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Abstract. We suggested a suitable algorithm, the Sumudu-iterative transform method, in this research study
(SITM). SITM illustrates space and time-fractional telegraph equations by combining the iterative approach and
the Sumudu transform. Caputo sense derivatives were employed.
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1. INTRODUCTION

In mathematics and fields such as physics and engineering technology, partial differential
equations are more important. To solve partial differential equations like Telegraph equations,
Fokker-Planck equations, fractional telegraph equations, fractional Fokker-plank equations are

solved by Laplace transform or by iterative method etc. [1, 2, 3].
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Fractional differential equations can be solved using a variety of approaches, includ-
ing fractional improved homotopy perturbation, fractional Laplace Adomain decomposition
method, fractional wavelet method, and so on[4, 5, 6, 7, 8]. Daftardar-gejji and Jafari de-
vised the iterative approach in 2006 to solve non-linear and linear fractional differential
equations.[9, 10, 11, 2, 12].
In this article, we consider the space- time fractional telegraph equation:
DEy(§, 1) = D’y(§, 1) +aDy +by(&, ) +g(§, 1), 0<E<T,u>0
1
where, 6 = — kymneN,1 <o <2,1<kd<2,0<nd<l,
ey "
ks _ nopnd ) :
D6 =Dy Dy,...Dj, (k —times)
D8 = DOD},...DS (n — times)
D?,Dﬁ— are capto fractional derivaties defined by eq.(2) a, b, c are constants and g(&, ) is given
function. The space-time fractional telegraph equation is reduced to the classical telegraph
equation where ¢ =2,m = 1,k =2,n=1,g = 0, To solve fractional telegraph equations, we
now employ the SITM. It’s a hybrid of two methods for solving non-linear fractional equations

with exact solutions.

2. BASIC DEFINATION AND TERMINOLOGY

Definition 2.1. Function y(§, 1) has a caputo fractional derivative defined as

1 x o . .
() D?y(é,u)zn /O(i—p)(’ =y (p,u)dp,j—1<a<j,jeN

Jj—@)

dl = ddef and j% denote the Riemann-Lioville fractional integral operator of order o > 0 defined

as d/ = ;_):f and j& respectively.
1 /5 -
3 IEE) = o [ €=y pdpp > 0k~ 1 <a<kkeN

Definition 2.2. The sumudu trasform of a function f(c),c > 0 is defined as

) S[f(c)] = F(u) = /0 e fuc)de,u € (—Cy,Ca)and f(c) € A,
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where
Iel )
) A {f(c)/ﬂM,Cl,Cz S 0,1f()] < M if ¢ € (—1)T [o,oo>}

Definition 2.3. The order o € C,Re(a) > 0 Riemann Liouville fractional integral I}, f is de-
fined as[13]

©) (pD;af) (q) = (1,?‘+f) (q) = F(l /q q f(©) dc,(q > p,Re(at) >0

o) Jp (g—c)'=

Definition 2.4. The Riemann Liouville fractional derivatives (pDS‘y) (x) of order a €

C,Re(a > 0) is defined by[5]
(05 0= (42) () )
U (AN e
— (dc) /,,( (n=Re(at) + 1;c > p)

I(n—a) c—q)%

)

Definition 2.5. The mittag-leffler function and its generalazation as

oo k

®) Ea() = Y,

k_om(a € c,re(a) > 0)

Eq g is Mittag-Leffler function in two parameters.

k

v y
9) Eaﬁ(y)—k;)—r(ak_'_ﬁ)a,ﬁ €C,R(a) >0,R(B) >0

Theorem 2.6. If F(u) is the Sumudu Transform of the function f(c), then (I f)(c) is the

Sumudu Transform of the Riemann Liouville fractional integral of f(c) of order o [14] .
(10) S[(aD:f) ()] () = S[(If) ()] (1) = p*F (1) ,Re() >0

Theorem 2.7. [15, 16, 5] Let F (i) and G(1) be the Sumudu transform of f(c)andg(c) respec-
tively. If

(11) Mdzme»a[ﬂ@ﬁwfwc

where x denotes the convolution of f and g then the Sumudu transform of h(c) is S[h(c)] =

WF(1)G(1)
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Theorem 2.8. Let F () be the Sumudu Transform of the function f(c) and m > 1. The Sumudu

transform of m™" derivative of f(c) denoted by

(12) e R e W

F(u) ""i 740)
Theorem 2.9. Let & > 0 be such thatm—1 < o« < m and F (1) be the Sumudu transform of the
function f(c) and m € N and then the Sumudu transform of the Riemann- Liouville fractional
derivatives of f(c) of order @ is given by
F(p) "&b 17(0)
pe A e

