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1.   INTRODUCTION AND PRELIMINARIES  

In [1], the idea of rhotrix was introduced as an object whose elements are arranged in a 

rhomboidal nature which of course was an extension of matrix-tertions and matrix noitrets given 

by Atanassov and Shannon [9]. Suppose 𝑅 and 𝑄 are two rotrices such that  

         𝑅 = ⟨
𝑎

𝑏    ℎ(𝑅)     𝑑
𝑒   

⟩ , 𝑄 = ⟨
𝑓

𝑔    ℎ(𝑄)     𝑗
𝑘   

⟩    where  ℎ(𝑅) and ℎ(𝑄)  are the hearts of these 

rhotrices. 
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It follows from [1] that   

          𝑅 + 𝑄 = ⟨
𝑎

𝑏    ℎ(𝑅)     𝑑
𝑒   

⟩ +  ⟨
𝑓

𝑔    ℎ(𝑄)     𝑗
𝑘   

⟩ = ⟨
𝑎 + 𝑓

𝑏 + 𝑔    ℎ(𝑅) + ℎ(𝑄)    𝑑 + 𝑗
𝑒 + 𝑘   

⟩ 

and      𝑅 ∘ 𝑄 = ⟨

    𝑎ℎ(𝑄) + 𝑓ℎ(𝑅)

𝑏ℎ(𝑄) + 𝑔ℎ(𝑅)    ℎ(𝑅)ℎ(𝑄)      𝑑ℎ(𝑄) + 𝑗ℎ(𝑅)

    𝑒ℎ(𝑄) + 𝑘ℎ(𝑅)   

⟩ 

An alternative multiplication method was given by Sani [5] as follows; 

                       𝑅 ∘ 𝑄 = ⟨

    𝑎𝑓 + 𝑑𝑔

𝑏𝑓 + 𝑒𝑔      ℎ(𝑅)ℎ(𝑄)    𝑎𝑗 + 𝑑𝑘
   𝑏𝑗 + 𝑒𝑘   

⟩. 

Sani [6] also gave a generalization of this row-column multiplication of heart-oriented rhotrices 

as: 

𝑅𝑛 ∘ 𝑄𝑛 = 〈𝑎𝑖1𝑗1
, 𝑐𝑙𝑖𝑘1

〉 ∘ 〈𝑏𝑖2𝑗2
, 𝑑𝑙2𝑘2

〉 = 〈 ∑ (𝑎𝑖1𝑗1
𝑏𝑖2𝑗2

)

𝑡

𝑖2𝑗1=1

, ∑ (𝑐𝑙𝑖𝑘1
𝑑𝑙2𝑘2

)

𝑡−1

𝑙2𝑘1=1

〉 , 𝑡 =
𝑛 + 1

2
 , 

where  𝑅𝑛 and 𝑄𝑛 denote  𝑛-dimensional rhotrices (with  𝑛 rows and 𝑛 columns). 

Mohammed [2] and Isere [4] gave a new technique for expressing rhotrices in a general form. 

Another method of rhotrix representation was given by chinedu in [11]. Also in [3], some 

construction of rhotrix semigroup was given. The type A version of the rhotrix semigroup as well 

as its congruences was presented in [12]. Since it is known in [12] that there is a faithful 

representation of rhotrix type A semigroup with the matrix semigroup and from Howie [8] and 

Petrich [10] that there is a form of representation of an inverse semigroup in terms of the 

semigroup of one-to-one partial transformation of closed right 𝜔 -cosets of its inverse 

subsemigroup. It is natural to ask whether analogous results of [8] and [10] hold for rhotrix type 

A semigroups. 

In particular, it is shown that for a rhotrix type A semigroup  𝑆 = (𝑅𝑛(𝐹), ∘) with a closed 

rhotrix type A subsemigroup  𝐾, there is a transitive representation  𝜃𝐾 from 𝑆 = (𝑅𝑛(𝐹), ∘) to 

the semigroup of one-to-one partial transformations of the closed right  𝜔-cosets of  𝐾. 
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In section 2, we present results in partial order and 𝜔-cosets of a rhotrix type A semigroup. The 

aforementioned transitive representation 𝜃𝐾 is presented in section 3.  

For the notations and terminologies not mentioned in this paper, the reader is referred to [8], [10], 

[12], [13] and [14]. 

