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Abstract. In this paper, we introduce a new class of compactness with grill such as G − 𝑃𝑝-compact, G− strongly

compact, G − \ compact and G − 𝑃𝑆-compact spaces. Some of their properties and characterizations are obtained.

Also, we define and study the concept of G − 𝑃𝑃-compactness spaces under continuous functions.
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1. Introduction and Preliminaries

Recently, the characteristics of compactness play a big role in the various applications of

topology in various fields Mashhour et al.[4] show and present sets and precontinuous functions.

In 2014, Khalaf and Mershkhan [2] inserted 𝑃𝑃−open sets, which are more comprehensive

preopen sets, for the purpose of create a profile for 𝑃𝑃−continuous functions. Jafari [16] present

the imagine for \−compact spaces. Mashhour et al. [5] give the imagine for comprehensive

compact spaces. Category 𝑃𝑃−compact spaces strictly falls between categories of heavily

compact space and \−compact space, but not balance the compact space. A (Ω, 𝜏) and (𝔜, 𝜎)
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represent topological spaces TSs without separation axioms are presumably unless otherwise.

` ⊆ Ω is called preopen [4] (resp., semi-open [13] and 𝛼−open [15]) if ` ⊆ 𝐼𝑛𝑡 (𝐶𝑙 (`)) (resp.,

` ⊆ 𝐶𝑙 (𝐼𝑛𝑡 (`)) and ` ⊆ 𝐼𝑛𝑡 (𝐶𝑙 (𝐼𝑛𝑡 (`)))). Supplements for these groups are found in these

references. ` ⊆ Ω is preclopen[3]. Moreover ` ⊆ Ω is \−open [14] if ∀𝜖 ∈ `, ∃ an open set ` :

𝜖 ∈ ` ⊆ 𝐶𝑙 (`) ⊆ `. A preopen subset ` of Ω is 𝑃𝑝−open [2] (resp., 𝑃𝑆−open [1]) if ∀𝜖 ∈ `,

∃ a preclosed (resp., semi-closed) set [ : 𝜖 ∈ [ ⊆ `. The supplementing to of a 𝑃𝑝−open set is

a 𝑃𝑝−closed. A ` ⊆ Ω is pre-regularopen [9] if ` = 𝑝𝐼𝑛𝑡 (𝑝𝐶𝑙 (`)). The comprehensive set of

all preopen (resp., pre-regularopen, \−open, 𝑃𝑝−open and 𝑃𝑆−open) of Ω referred to.

In this paper, the main purpose is to present new types of compactness with grill such as

G − 𝑃𝑝 compact, G− strongly compact, G − \ compact and G − 𝑃𝑆 compact spaces and some

of their characterizations are obtained. Also, the concept of G − 𝑃𝑃 compactness spaces under

continuous functions are discussed.

Definition 1.1. [18] Let U ⊆ Ω and ℓ ∈ Ω. Then, U is called a pre-neighbourhood (pre-nbd,

for short) of ℓ in Ω if there exists ` ∈ 𝑃𝑂 (Ω) such that ℓ ∈ ` ⊆ U.

Definition 1.2. [10] A nonempty subcollection G of S which carries a topology 𝜏 is called a

grill on S if the following are satisfied:

(1) 𝜙 ∉ G,

(2) If b ∈ G and b ⊆ 𝜐 ⊆ S, then 𝜐 ∈ G,

(3) If b ∪ 𝜐 ∈ G for b, 𝜐 ⊆ S, then b ∈ G or 𝜐 ∈ G.

Grill depends on the two functions Φ and Ψ which are generated a unique a grill topological

structure (briefly, GTS) that is finer than 𝜏 on S. It is denoted by 𝜏G and is discussed in [7, 8].

Definition 1.3. [7] Let (Ω,=) be a TS and G ⊆ Ω. A function Φ : P(Ω) → P(Ω), where

P(Ω) is the power set of Ω, is defined by Φ(`) = ΦG (`,=) = {ℓ ∈ Ω : ` ∩U ∈ G} ∀U ∈ =(Ω)

and ` ∈ P(Ω). Φ is called the operator associated with G and =.

Definition 1.4. [11] Let G be define on a TS (Ω,=). ∃ =G on Ω is given by =G = {U ⊆ Ω :

Ψ(Ω \ U) = Ω \ U},∀ ` ⊆ Ω,Ψ(`) = ` ∪Φ(`).

Theorem 1.5. [7] Let G1 and G2 be two grills on (Ω, Γ). Then,
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(1) If G1 ⊆ G2, then ΓG1 ⊆ ΓG2 .

(2) If G ⊆ (Ω, Γ) and B ∉ G, then B is closed in (Ω, ΓG).

(3) For any subset A ⊆ (Ω, Γ) and any G on Ω, then Φ(A) is ΓG-closed.