(13) SloDg f(c)(u) = Fa(u) =

Theorem 2.10. Let p € N and o« > 0 be such that p—1 < a < p and F(l) be the Sumudu
transform of the function f(c) then the Sumudu transform of the Caputo fractional derivatives

of f(c) of order o is given by

4y SEDESf(O)](u) = Fo(u) =p™*

—1
F(u)—pZ uz[fZ(O)]] —l<p—l<a<p
z=0

3. SuMUDU ITERATIVE TRANSFORM METHOD

To illustrate this Sumudu Iterative Transform Method[10, 14, 9, 2, 17, 11, 9, 5] we consider
a fractional non-linear ,non-homogenous partial differentail equationwith the initial conditions

of the form:

(15) Dyy(&, 1) +R(Y(E,m)) + A (v(&, 1) =g(E,u), m—1<a<mmeN

where Djfy(&, i) is the caputo fractional derivative of order a, m — 1 < a < m defined by the
equation (2), R is a linear operator which might include the other fractional derivatives of order
less than o,/ is the non linear operator which also might includes the fractional derivatives of
order less than o and g(&, i) is known as analytic function.

Applying the Sumudu transform to the equation eq .(16) we have,

a7 S [DEV(E )] + SIROE ) + A (08, 1))] = S[g(E. )],
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using the equation eq.(13), we get
(18)
| 3 1 1
Sh(& a Zu’ 0)] = —ZSIRG(E, 1)) + A (& )]+ —5 S [e(&, )]

Apply inverse Sumudu transform to the equation (14) we get,

y(E 1) [ = Zu’ “| +M_%S[g(§,u)]]
(19)

5! L_%S[R(y(é‘,u))+=/V(y(57u))]}

Now,we apply the Iterative method

0) YE1) = LnlEm)

since Ris linear operator

@D Zyl (&,10)) Z 0i(8, 1))

and the non-linear operator .4/ is decomposed as

(22) W(f(,)yz'(éaﬂ)) N (vo(&, 1) +Z{ iz)yo(é w)) Z)’k &, 1) }
i= Jj=

substituting equations (20,21,22) into equation (19) we get,

(23)

RIEN [ul mzo]f 7(0,0)] + oS le(E. u)]]

8

s [%S[ZRyléu))JmVyoéu Z{ (X 0sE )~ Zy’“}”

=1 j=

we define the recurrence relation as

(24)

(&) [ ; ]+ oSS, u)]]
57! [ LesiRoo(é. +w<yo<§,u>>]}

Ymr1(§ 1) = [ [yoéu { f‘, Zwéu}”mﬂ

j=0
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Therefore ,the m-th term approximation solution in series form is given by,

(25) Y& 1) =16 1) +y2(& )+ A ym(G p),m = 1,2,

4. IMPLICATION OF METHOD

In this part, we solve the homogeneous and nonhomogeneous fractional telegraph equations
using the Sumudu Iterative Trasform Method (SITM)[4, 18, 5].
Example 1: We take into account the following: Fractional telegraph equation in homogeneous

space-time:

D%y(&, 1) = DEPy(E, ) + DPOy(E, ) +y(E,p), 0<E<Lu>0

1
where 6 = — kmneN, 1 <o <2,1<kd<2,0<nd<l,
(26) "

ks _ 1nopno 1) :
D6 =Dy Dy,...D, (k —times)

— ndénod 1) :
D!\§ = D3DS...Dg (n — times)

Dg,Dﬂ are caputo fractional derivatives defined by equation (2)k and r is odd and initial condi-

tions are given by with initial conditions

27) y(0,1) = Es(—u®)and ye(&, 1) = Es(—u°)

applying the sumudu trasform on the both sides of equation (27) and subject to the initial con-

ditions (28),we get,
(28) S| DEy(E. )| =D +DI + Dy(E.w)], 0<E<1u>0
using the properties of the Sumudu transform, we get
1 n
(29)  S[(E W) = Es(—1) +uEs(—u®) +—5S | (DR + D + 1)y(E, )|

Applying insverse Sumudu transform to the equation eq.(30) we get

B Ew) = (14 st s L[ 4 1y n]|
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1)
Y0(&, 1) = (1+6)Es(—u°)

NG =5t | Lo [0+ + (0]

e e
- <r(1 o) T+ a))Eﬁ(_“(S)
() =5t | Lo [0 + D3+ 1y (&)

E2a g Ela+1 E* 41
D - (F(l 2a) "Teta) " Tet20) " r(2+a)>E5(_“6)

éa €a+1
- (F(l Ta) r(2+a)>E5(_“5)

E2a Ela+1
- (F(l 2a) " r(2+2a)>E5(_“5)

(32)
The series form of the solution is then provided by

y(énu) :yo(énu)+y1(€nu)+y2(§uu)+

506 éOH—] 5204
a+1) +F(a+2) JrF(2oc+l)

(33) = [Eq(E*) +EEq2(E%)Es(—pd)

= E5(=1%) |1 48+

Remark 1: setting a=2,equation (27) reduces to time fractional telegraph equation ,with the

meaning of various symbols and parameters asgiven equation (27) ,as followws.