Let us now recall some definitions and known results. 

Let  𝑎, 𝑏 be elements of a semigroup  𝑆, we define  𝑎 ℛ∗𝑏  if and only if for all 𝑥, 𝑦 𝜖 𝑆1, 𝑥𝑎 =

𝑦𝑎 ⇔ 𝑥𝑏 = 𝑦𝑏. Dually we define the relation ℒ∗. Let 𝑆 be a semigroup and 𝑎 𝜖 𝑆. The elements 

 𝑎†( resp.  𝑎∗) will denote an idempotent element in   ℛ∗( resp.  ℒ∗)-class  𝑅𝑎
∗  (resp.  𝐿𝑎

∗ ).  

A semigroup  𝑆 with a semilattice of idempotents  𝐸(𝑆) is said to be an adequate semigroup if 

each ℛ∗-class and ℒ∗-class contain an idempotent.  

With  𝐸(𝑆) being a semilattice such an idempotent is unique. A left adequate semigroup is said 

to be a left type A if for all  𝑒 𝜖 𝐸(𝑆) and 𝑎 𝜖 𝑆, 𝑎𝑒 = (𝑎𝑒)†𝑎  (see [7]) and dually for right type 

A semigroups. A semigroup  𝑆 is said to be a type A semigroup if it is both left and right type A.  

It is important to note that every type A semigroup is essentially a special subsemigroup of an 

inverse semigroup through an embedding, thus several results in type A semigroups are 

analogous to those of an inverse semigroup. In particular, for  𝑋 = 𝑆,  where 𝑆  is a type A 

semigroup, we have the following result adopted from [14]. 

Lemma 1.1. A type A semigroup   𝑆  has a faithful representation with  𝐼∗(𝑋) , the type A 

semigroup of one-to-one partial transformation on the set  𝑋. 

The result below is analogous to Lemma 1.1. 

Lemma 1.2 [12]. A rhotrix type A semigroup  𝑆 = (𝑅𝑛(𝐹), ∘) has a faithful representation with 

the matrix semigroup. 

Suppose  𝑋 be a set and  𝐾 be a rhotrix type A subsemigroup of  𝐼∗(𝑋), 𝐾 is said to be transitive 

if for any 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 𝜖  𝑆 = (𝑅𝑛(𝐹), ∘)  there exist  𝜇 𝜖 𝐾  such that  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉𝜇 =

〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉. A representation of a rhotrix type A semigroup  𝑆 = (𝑅𝑛(𝐹), ∘) by 𝐼∗(𝑋) is said to be 

transitive if  𝐾 = 𝑆𝜃 = (𝑅𝑛(𝐹), ∘)𝜃 is a transitive rhotrix type A subsemigroup of  𝐼∗(𝑋). 
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From now henceforth,  𝑆  will denote a rhotrix type A semigroup while  𝐸(𝑆)  denotes its 

semilattice of idempotents. 

 

2. PARTIAL ORDERING IN  𝑺  AND 𝝎 -COSETS OF THE RHOTRIX TYPE A 

SUBSEMIGROUP OF  𝑺  

Let  𝑆 be a rhotrix type A semigroup with semilattice  𝐸(𝑆) of idempotents, a natural partial 

ordering denoted by  ≤ will be defined on  𝑆 as follows:  

For 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖  𝑆, 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ≤ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉  if 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝐼𝑖𝑗 , 𝐶𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉  for some 

〈𝐼𝑖𝑗 , 𝐶𝑙𝑘〉 𝜖 𝐸(𝑆).  

It is important to note that 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ≤ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 if and only if  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 =

〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉∗. 

We have the following Lemma. 

Lemma 2.1.  Let  𝑆  be a rhotrix type A semigroup and 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖  𝑆.  Then the 

following conditions are equivalent 

i)   〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ≤ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 

ii)  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗ 

iii)  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗ 

Proof.  i)  ⇒ ii) Let  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ≤ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉, then we have  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 so we 

have  

                           〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉†〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 

                                                           = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉   

                                                           = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉. 

Similarly, 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗ = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉.  Thus  ii) is true 

ii)  ⇒ iii) is obvious. 

iii) ⇒  i). Let  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗. Then we have that 

                       〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗ = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉(〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉)
∗
〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗ 
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                                                                       = 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗ 

and    〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉∗ = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗(〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗)
†

〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 

                                                         = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 . 