Remark 1.6. [11] Let (Θ, Γ) be a TS. Then, 𝛽(G, Γ) = {U \ A : U ∈ Γ and A ∉ G} is

obviously an open base for ΓG .

Corollary 1.7. [11] For any grill G on a TS (Θ,=), = ⊆ 𝛽(G,=) ⊆ =G .

Definition 1.8 ([8, 12, 17]). A subset Z of a space Ω which carries topology 𝜏 with grill G is

said to be:

(1) G−open or Φ−open, if Z ⊆ 𝑖𝑛𝑡 (Φ(Z)),

(2) G−regular if 𝐼𝑛𝑡 (Ψ(Z)) = Z,

(3) G−regular open if 𝐼𝑛𝑡 (Ψ(Z)) = 𝐼𝑛𝑡 (Z),

(4) G − 𝛼-open, if Z ⊆ 𝑖𝑛𝑡 (Ψ(𝑖𝑛𝑡 (Z))),

(5) G−preopen, if Z ⊆ 𝑖𝑛𝑡 (Ψ(Z)),

(6) G−semiopen, if Z ⊆ Ψ(𝑖𝑛𝑡 (Z)),

(7) G − 𝛽-open, if Z ⊆ 𝑐𝑙 (𝑖𝑛𝑡 (Ψ(Z))).

The family of all G−open (resp. G − 𝛼-open, G−preopen, G−semiopen, G − 𝛽-open) sets in

a GTS (Ω, 𝜏, 𝐺) is denoted by G𝑂 (Ω) (rep. G𝛼𝑂 (Ω), G𝑃𝑂 (Ω), G𝑆𝑂 (Ω), G𝛽𝑂 (Ω)).

Proposition 1.9. [8] Every G−open or Φ−open set A is G−preopen.

Definition 1.10. [6] Let G on a (X, 𝜏) be a cover {Z𝛾 : 𝛾 ∈ Δ} of X. Then X is said to be a

G−cover if ∃ a finite subset Δ0 : Δ0 ⊆ Δ, X \⋃𝛾∈Δ0 Z𝛾 ∉ G. A cover which is not a G−cover of

X is named a G★−cover.

Definition 1.11. [6] A GTS (Ω, Γ,G) is G−compact if ∀ open cover of Ω is a G−cover

2. G − 𝑃𝑃 Compact Space and Some Types of G−Compacts

Definition 2.1. Let (Ω,=,G) be GTS and A ⊆ Ω. Then, A is called:

(1) G−pre-neighbourhood (G−pre-nbd for short) of 𝑥 in Ω if ∃ B ∈ G𝑃𝑂 (Ω) : 𝑥 ∈ B ⊆ A.

(2) G−pre regularopen if A = 𝑃𝑖𝑛𝑡 (𝑃Ψ(A)), such that 𝑃Ψ(A) = ∩{` ⊇ A : ` ⊇ Ψ(𝑖𝑛𝑡 (`))}.
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(3) G − \ open if ∀𝑥 ∈ A, ∃ an G−open set ` : 𝑥 ∈ ` ⊆ Ψ(`) ⊆ A.

(4) G − 𝑃𝑝 open if ∀𝑥 ∈ A ∈ G𝑃𝑂 (Ω) ∃ a G−preclosed set _ in Ω such that 𝑥 ∈ _ ⊆ A. The

complement of a G − 𝑃𝑝 open set is a G − 𝑃𝑝 closed.

(5 ) G − 𝑃𝑆 open if ∀𝑥 ∈ A ∈ G𝑃𝑂 (Ω) ∃ G−semiclosed set _ in Ω such that 𝑥 ∈ _ ⊆ A.

(6 ) G−preclopen if A is both G−preopen and G−preclosed. The class of all G−preopen (resp.,

G−pre-regularopen, G − \ open, G − 𝑃𝑝 open, G − 𝑃𝑆 open, G−semiclosed and G−preclosed

of Ω is denoted by G𝑃𝑂 (Ω)(resp.,G𝑃𝑅𝑂 (Ω), G\𝑂 (Ω), G𝑃𝑃𝑂 (Ω), G𝑃𝑆𝑂 (Ω), G𝑆𝐶 (Ω) and

G𝑃𝐶 (Ω)).

Remark 2.2.

(1) Each G− regularopen set is G − 𝑃𝑆 open.

(2) Each G − \ open set is G − 𝑃𝑆 open.

From Definition 2.1 and Remark 2.2 we have the following implication diagram holds, where

no other implication than those displayed, is true in general.

G − 𝑃𝑆𝑂 (Ω) ⇐= G − \𝑂 (Ω) =⇒ G − 𝑃𝑃𝑂 (Ω)

⇓ ⇓

G −𝑂 (Ω) =⇒ G − 𝑃𝑂 (Ω)

The reverses of the above implication are not verified, in general. These can be shown in the

following examples.