(34) DEy(&, 1) = DPy(&, )+ Dy(&, 1) +y(&, 1), 0<E<1,u>0
with solution

(35) Y(E, 1) = *E5(—p®)
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FIGURE 3. for 6 =2

Remark 2: setting @=2.k=2,m=n=1, equation eq(27) reduces to classical telegraph equation.
Remark 3: setting k=2,m=n=1, the space-time fractional telegraph equation eq(27) reduces

space fractional telegraph equation.
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Example 2: We take into account the following: fractional telegraph equation for non-

homogeneous space-time:

(36)

DEy(§, 1) = DPy(&, 1) + D y(&, 1) +y(&, 1) —2Eq(§*)Es(—u®) 0<E<1,u>0
where 3:l,k,m,nEN,l<a§2,1<k5§2,0<n5§1,
m
D%8 = DD},...DS (k — times)

D8 = D5 D;,...DY (n — times)

The caputo fractional derivatives D‘S,Dg are defined by equation (ref2). Initial conditions are

given by with initial conditions, and k and n are odd.

37) (0, 1) = E5(—p°®)and yg (€, 1) = E5(—u°)

aplying the sumudu trasform on the both sides of equation (26) and subject to the initial condi-

tions (27),we get,
(38) S|DEV(E )| =8 (D + Dy + 1)y(E, 1) — 2S[Ea(x®) Es (—p%)]|, 0<E<1,p>0

using the properties of the Sumudu transform, we get

(39) S(E )] = uBs(~p) + o SIDK + i+ 1y(&, )] — - S[Ea(§Es(—1)]

operating with the sumudu inverse on both side of equation 38
(40)
1 2 _ 1
&) = Es(—%) =52 SIE(EEs (-] 5 | L [0+ 0+ 1y on]|

u u



10 S.A. TARATE , A.P. BHADANE, S.B. GAIKWAD, K.A. KSHIRSAGAR

(&) = Es(~1%) 12 S[Ea(E“)Es(~4P)]

o g—a(zﬂ)

= Ea(§%)Es(—1®) = 3Es5(—p°) gm

P =5 | Lo [0+ 0+ (e

o0 éa(z+l) oo éaz+2
—_— . _3E5(— Z—
ST(aiz+1)+1) ST(a(z+2)+1)

a(Gugn) =5 | LS [0 4017+ 1)o7 | LS [0+ D1+ ol )

) oo ga (z+2) 0o 506 (z43)
= 32| Es( S 3E( S E
o= Z acra ZZ(', a(z+3)+1)

the solution in series form is then given by

y(é?“) :yO(éa.u)+y1(5,li)+)’2(§7li)+

Remark:1.setting o = 2 equation(36) reduces to a non-homogeneous time fractional telegraph

equation, with the following symbols and parameters as provided in equation(36).

@D DEy(&, ) =DPy(&, u)+DR2y(E, 1) +y(&, 1) —2¢Es(—u®), 0<E<1,u>0

with solution

(42) y(E, 1) = *E5(—p®)
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Remark 2:setting =2, m=2,k=4,n=2, equation(36) reduces to a non-homogeneous time frac-
tional telegraph equation, with the following symbols and parameters as provided in equa-

tion(36).

43)  DZy(E,u) = DIy(E, )+ Diy(E,u) +y(E, 1) —26°Ey ;o (—1/7), 0<E <1, >0
with solution
(44) V(€ ) =5 Eyp(—u'/?)

Remark 3: setting m=2,k=4,n=2 ,equation 30 reduces to non-homo the space-time fractional
telegraph equation with the meaning of various symbols and parameters asgiven equation(36)

,as followws.

@45)  DEy(E 1) =Dpy(&, 1)+ Dyuy(§, 1) +y(§, ) —2Eqel ™M, 0<E <1, u>0
with solution

(46) V(€ 1) = Eq(E%)elH)

FIGURE 4. for ¢ =0.2
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FIGURE 6. for ¢ =0.8

CONCLUSION
Applying Sumudu Iterative method on the space-time Fractional Telegraph Equations we get

the exact solutions.
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