This shows that   〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 = 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉. Thus  〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 ≤ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 

and the proof  is complete.  

Lemma 2.2. Suppose 𝑆  is a rhotrix type A semigroup and 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖  𝑆  with 

〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉, 〈𝑎𝑖𝑗, 𝐼𝑙𝑘〉 𝜖  𝐸(𝑆) left and right units respectively of  〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉  and  〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉. 

Then  〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 ≤ 〈𝑎𝑖𝑗 , 𝐼𝑙𝑘〉. 

Proof. The proof is a routine check.   

It is well known that idempotents commute in a rhotrix type A semigroup. So in  𝑆, we have that 

                     〈𝑎𝑖𝑗 , 𝐼𝑙𝑘〉〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 = 〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉〈𝑎𝑖𝑗, 𝐼𝑙𝑘〉 

                                              = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉   (where  𝑎𝑖𝑗 𝜖 𝐸(𝑀𝑡(𝐹)) and  𝑐𝑙𝑘 𝜖 𝐸(𝑀𝑡−1(𝐹)) ), see 

[12].  

At this point, it is worth doing to define a more general form of partial ordering  𝜔 instead of  ≤ . 

Let  𝑆 be a rhotrix type A semigroup and  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖  𝑆.  

Define a relation  𝜔 𝜖  𝑆  as follows; 

                          〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜔 = {〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉  𝜖 𝑆 ∶  (〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉, 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉) 𝜖 𝜔} . 

Now suppose that 〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉, 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝑆 such that  (〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉, 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉) 𝜖 𝜔 then obviously we 

have that (〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉†, 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉†)  𝜖 𝜔  and (〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉∗, 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗)  and for all 

〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉, 〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉 𝜖 𝑆,   (〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉, 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉) 𝜖 𝜔   and  (〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉,

〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉) 𝜖 𝜔. 

Suppose  𝐾 = 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 is a subset of  𝑆, then the closure of  𝐾 in 𝑆 is given by 

                      〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 𝜔 = {〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝑆 ∶ (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉) 𝜖 𝜔}. 

The following Lemma is evident 

Lemma 2.3. Suppose  𝐾 = 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 and  𝑇 = 〈𝑠𝑖𝑗, 𝑡𝑙𝑘〉  are subsets of 𝑆.  Then we have the 

following 
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i)   〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉 ⊆ 〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉 𝜔 

ii)  〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 𝜔 ⊆ 〈𝑠𝑖𝑗, 𝑡𝑙𝑘〉 𝜔  if  〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉 ⊆ 〈𝑠𝑖𝑗 , 𝑡𝑙𝑘〉 

iii)  (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 𝜔)〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉 ⊆ (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉) 𝜔  for  〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉 𝜖 𝑆. 

Proof.  i) The proof is obvious 

ii) The proof is straight forward 

iii) Let  〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖 (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 𝜔)〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 so that 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 = 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 where we know 

that 

〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 𝜔. But (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉) 𝜖 𝜔, so 

(〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉) 𝜖 𝜔 = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉. Now 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖 (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉) 𝜔.   

Thus  we have that 

(〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 𝜔)〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ⊆ (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉) 𝜔.  

With ii) above, we have that  ((〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 𝜔)〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉) 𝜔 ⊆ (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉) 𝜔2.  

But we know that  〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉 ⊆ 〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉 𝜔. It then follows that 

(〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉) 𝜔 ⊆ ((〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 𝜔)〈𝑎𝑖𝑗, 𝑛𝑙𝑘〉) 𝜔 = (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑎𝑖𝑗, 𝑛〉) 𝜔. 

Now suppose  𝐾 = 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 is a rhotrix type A subsemigroup of  𝑆, an element  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 𝑆 is 

in 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 if and only if  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉† 𝜖 𝐾.   

Suppose  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉† 𝜖 𝐾, then we have that 

〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 = 〈𝑥𝑖𝑗, 𝐼𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉 = 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉. The set  

〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 is a right coset of  𝐾 = 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 if  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉.  

In the same manner, we call the set (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉) 𝜔 a right 𝜔-coset of  𝐾 = 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉  

where 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉† 𝜖 𝐾.  