Example 2.3. Let Ω = {𝚤, 𝚥, ℓ} with 𝜏 = {𝑋, 𝜙, {𝚤}, {ℓ}, {𝚤, 𝚥}, {𝚤, ℓ}}. If G is grill on Ω such that

G = {Ω, {𝚤}, {𝚤, 𝚥}}. Then,G𝑂 (Ω) = {Ω, 𝜙, {𝚤}, {𝚤 , 𝚥}},G𝑃𝑂 (Ω) = {Ω, 𝜙, {𝚤}, {ℓ}, {𝚤, 𝚥}, {𝚤, ℓ}},

G𝑃𝐶 (Ω) = {Ω, 𝜙, {ℓ}, { 𝚥}, {𝚤, 𝚥}, { 𝚥, ℓ}, {𝚤, ℓ}} and G𝑃𝑃𝑂 (Ω) = {Ω, 𝜙, {ℓ}, {𝚤, 𝚥}, {𝚤, ℓ}}.

Then {𝚤} ∈ G𝑃𝑂 (Ω), but {𝚤} ∉ G𝑃𝑃𝑂 (Ω). Also {ℓ}, {𝚤, ℓ} ∈ G𝑃𝑂 (Ω) but {ℓ}, {𝚤, ℓ} ∉ G𝑂 (Ω).

Example 2.4. From Example 2.3. G𝑂 (Ω) = {Ω, 𝜙, {𝚤}, {𝚤, 𝚥}}, then G\𝑂 (Ω) = {Ω, 𝜙, {𝚤, 𝚥}},

also G𝑃𝑃𝑂 (Ω) = {Ω, 𝜙, {ℓ}, {𝚤, 𝚥}, {𝚤, ℓ}}. Hence {ℓ}, {𝚤, ℓ} ∈ G𝑃𝑃𝑂 (Ω) but {ℓ}, {𝚤, ℓ} ∉

G\𝑂 (Ω). Also {𝚤} ∈ G𝑂 (Ω) but {𝚤} ∉ G\𝑂 (Ω).
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Example 2.5. From Example 2.3. G𝑆𝐶 (Ω)) = 𝑃(Ω) andG𝑃𝑂 (Ω) = {Ω, 𝜙, {𝚤}, {ℓ}, {𝚤, 𝚥}, {𝚤, ℓ}},

implies that G𝑃𝑆𝑂 (Ω) = {Ω, 𝜙, {𝚤}, {ℓ}, {𝚤, 𝚥} , {𝚤, ℓ}} and G\𝑂 (Ω) = {Ω, 𝜙, {𝚤, 𝚥}}. Hence

{𝚤}, {ℓ}, {𝚤, ℓ} ∈ G𝑃𝑆𝑂 (Ω) but {𝚤}, {ℓ}, {𝚤, ℓ} ∉ G\𝑂 (Ω).

Definition 2.6. Let (Ω, Γ,G) be GTS. Then, a space Ω is called:

(1) Grill locally indiscrete space (G𝐿𝐼𝐷 space, for short) if ∀G−open subset of Ω is G−closed.

(2) Pre-G𝑇1 space if ∀𝑥 ≠ 𝑦 ∈ Ω, ∃ two G−preopen sets [, 𝜌 : 𝑥 ∈ [, 𝑦 ∉ [ and 𝑦 ∈ 𝜌, 𝑥 ∉ 𝜌.

(3) Grill preregular space(G𝑃𝑅 space for short) if ∀ G−preclosed 𝜔 and ∀𝑥 ∉ 𝜔, ∃ disjoint

G−preopen sets [, 𝜌 and [ ∩ 𝜌 = 𝜙 : 𝑥 ∈ [ and 𝜔 ⊆ 𝜌.

Lemma 2.7. A (X,=,G) is GPR space iff ∀𝑥 ∈ X and ∀ ` ∈ G𝑃𝑂 (X)∃ [ ∈ G𝑃𝑂 (X) such

that 𝑥 ∈ [ ⊆ 𝑃Ψ([) ⊆ `.

Proof. From Definition 2.6(3). �

Theorem 2.8. Let (Ω, 𝜏,G) be GTS. Then, a space Ω is Pre-G𝑇1, iff the singleton set {ℓ} is

G−preclosed ∀ ℓ ∈ Ω.

Proof. (⇒) : Let a GTS (Ω,=,G) be Pre-G𝑇1 and {ℓ} be G−preclosed set, ∀ℓ ∈ Ω implies

that Ω \ {ℓ} is a G−pre-nbd of each of its points, 𝑦 ∈ Ω \ {ℓ} and by Definition 2.6(2) for each

ℓ ≠ 𝑦 ∈ Ω ∃ a G−preopen set ` : 𝑦 ∈ ` and ℓ ∉ `, then 𝑦 ∈ ` ⊆ Ω \ {ℓ}, this leads us toΩ \ {ℓ}

is a G−pre-nbd of 𝑦, it follows that Ω \ {ℓ} is G−preopen set in Ω and hence {ℓ} is preclosed.

