cases}\frac{1}{3}, & \text { when } f \text { is a }\left(3,5^{+}, 5^{+}\right) \text {-face } \\ \frac{2}{3}, & \text { when } f \text { is a }\left(4^{+}, 4^{+}, 5^{+}\right) \text {-face }\end{cases}
$$

(R1.3) If g is a 5^{+}-face, then

$$
w(g \rightarrow f)= \begin{cases}\frac{3}{10}, & \text { when } g \text { is a special face of } f \\ \frac{1}{5}, & \text { when } g \text { is not a special face of } f\end{cases}
$$

(R2) If u is a 5^{+}-vertex adjacent to a 3 -vertex v, then $w(u \rightarrow v)=\frac{1}{3}$.
Now, it remains to show that after discharging, the new charge $\mu^{*}(x) \geq 0$ for all $x \in V(H) \cup$
$F(H)$.
Consider a 3-face f. It follows from Lemma 5(c) that f is a $\left(3,5^{+}, 5^{+}\right)$-face or a $\left(4^{+}, 4^{+}, 5^{+}\right)$face. Note that all adjacent faces of f are 5^{+}-faces by Lemma 2. If f be a $\left(3,5^{+}, 5^{+}\right)$-face, then $\mu^{*}(f) \geq \mu(f)+\left(3 \times \frac{1}{5}\right)+\left(2 \times \frac{1}{3}\right)>0$ by (R1). If f is a $\left(4^{+}, 4^{+}, 6^{+}\right)$-face or a $\left(4^{+}, 5^{+}, 5^{+}\right)$face, then $\mu^{*}(f) \geq \mu(f)+\left(3 \times \frac{1}{5}\right)+\frac{2}{3}=0$ or $\mu^{*}(f) \geq \mu(f)+\left(3 \times \frac{1}{5}\right)+\left(2 \times \frac{1}{3}\right)>0$ by (R1), respectively. Suppose that f is a $(4,4,5)$-face. Let v be a 5 -vertex incident to f. Let f_{1} and f_{2} be faces adjacent to f and incident to v. Let a face $g_{i} \neq f(i=1,2)$ be adjacent to f_{i} and incident to v. It follows from Lemma 2 that g_{1} or g_{2} is not a 3-face. Consequently, f_{1} or f_{2} is a special face of f. Thus $\mu^{*}(f) \geq \mu(f)+\left(2 \times \frac{1}{5}\right)+\frac{3}{10}+\frac{1}{3}>0$ by (R1).

If f is a 4-face, then it does not involve in a discharging process and thus $\mu^{*}(f)=\mu(f)=0$.
Consider a k-face f where $k \geq 5$. Assume f is adjacent to the faces f_{1}, \ldots, f_{k} in a cyclic order. To calculate $\mu^{*}(f)$, we redistribute $w\left(f \rightarrow f_{i}\right)$ as follows. Let $w\left(f \rightarrow f_{i}\right)=\frac{1}{5}$. If f_{i} is not a 3-face, then we transfer from f_{i} the charge $\frac{1}{10}$ to f_{i-1} and $\frac{1}{10}$ to f_{i+1} where all subscripts are taken modulo k. Thus if f_{i} is a 3-face, then it gains charge at least $\frac{1}{5}$, otherwise f_{i} gains charge at least $\frac{1}{5}-\left(2 \times \frac{1}{10}\right)=0$. Moreover if f is a special face k-face of f_{i}, then f_{i-1} or f_{i+1} is not a 3-face. By the rules of redistribution, f gains charge at least $\frac{1}{5}+\frac{1}{10}=\frac{3}{10}$. Thus the new charge of f is at least $\mu(f)-\left(k \times \frac{1}{5}\right)=\frac{4 k}{5}-4 \geq 0$ while its adjacent faces receive charges not less than ones according to (R1.3). This implies that $\mu^{*}(f) \geq 0$ according to (R1.3).

Consider a vertex v. It follows from Lemma 5(a) that v is a 3^{+}-vertex. If v is a 3 -vertex v, then it follows from Lemma 5(b) that each neighbor of v is a 5^{+}-vertex. Thus $\mu^{*}(v) \geq$ $\mu(v)+\left(3 \times \frac{1}{3}\right)=0$ by (R2).

If v is a 4-vertex, then it does not involve in a discharging process and thus $\mu^{*}(v)=\mu(v)=0$.
If v is a 5-vertex, then v is incident to at most two 3-faces and adjacent to at most one 3-vertex by Lemmas 2 and 7, respectively. Thus $\mu^{*}(v) \geq \mu(v)-\left(3 \times \frac{1}{3}\right)=0$ by (R1.1) and (R2).