Remark 2.4. It is important to note that the right 𝜔-coset of  𝐾 is analogous to that of inverse 

semigroups namely; (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉) 𝜔 = (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉) 𝜔 and so on. In fact some 

properties of the right 𝜔-coset of 𝐾 are analogous to that of inverse semigroups [10] and type A 

semigroups [7]. 
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3.  REPRESENTATION OF RHOTRIX TYPE A SEMIGROUP 

Now let  𝒳∗ = {(〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉) 𝜔 ∶  〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉† 𝜖 𝐾, 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝑆} be the set of all right 𝜔-

coset in  𝑆. We know from Lemma 2.3 (iii) that for  〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝑆, we have that 

(〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉𝜔)〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 ⊆ (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉)𝜔.   

So we have that 

(〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)
†

= (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉†)
†
 and  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉† =

(〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†)
†

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉𝜔 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 

(〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)
†

𝜔 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†.  

Now suppose that  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉† 𝜖 𝐾 then  (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)
†

 𝜖 𝐾. 

Thus (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔 𝜖 𝒳∗ for  (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)𝜔 𝜖 𝒳∗. 

Let  𝐼∗(𝒳∗) be the symmetric rhotrix type A semigroup associated with 𝒳∗. It is obvious from [8] 

and [12] that  𝐼∗(𝒳∗) is embeddable in a rhotrix inverse semigroup which implies that it is a 

subsemigroup of the rhotrix inverse semigroup. 

Let  〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝑆 and define a mapping  𝜃𝐾 ∶ 𝑆 →  𝐼∗(𝒳∗) by the rule that  

              〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜃𝐾 ∶ (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉) 𝜔 → (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉) 𝜔 

where the domain of the map is given by 

      𝑑𝑜𝑚 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜃𝐾 = {(〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉)𝜔 𝜖 𝒳∗ ∶  (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉) 𝜔 𝜖 𝒳∗}. 

The Lemma below easily follows 

Lemma 3.1. For each 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝑆, 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜃𝐾 is a one-to-one mapping 

Proof.  The proof is obvious 

Lemma 3.2. Let  𝐾 = 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉  is a closed rhotrix type A semigroup of  𝑆. Then 𝜃𝐾 ∶ 𝑆 →

 𝐼∗(𝒳∗) such that {((〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔, (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔) ∶

((〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉) 𝜔, (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉)) 𝜔 𝜖  𝐼∗(𝒳∗)}  is a representation of 𝑆. 

Proof. That  𝜃𝐾 is a one-to-one mapping of  𝑆 into  𝐼∗(𝒳∗) and well defined is obvious. 
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Now let 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉, 〈𝑡𝑖𝑗 , ℎ𝑙𝑘〉 𝜖 𝑆, 

((〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔, (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉〈𝑡𝑖𝑗 , ℎ𝑙𝑘〉)𝜔), then  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉† 𝜖 𝐾 and 

(〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉〈𝑡𝑖𝑗 , ℎ𝑙𝑘〉)
†

 𝜖 𝐾. It follows that 

〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 〈𝑡𝑖𝑗, ℎ𝑙𝑘〉†𝜔 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 since it is clear that  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 〈𝑡𝑖𝑗, ℎ𝑙𝑘〉† 

= (〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 〈𝑡𝑖𝑗, ℎ𝑙𝑘〉†)
†

〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉. 

Using the property of 𝜔, we have that 

(〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 〈𝑡𝑖𝑗 , ℎ𝑙𝑘〉†)
†

= (〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉〈𝑡𝑖𝑗 , ℎ𝑙𝑘〉)
†

𝜔 (〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉)
†
. 

Hence (〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 〈𝑡𝑖𝑗, ℎ𝑙𝑘〉†)
†

 𝜖 𝐾𝜔. 

It is known that  𝐾𝜔 = 𝐾 so  (〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)
†

𝜖 𝐾, thus  (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉)𝜔 

𝜖 𝒳∗. 

Using the fact that  (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜃𝐾 = (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔, it 

now follows that  ((〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉) 𝜔, (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)) 𝜔 𝜖 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜃𝐾 . 

Conversely, let   ((〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔 , (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑑𝑖𝑗 , 𝑔𝑙𝑘〉)𝜔)  𝜖 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜃𝐾 .  〈𝑡𝑖𝑗, ℎ𝑙𝑘〉 𝜃𝐾. 