(⇐) : Let {ℓ} be G−preclosed set, for each ℓ ∈ Ω, 𝑦 ≠ 𝑧 ∈ Ω. Then, {𝑦} is G−preclosed set

also in Ω it follows that Ω \ {𝑦} is G−preopen set and which contains 𝑧 but not 𝑦. Also {𝑧}

is G−preclosed set in Ω and Ω \ {𝑧} is G−preopen set in Ω which contains 𝑦 but not 𝑧. This

implies that the space Ω is Pre-G𝑇1. �

Proposition 2.9. If (Ω,=,G) is GTS, then the following statements are correct if Ω is

(1) Pre-G𝑇1 space, then G𝑃𝑂 (Ω) = G𝑃𝑃𝑂 (Ω).

(2) GPR space, then G𝑂 (Ω) ⊆ G𝑃𝑃𝑂 (Ω).

Proof.
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(1) Since Ω is Pre-G𝑇1, then by Theorem 2.8 every singleton {𝑥} is G−preclosed set. Also

for each 𝑥 ∈ A, ∀ G−preopen set A in Ω, implies 𝑥 ∈ {𝑥} ⊆ A and A ∈ G𝑃𝑝𝑂 (Ω). Then

G𝑃𝑂 (Ω) = G𝑃𝑝𝑂 (Ω).

(2) Let ` be G−open subset of a space Ω. Then, ` is G−preopen. If Ω is G𝑃𝑅 space, then

by Lemma 2.7, ∀𝑥 ∈ ` ⊆ Ω, ∃ a G−preopen set [ such that 𝑥 ∈ [ ⊆ 𝑃𝜓([) ⊆ `. Hence

G𝑂 (Ω) ⊆ G𝑃𝑃𝑂 (Ω). �

Lemma 2.10. A (Ω, 𝜏,G) is GTS and ` ⊆ b ⊆ Ω. If ` ∈ G𝑃𝑃𝑂 (b) and b is G−preclopen or

b ∈ G𝑃𝑅𝑂 (Ω), then ` ∈ G𝑃𝑃𝑂 (Ω).

Proof. If ` ∈ G𝑃𝑃𝑂 (b), then ` ∈ G𝑃𝑂 (b), since b is G−preclopen then b ∈ G𝑃𝑂 (Ω) implies

` ∈ G𝑃𝑂 (Ω), ∀ 𝑥 ∈ `, ∃ a G−preclosed set _ in b : 𝑥 ∈ _ ⊆ ` implies ` ∈ G𝑃𝑃𝑂 (Ω). On

other hand since ∀ 𝑥 ∈ `, ∃ a G−preclosed set _ in b such that 𝑥 ∈ _ ⊆ ` and b is G−preclopen

implies b is G−preclosed set in Ω. Since _ is G−preclosed set in b, _ is G−preclosed set in Ω.

Hence ` ∈ G𝑃𝑃𝑂 (Ω). �

Definition 2.11. If (Ω,=,G) is GTS then Ω is called:

(1) G − 𝑃𝑝 compact (G − 𝑃𝑝CMP, for short) if ∀ 𝑃𝑝 open cover {V𝛼 : 𝛼 ∈ Δ} of Ω, ∃ a finite

subset Δ0 ⊆ Δ : Ω \⋃𝛼∈Δ0{V𝛼} ∉ G.

(2) G − \ compact (G − \CMP, for short) if ∀ \ open cover {V𝛼 : 𝛼 ∈ Δ} of X, has Δ0 ⊆ Δ :

Ω \⋃𝛼∈Δ0{V𝛼} ∉ G.

(3) G − 𝑃𝑆 compact (G − 𝑃𝑆CMP, for short) if ∀ 𝑃𝑆 open cover {V𝛼 : 𝛼 ∈ Δ} of Ω, ∃ Δ0 ⊆ Δ :

Ω \⋃𝛼∈Δ0{V𝛼} ∉ G.

(4) G − 𝑝 closed if ∀ preopen cover {U𝛼 : 𝛼 ∈ Δ}, ∃ Δ0 ⊆ Δ : Ω \⋃𝛼∈Δ0{𝑝𝑐𝑙 (U𝛼)} ∉ G.

Lemma 2.12. Each 𝑃𝑝−CMP space (Ω,=,G) is G − 𝑃𝑝CMP ∀ G on Ω.

Proof. Let {V𝛼 : 𝛼 ∈ Δ} be any 𝑃𝑝 open cover of Ω of an 𝑃𝑝CMP space (Ω,=,G), then ∃ a

finite subcover {V𝛼 : 𝛼 ∈ Δ0} ofΩ. SinceΩ\⋃𝛼∈Δ0 V𝛼 ∉ G, then (Ω,=,G) is G−𝑃𝑝CMP. �

Proposition 2.13. Let G = 𝑃(Ω) \ 𝜙 be a grill on a (Ω,=) and space (Ω,=G) be G − 𝑃𝑝CMP.