Consider a k-vertex v where $k \geq 6$. Let f_{1}, \ldots, f_{k} be incident faces of v in a cyclic order and v_{1}, \ldots, v_{k} be adjacent vertices of v such that v_{i} and v_{i+1} are incident to f_{i} where $i=1, \ldots, k$ and all subscripts are taken modulo k. To calculate $\mu^{*}(v)$, we redistribute $w\left(v \rightarrow v_{i}\right)$ as follows. Let $w\left(v \rightarrow v_{i}\right)=\frac{1}{3}$. If v_{i} is not a 3 -vertex but f_{i-1} or f_{i} is a 3-face, then we transfer $\frac{1}{3}$ from v_{i} to a 3-face f_{i-1} or a 3-face f_{i}. By Lemma 2, at most one of f_{i-1} and f_{i} is a 3-face. It follows that if
v_{i} is a 3 -vertex, then it gains charge $\frac{1}{3}$, otherwise it gains charge at least $\frac{1}{3}-\frac{1}{3}=0$. Consider a 3-face f_{i}. It follows from Lemma 5(c) that f_{i} is a $\left(3,5^{+}, 5^{+}\right)$-face or a $\left(4^{+}, 4^{+}, 5^{+}\right)$-face. If f_{i} is a $\left(3,5^{+}, 5^{+}\right)$-face, then it gains charge $\frac{1}{3}$ from v_{i} or v_{i+1}. If f_{i} is a $\left(4^{+}, 4^{+}, 5^{+}\right)$-face, then it gains charge $2 \times \frac{1}{3}=\frac{2}{3}$ from v_{i} and v_{i+1}. Thus the new charge of v is at least $\mu(v)-k \times \frac{1}{3}=\frac{2 k}{5}-4 \geq 0$ while its incident faces and adjacent vertices receive charges not less than ones according to (R1.2) and (R2). This implies that $\mu^{*}(v) \geq 0$ according to (R1.2) and (R2).

This completes the proof.

CONFLICT OF Interests

The author(s) declare that there is no conflict of interests.

References

[1] N. Alon, Combinatorial Nullstellensatz, Comb. Probab. Comput. 8 (1999), 7-29.
[2] X. Cheng, D. Huang, G. Wang, J. Wu, Neighbor sum distinguishing total colorings of planar graphs with maximum degree Δ, Discrete Appl. Math. 190-191 (2015), 34-41.
[3] A. Dong, G. Wang, Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree, Acta Math. Sin. 30 (2014), 703-709.
[4] S. Ge, J. Li, C. Xu, Neighbor sum distinguishing total coloring of planar graphs without 5-cycles. Theor. Comput. Sci. 689 (2017), 169-175.
[5] H. Li, L. Ding, B. Liu, G. Wang, Neighbor sum distinguishing total colorings of planar graphs, J. Comb. Optim. 30 (2015), 675-688.
[6] H. Li, B. Liu, G. Wang, Neighbor sum distinguishing total colorings of K_{4}-minor free graphs, Front. Math. China. 8 (2013), 1351-1366.
[7] M. Pilśniak, M. Woźniak, On the total-neighbor-distinguishing index by sums, Graphs Comb. 31 (2015), 771-782.
[8] C. Qu, G. Wang, J. Wu, X. Yu, On the neighbor sum distinguishing total coloring of planar graphs. Theor. Comput. Sci. 609 (2015), 162-170.
[9] C. Qu, G. Wang, G. Yan, X. Yu, Neighbor sum distinguishing total choosability of planar graphs. J. Comb. Optim. 32 (2016), 906-916.
[10] C. Song, X. Jin, C.Q. Xu, Neighbor sum distinguishing total coloring of IC-planar graphs with short cycle restrictions, Discrete Appl. Math. 279 (2020), 202-209.
[11] W. Song, L. Miao, Neighbor sum distinguishing total choosability of IC-planar graphs, Discuss. Math. Graph Theory, 40 (2020), 331-344.
[12] W. Song, L. Miao, J. Li, Y. Zhao, J. Pang, Neighbor sum distinguishing total coloring of sparse IC-planar graphs. Discrete Appl. Math. 239 (2018), 183-192.
[13] H. Song, W. Pan, X. Gong, C. Xu. A note on the neighbor sum distinguishing total coloring of planar graphs. Theoret. Comput. Sci. 640 (2016), 125-129.
[14] C. Song, C. Xu, Neighbor sum distinguishing total colorings of IC-planar graphs with maximum degree 13. J. Comb. Optim. 39 (2020), 293-303.
[15] J. Wang, J. Cai, Q. Ma, Neighbor sum distinguishing total choosability of planar graphs without 4-cycles. Discrete Appl. Math. 206 (2016), 215-219.
[16] J. Wang, Q. Ma, X. Han, Neighbor sum distinguishing total colorings of triangle free planar graphs. Acta Math. Sin. 31 (2015), 216-224.
[17] J. Yao, X. Yu, G. Wang, C. Xu, Neighbor sum (set) distinguishing total choosability of d-degenerate graphs. Graphs Combin. 32 (2016), 1611-1620.

[^0]: *Corresponding author
 E-mail address: patcharapan.ju@up.ac.th
 Received January 20, 2022