So there exists  (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑧𝑖𝑗 , 𝑝𝑙𝑘〉)𝜔 𝜖 𝒳∗ such that 

 ((〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔 , (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑧𝑖𝑗, 𝑝𝑙𝑘〉)𝜔 )  𝜖 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜃𝐾 and  

((〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑧𝑖𝑗, 𝑝𝑙𝑘〉)𝜔 , (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑑𝑖𝑗, 𝑔𝑙𝑘〉)𝜔 ) 𝜖 〈𝑡𝑖𝑗, ℎ𝑙𝑘〉 𝜃𝐾. 

Since    ((〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔) 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜃𝐾 = (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔 

and       ((〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑧𝑖𝑗 , 𝑝𝑙𝑘〉)𝜔) 〈𝑡𝑖𝑗 , ℎ𝑙𝑘〉 𝜃𝐾 = (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑧𝑖𝑗, 𝑝𝑙𝑘〉〈𝑡𝑖𝑗, ℎ𝑙𝑘〉)𝜔, 

then we have that 

              (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑧𝑖𝑗, 𝑝𝑙𝑘〉)𝜔 = (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔 

and         (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑧𝑖𝑗 , 𝑝𝑙𝑘〉〈𝑡𝑖𝑗, ℎ𝑙𝑘〉)𝜔 = (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉〈𝑡𝑖𝑗 , ℎ𝑙𝑘〉)𝜔. 

Thus     (〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉〈𝑡𝑖𝑗, ℎ𝑙𝑘〉)𝜃𝐾 = 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜃𝐾〈𝑡𝑖𝑗 , ℎ𝑙𝑘〉 𝜃𝐾 .  

So that  𝜃𝐾 is a homomorphism and the proof is complete. 
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We will now show that the transitive property is embedded in  𝜃𝐾 .  

Lemma 3.3.  𝜃𝐾 is transitive 

Proof.  Let  (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔,  (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑑𝑖𝑗, 𝑔𝑙𝑘〉)𝜔  be right 𝜔 -cosets of 𝐾.  Let 

〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝑆  and 〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉 =  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†〈𝑑𝑖𝑗, 𝑔𝑙𝑘〉 , then (〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)
†

=

(〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉†)
†
 and (〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉†〈𝑑𝑖𝑗 , 𝑔𝑙𝑘〉)

†
= (〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉†)

†
.  

But it is known that (〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†〈𝑑𝑖𝑗 , 𝑔𝑙𝑘〉)
†

= 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†〈𝑑𝑖𝑗, 𝑔𝑙𝑘〉† . Since  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†,

〈𝑑𝑖𝑗 , 𝑔𝑙𝑘〉† 𝜖 𝐾, then (〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†〈𝑑𝑖𝑗, 𝑔𝑙𝑘〉)
†

𝜖 𝐾.  

Thus (〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)
†

𝜖 𝐾 and (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔  𝜖 𝒳∗. 

We have that 

(〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔 = (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†〈𝑑𝑖𝑗, 𝑔𝑙𝑘〉)𝜔 ≤ (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑑𝑖𝑗 , 𝑔𝑙𝑘〉)𝜔,  

and  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†〈𝑑𝑖𝑗, 𝑔𝑙𝑘〉 = 〈𝑑𝑖𝑗, 𝑔𝑙𝑘〉(〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†〈𝑑𝑖𝑗 , 𝑔𝑙𝑘〉)
∗
  

                                         = 〈𝑑𝑖𝑗, 𝑔𝑙𝑘〉(〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)
∗
 𝜖 (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔 . 

More so, we have that 

 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†〈𝑑𝑖𝑗 , 𝑔𝑙𝑘〉 𝜔 〈𝑑𝑖𝑗, 𝑔𝑙𝑘〉  and so  〈𝑑𝑖𝑗, 𝑔𝑙𝑘〉 𝜖 (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉)𝜔. 

Consequently, we have that  

          (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑑𝑖𝑗 , 𝑔𝑙𝑘〉)𝜔 ≤ (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉)𝜔  

 and  (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔 = (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑑𝑖𝑗, 𝑔𝑙𝑘〉)𝜔 . 

Thus,  ((〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔, (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑑𝑖𝑗, 𝑔𝑙𝑘〉)𝜔)  𝜖 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜃𝐾. 

Remark 3.4.  It is important to note that suppose 𝛼 is an element in the rhotrix type A semigroup 

 𝐼∗(𝒳∗), then 𝛼 may not have an inverse. 
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