Then, (Ω,=,G) is G − 𝑃𝑝CMP.
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Proof. Let {Z𝛼 : 𝛼 ∈ Δ} be any = − 𝑃𝑝 open cover of Ω. Since = ⊆ =G , then {Z𝛼 : 𝛼 ∈ Δ} is

=G−𝑃𝑝 open cover ofΩ. Since (Ω,=G) isG−𝑃𝑝CMP, then∃Δ0 ⊆ Δ such thatΩ\⋃𝛼∈Δ0 Z𝛼 ∉ G,

but G = 𝑃(Ω) \ 𝜙 then Ω \ ⋃𝛼∈Δ0 Z𝛼 = 𝜙. Hence (Ω,=,G) is 𝑃𝑝CMP and by Lemma 2.12,

(Ω,=,G) is G − 𝑃𝑝CMP. �

Theorem 2.14. A GTS (Θ, Γ,G) is G − 𝑃𝑝CMP iff (Θ, ΓG) is G − 𝑃𝑝CMP.

Proof. (⇒): If Γ ⊆ ΓG it follows that (Θ, Γ,G) is G − 𝑃𝑝CMP if (Θ, ΓG) is G − 𝑃𝑝CMP.

(⇐): let (Θ, Γ,G) be G − 𝑃𝑝CMP and {b 𝚥 : 𝚥 ∈ Δ} be a 𝑃𝑝 open cover of Θ. Then ∀

𝚥 ∈ Δ, b 𝚥 = U 𝚥 \ B 𝚥 where U 𝚥 ∈ 𝑃𝑝𝑂 (Θ) and B 𝚥 ∉ G. Then, {U 𝚥 : 𝚥 ∈ Δ} is a 𝑃𝑝−open

cover of Θ. Hence by G−CMP of (Θ, Γ,G), ∃ Δ0 ⊆ Δ such that Θ \ ⋃
𝚥∈Δ0 U 𝚥 ∉ G. But,

Θ \⋃ 𝚥∈Δ0 b 𝚥 = Θ \⋃ 𝚥∈Δ0 (U 𝚥 \ B 𝚥) ⊆ (Θ \⋃ 𝚥∈Δ0 U 𝚥) ∪ (Θ \⋃ 𝚥∈Δ0 B 𝚥) ∉ G ∀B 𝚥 ∉ G, 𝚥 ∈ Δ0.

Then (Θ, ΓG) is G − 𝑃𝑝CMP. �

From Lemma 2.12, Theorem 2.14 we have the following implication diagram holds.

(Ω,=,G) is 𝑃𝑝−CMP =⇒ (Ω,=G) is 𝑃𝑝−CMP

⇓ ⇓

(Ω,=,G) is G − 𝑃𝑝CMP ⇐⇒ (Ω,=G) is G − 𝑃𝑝CMP

Proposition 2.15. If preclosed cover {V𝛼 : 𝛼 ∈ Δ} of a space Ω has a finite subcover {V𝛼 : 𝛼 ∈

Δ0} : Δ0 ⊆ Δ, then Ω \⋃𝛼∈Δ0 V𝛼 ∉ G and Ω is G − 𝑃𝑝CMP.

Proof. If U is 𝑃𝑝 open, then ∀ 𝑥 ∈ Ω, ∃ preclosed set V : 𝑥 ∈ V ⊆ U and ∀ 𝛼 ∈ Δ so

𝑥𝛼 ∈ V𝛼 ⊆ U𝛼 and 𝑥𝛼 ∈ {V𝛼 : 𝛼 ∈ Δ} ⊆ {U𝛼 : 𝛼 ∈ Δ}. Since {V𝛼 : 𝛼 ∈ Δ} is preclosed cover

of a space Ω. Then ∃ Δ0 ⊆ Δ is 𝛼 ∈ Δ0 ⊆ Δ and 𝑥 ∈ V𝛼(𝑥) , Ω = {V𝛼(𝑥𝑖) : 𝑖 = 1, 2, 3, ....., 𝑛} ⊆

{U𝛼(𝑥𝑖) : 𝑖 = 1, 2, 3, ....., 𝑛}. Hence, Ω = {U𝛼(𝑥𝑖) : 𝑖 = 1, 2, 3, ....., 𝑛} is 𝑃𝑝 cover of Ω and Ω is

G − 𝑃𝑝CMP. �

Definition 2.16. Let (Ω,=,G) be GTS. Then, (Ω,=,G) is G−strongly compact (G − 𝑆CMP,

for short) if each cover of Ω by preopen sets has a finite subcover Δ0 ⊆ Δ :Ω\⋃𝛼∈Δ0{V𝛼} ∉ G..

Lemma 2.17.
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(1) Each Ω is G − 𝑆CMP is G − 𝑃𝑝CMP.

(2) Each G − 𝑆CMP is G−CMP.

Proof. It is clearly because each G − 𝑃𝑝 open set is G−preopen and each G−open set is

G−preopen �

Lemma 2.18. Every G − 𝑃𝑝CMP space is G − \CMP.

Proof. Clear because each G − \ open set is G − 𝑃𝑝open. �

From Lemma 2.17 and Lemma 2.18 is established in the below diagram.

G − 𝑆CMP =⇒ G − 𝑃𝑝CMP

⇓ ⇓

G−CMP =⇒ G − \CMP

The reverses of the above implication are not verified, in general.

Lemma 2.19. Let Ω be a G𝑃𝑅 space. If Ω is G − 𝑃𝑝CMP, then Ω is G−CMP.

Proof. It is clearly from Proposition 2.9(2). �

Theorem 2.20. A GTS (Υ,=,G) hence every Pre-G𝑇1 and G − 𝑃𝑝CMP space is G − 𝑆CMP.

Proof. Let Υ be a Pre-G𝑇1, G − 𝑃𝑝CMP space and {V𝛼 : 𝛼 ∈ Δ} be any preopen cover of Υ.

Hence, ∀ ℓ ∈ Υ, ∃ 𝛼(ℓ) ∈ Δ : ℓ ∈ V𝛼(ℓ) . Since Υ is Pre-G𝑇1 and by Proposition 2.9(1), the

family {V𝛼 : 𝛼 ∈ Δ} is a 𝑃𝑝 open cover of Υ. Since Υ is G − 𝑃𝑝CMP, then ∃ a Δ0 ⊆ Δ of Υ :

Υ \⋃𝛼:𝛼∈Δ0{V𝛼} ∉ G. Thus, Υ is G − 𝑆CMP. �

Proposition 2.21. A GTS (Θ, Γ,G) is a G𝑃𝑅 space and G − 𝑃 closed space, then Θ is

G − 𝑃𝑝CMP.

Proof. Let {V𝛼 : 𝛼 ∈ Δ} is a G − 𝑃𝑝 open cover of Θ, V𝛼 is G−preopen ∀ 𝛼 ∈ Δ. Since Θ, is a

G𝑃𝑅 space, byLemma2.7,∀ 𝚥 ∈ Θ andV𝛼( 𝚥) ∃ aG−preopen set ` 𝚥 : 𝚥 ∈ ` 𝚥 ⊆ 𝑃Ψ(` 𝚥) ⊆ V𝛼( 𝚥) .

Hence {` 𝚥 : 𝚥 ∈ Θ} is a G−preopen cover of Θ. Since Θ is a G − 𝑃 closed space, then
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∃ a subfamily {` 𝚥𝑖 : 𝑖 = 1, 2, ............, 𝑛} : Θ = ∪𝑛
𝑖=1𝑝𝑐𝑙 (` 𝚥𝑖 ) ⊆ ∪𝑛

𝑖=1V𝛼 ( 𝚥𝑖). Thus Θ is

G − 𝑃𝑝CMP. �

Theorem 2.22. Let (Θ,=,G) be GTS. Then, the following conditions are identical:

(1) Θ is G − 𝑃𝑝CMP,

(2) Each 𝑃𝑝 cover {V𝛼 : 𝛼 ∈ Δ} of Θ, ∃ Δ0 ⊆ Δ : Θ \ (∪𝛼∈Δ0{V𝛼}) ∉ G,

(3) ∀ family {_𝛼 : 𝛼 ∈ Δ} of G − 𝑃𝑝closed subsets of Θ :
⋂{_𝛼 : 𝛼 ∈ Δ} = 𝜙, ∃ Δ0 ⊆ Δ of Θ :

Θ =
⋂{_𝛼 : 𝛼 ∈ Δ0}.

Proof. (1) ⇒ (2) from Definition 2.11(1)

(2) ⇒ (3) Obvious.

(3) ⇒ (1) Let {V𝛼 : 𝛼 ∈ Δ} be a 𝑃𝑝 open cover of Θ. Then, {Θ \V𝛼 : 𝛼 ∈ Δ} is a family of 𝑃𝑝

closed subsets of Θ : ∩{Θ \ V𝛼 : 𝛼 ∈ Δ} = 𝜙. Sine ∃ Δ0 ⊆ Δ such that Θ \ (∪𝛼∈Δ0{V𝛼}) ∉ G,

then Θ = ∪{V𝛼 : 𝛼 ∈ Δ0}. This shows that Θ is G − 𝑃𝑝CMP. �

3. G − 𝑃𝑃 Compact Subspaces

Definition 3.1. Let GTS (Ω,=,G) and 𝜑 ⊆ Ω. Then, 𝜑 is said to be:

G − 𝑃𝑝CMP subspace of 𝜑 if for each cover {`𝛼 : 𝛼 ∈ Δ} of 𝜑 by 𝑃𝑝 open subset of 𝜑 has a

finite subcover Δ0 ⊆ Δ such that 𝜑 \ {⋃𝛼∈Δ0{`𝛼} ∉ G.

Lemma 3.2. If (Ω,=,G) is GTS and A ⊆ Ω, then A is G − 𝑃𝑝CMP subspace iff each 𝑃𝑝

open cover {`𝛼 : 𝛼 ∈ Δ} of A has a finite subcover Δ0 ⊆ Δ such that A \ {⋃𝛼∈Δ0{`𝛼} ∉ G.

Proof. Clearly from Definition 3.1. �

Theorem 3.3. A (Θ,=,G) is GTS and [ ⊆ (Θ,=,G), hence every cover of [ by G−preclosed

subsets of [ has Δ0 : Δ0 ⊆ Δ, then [ is a G − 𝑃𝑝CMP subspace.

Proof. It is similar to Proposition 2.15. �

Theorem 3.4. Let (Θ,=,G) be GTS. Then, these conditions are identical:

(1) 𝜐 is G − 𝑃𝑝CMP subspace,

(2) ∀ {_𝛼 : 𝛼 ∈ Δ} of G − 𝑃𝑝closed subsets of Θ, such that (⋂{_𝛼 : 𝛼 ∈ Δ}) ∩ 𝜐 = 𝜙, ∃ Δ0 ⊆ Δ

such that (⋂{_𝛼 : 𝛼 ∈ Δ0}) ∩ 𝜐 = 𝜙.
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Proof. It is similar to Theorem 2.22 �

Theorem 3.5. If a GTS (Ω,=,G) is G − 𝑃𝑝CMP and ` is both G−preclopen and G − 𝑃𝑝

closed subset of Ω, then ` is a G − 𝑃𝑝CMP subspace.

Proof. Since ` is G−preclopen, then by Lemma 2.10, `𝛼 ∈ G𝑃𝑃𝑂 (Ω) ∀ 𝛼 ∈ Δ also ` is

G − 𝑃𝑝 closed subset of Ω, then Ω \ ` ∈ G𝑃𝑃𝑂 (Ω), if {𝜐𝛼 : 𝛼 ∈ Δ} is cover of ` implies

Ω = `𝛼∪Ω\ ` = {𝜐𝛼 : 𝛼 ∈ Δ}∪Ω\ ` is 𝑃𝑝− cover ofΩ. SinceΩ is G−𝑃𝑝 compact, ∃ Δ0 ⊆ Δ

such that Ω = ∪{𝜐𝛼 : 𝛼 ∈ Δ0} ∪ Ω \ `. Hence, ` = ∪{𝜐𝛼 : 𝛼 ∈ Δ0} and ` is a G − 𝑃𝑝CMP

subspace. �

Lemma 3.6. Let a GTS (Υ, Γ,G) be G − 𝑃𝑝CMP and 𝜚 be both G−pre regularopen and

G − 𝑃𝑝 closed subset of Υ. Then, 𝜚 is G − 𝑃𝑝CMP subspace.

Proof. Clear from Theorem 3.5 and Lemma 2.10. �

Corollary 3.7. Let (Ω, Γ,G) be a GTS. Then, the condition is hold:

The finite union of a G − 𝑃𝑝 CMP subspace of Ω is a G − 𝑃𝑝 CMP subspace.

Proof. Let A𝑖 is G − 𝑃𝑝 CMP subspace of Ω by G − 𝑃𝑝open sets of A𝑖 ∀ 𝑖 ∈ Δ. Then each

cover {`𝛼𝑖 : 𝛼𝑖 ∈ Δ} of A𝑖 by G − 𝑃𝑝 open subset of A𝑖, ∃ Δ0𝑖 ⊆ Δ : A𝑖 \
⋃

𝛼𝑖∈Δ0𝑖 {`𝛼𝑖} ∉ G.

Therefore
⋃A𝑖 is has cover {

⋃
`𝛼𝑖 : 𝛼𝑖 ∈ Δ} of ⋃A𝑖 by G − 𝑃𝑝 open subset of

⋃A𝑖, ∃

Δ0𝑖 ⊆ Δ :
⋃A𝑖 \

⋃(⋃𝛼𝑖∈Δ0𝑖 {`𝛼𝑖}) =
⋃A𝑖 \

⋃
𝛼𝑖∈Δ0𝑖 {`𝛼𝑖} ∉ G. Hence

⋃A𝑖 of a G − 𝑃𝑝 CMP

subspace of
⋃A𝑖 is a G − 𝑃𝑝 CMP subspace. �

4. G − 𝑃𝑃 Compactness Spaces Under Continuous Functions

Definition 4.1. Let two (Ω,=,G1) and (b, 𝜎,G2) be GTSs. Then a function 𝑓 : (Ω,=,G1) →

(b, 𝜎,G2) is called:

(1) G−pre-continuous at a point 𝑥 ∈ Ω if ∀ G−open set _ of b, 𝑓 (𝑥) ∈ _ ∃ a G−preopen set `

of Ω, 𝑥 ∈ ` such that 𝑓 (`) ⊆ _.

(2) G − 𝑃𝑃 continuous at a point 𝑥 ∈ Ω if ∀ G−open set _ of b, 𝑓 (𝑥) ∈ _ ∃ a G − 𝑃𝑃 open set `

of Ω, 𝑥 ∈ ` such that 𝑓 (`) ⊆ _.
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(3) Almost G−pre-continuous at a point 𝑥 ∈ Ω if ∀ G−open set _ of b, 𝑓 (𝑥) ∈ _ ∃ a G−preopen

set ` of Ω, 𝑥 ∈ ` such that 𝑓 (`) ⊆ 𝐼𝑛𝑡 (𝐶𝑙 (_)).

(4) Almost G − 𝑃𝑃 continuous at a point 𝑥 ∈ Ω if ∀ G−open set _ of b, 𝑓 (𝑥) ∈ _ ∃ a G − 𝑃𝑃

open set ` of Ω, 𝑥 ∈ ` such that 𝑓 (`) ⊆ 𝐼𝑛𝑡 (𝐶𝑙 (_)).

Theorem 4.2. If 𝑔 : (Ω,=,G1) → (b, 𝜎,G2), 𝑔 is a grill continuous, open function and _ is a

G − 𝑃𝑃 open set of b, then 𝑓 −1(_) is a G − 𝑃𝑃 open set of Ω.

Proof. Let _ be a G−𝑃𝑃 open set of b. Then _ is a G−preopen set of b, ∀ 𝑦 ∈ _, then ∃ G−open

[ in b such that _ ⊆ [ ⊆ Ψ(_).Hence 𝑔−1(_) ⊆ 𝑔−1([) ⊆ 𝑔−1(Ψ(_)) ⊆ Ψ(𝑔−1(_)), this implies

𝑔−1(_) is G−preopen set of Ω and let 𝑥 ∈ 𝑔−1(_), then 𝑔(𝑥) ∈ _. So ∃ a G−preclosed set 𝜌𝑥 of

Ω : 𝑔(𝜌𝑥) ⊆ _, implies 𝑥 ∈ 𝜌𝑥 ⊆ 𝑔−1(_). Hence 𝑔−1(_) is a G − 𝑃𝑃 open set of Ω. �

Corollary 4.3. If 𝑔 : (Ω,=,G1) → (Z, 𝜎,G2) is G − 𝑃𝑃 continuous surjection function and Ω

is a G − 𝑃𝑃CMP, then Z is G−CMP.

Proof. Let {U𝑖 : 𝑖 ∈ Δ} be any cover of 𝑔(`) by G − 𝑃𝑃 open sets of Z ∀ 𝑥 ∈ `, ∃ 𝑖(𝑥) ∈ Δ :

𝑔(𝑥) ∈ U𝑖(𝑥) . Since 𝑔 is G − 𝑃𝑃 continuous ∃ a G − 𝑃𝑃 open set V𝑥 of Ω containing 𝑥 such that

𝑔(V𝑥) ⊆ U𝑖(𝑥) . Then {V𝑖(𝑥) : 𝑥 ∈ `} is a G − 𝑃𝑃 open cover of ` ∃ finite subset `0 of `, then

` ⊆ ∪{V𝑖(𝑥) : 𝑥 ∈ `0} implies 𝑔(`) ⊆ ∪{U𝑖(𝑥) : 𝑥 ∈ `0}. Then, 𝑔(`) is G−CMP relative to

Z . �

Proposition 4.4. If 𝑓 : (Θ, Γ,G1) → (b, 𝜎,G2) is a G−pre-continuous surjection function, Θ

is a pre-G𝑇1 and G − 𝑃𝑃CMP space, then b is G−CMP.

Proof. By use Corollary 4.3, 2.20, and Lemma 2.12 �

Proposition 4.5. Let function 𝑔 : (Ω,=,G1) → (b, 𝜎,G2) be a G−continuous surjection and

Ω is a G𝑃𝑅 space and G − 𝑃𝑃CMP space, then b is G−CMP.

Proof. Clear in Corollary 4.3 and Lemma 2.19. �
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Conclusion and Future Work

This paper aims to introduce some new types of compactness in terms of grill theory. In

future, G−𝑃𝑝 compact, G− strongly compact, G−\ compact and G−𝑃𝑆 compact spaces can be

applied in many directions and solve some real life problems as in [19, 20, 21, 22, 23, 24, 25, 26].
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