ON BALANCED 3-EDGE PRODUCT CORDIAL GRAPHS

PHAISATCHA INPOONJAI*

Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Chiang Rai, 99, Sai Khao, Phan, Chiang Rai, 57120, Thailand

Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. A k-edge product cordial labelling is a variant of the well-known cordial labelling. In this paper, a balanced k-edge product cordial labelling is suggested and some sufficient conditions for balanced 3-edge product cordial graphs are proved. Moreover, a construction of graphs admitting a balanced 3-edge product cordial labelling is presented.

Keywords: 3-edge product cordial graphs; balanced 3-edge product cordial graphs.
2010 AMS Subject Classification: 05C78.

1. Introduction

We consider finite undirected graphs without loops, multiple edges and isolated vertices. If G is a graph, then $V(G)$ and $E(G)$ stand for the vertex set and the edge set of G, respectively. Cardinalities of these sets are called the order and the size of G. The set of vertices of G adjacent to a vertex $v \in V(G)$ is denoted by $N_{G}(v)$. For integers p, q, we denote by $[p, q]$ the set of all integers z satisfying $p \leq z \leq q$.

[^0]Let $k \geq 2$ be an integer. For a graph G, an edge mapping $f: E(G) \rightarrow[0, k-1]$ induces a vertex mapping $f^{*}: V(G) \rightarrow[0, k-1]$ defined by

$$
f^{*}(v) \equiv \prod_{u \in N_{G}(v)} f(v u) \quad(\bmod k) .
$$

We denote by $e_{f}(i)$ the number of edges of G having label i under f and $v_{f}(i)$ the number of vertices of G having label i under f^{*} for each $i \in[0, k-1]$. A mapping $f: E(G) \rightarrow[0, k-1]$ is called a k-edge product cordial (for short k-EPC) labelling of G if

$$
\left|e_{f}(i)-e_{f}(j)\right| \leq 1 \quad \text { and } \quad\left|v_{f}(i)-v_{f}(j)\right| \leq 1 \quad \text { for all } i, j \in[0, k-1] .
$$

A graph G is called k-edge product cordial (k-EPC) if it admits a k-edge product cordial labelling.

The unicyclic graph is a connected graph with exactly one cycle. The crown $C_{n} \odot K_{1}$ is the graph obtained by joining a pendant edge to each vertex of a cycle C_{n}. The armed crown $A C_{n}$ is the graph obtained by attaching a path P_{2} to each vertex of a cycle C_{n}. The wheel W_{n} is the graph obtained by connecting a vertex to each vertex of a cycle C_{n-1}. All vertices of C_{n-1} called rim vertices join to one vertex called an apex vertex. The helm H_{n} is the graph obtained by attaching a pendant edge to each rim vertex of a wheel W_{n}. Herein, let us recall some results on 2-edge product cordial graphs in [4] that will be referred in the next as follows.

Theorem 1.1. [4] The cycle C_{n} is a 2-edge product cordial graph for odd n and not a 2-edge product cordial graph for even n.

Theorem 1.2. [4] The tree with order greater than 2 is a 2-edge product cordial graph.

Corollary 1.3. [4] The unicyclic graph of odd order is 2-edge product cordial.

Theorem 1.4. [4] The crown $C_{n} \odot K_{1}$ is a 2-edge product cordial graph.

Theorem 1.5. [4] The armed crown $A C_{n}$ is a 2-edge product cordial graph.

Theorem 1.6. [4] The Helm H_{n} is a 2-edge product cordial graph.

2-edge product cordial graphs were introduced by Vaidya and Barasara and they investigated several results on this concept in [4]. After, k-edge product cordial graphs were put forward by Azaizeh et al. in [1]. Moreover, the graphs admitting a 2-edge product cordial labelling are characterized and the 2-edge product cordiality of broad classes of graphs was studied by Ivančo in [3]. Currently, a balanced 2-edge product cordial labelling was recommended and some sufficient conditions for graphs admitting a balanced 2-edge product cordial labelling were investigated by Inpoonjai in [2]. Moreover, a construction of balanced 2-edge product cordial graphs was also shown in [2].

In this paper, a balanced k-edge product cordial labelling is suggested and some sufficient conditions for graphs admitting a balanced 3-edge product cordial labelling are investigated. Moreover, balanced 3-edge product cordial graphs are constructed.

2. 3-Edge Product Cordial Graphs

Now, we start with recalling an assertion on a 2-edge product cordial labelling of a graph G presented by Ivančo in [3] and then we apply this result for a k-edge product cordial labelling of G as follows.

Observation 2.1. For an integer $k \geq 2$, let G be a graph with n vertices and m edges. Then a mapping $f: E(G) \rightarrow[0, k-1]$ is a k-edge product cordial labelling of G if and only if $e_{f}(i) \in$ $\left\{\left\lfloor\frac{m}{k}\right\rfloor,\left\lceil\frac{m}{k}\right\rceil\right\}$ and $v_{f}(i) \in\left\{\left\lfloor\frac{n}{k}\right\rfloor,\left\lceil\frac{n}{k}\right\rceil\right\}$ for all $i \in[0, k-1]$.

Then, we can find a sufficient condition for a graph constructed from a 2-edge product cordial graph to be 3-edge product cordial.

Theorem 2.2. Let f be a 2-edge product cordial labelling of a graph G with n vertices and m edges and let u be a vertex of G such that $f^{*}(u)=0$. If $|m-n| \leq 1$, then the graph H obtained by joining $\left\lfloor\frac{m}{2}\right\rfloor$ pendant edges to a vertex u of G is 3-edge product cordial.

Proof. Let e_{i} be a pendant edge incident with a vertex u and let v_{i} be a pendant vertex incident with e_{i} for all $i \in\left[1,\left\lfloor\frac{m}{2}\right\rfloor\right]$. We consider a mapping $g: E(H) \rightarrow[0,2]$ defined by

$$
g(e)=\left\{\begin{array}{lll}
f(e) & : & e \in E(G) \\
2 & : & e=e_{i}, i \in\left[1,\left\lfloor\frac{m}{2}\right\rfloor\right]
\end{array}\right.
$$

Clearly, $g\left(e_{i}\right)=2$ and $g^{*}\left(v_{i}\right)=2$ for all $i \in\left[1,\left\lfloor\frac{m}{2}\right\rfloor\right]$. Thus, $e_{g}(2)=\left\lfloor\frac{m}{2}\right\rfloor$ and $v_{g}(2)=\left\lfloor\frac{m}{2}\right\rfloor$. Also, $e_{g}(0)=e_{f}(0), e_{g}(1)=e_{f}(1), v_{g}(0)=v_{f}(0)$ and $v_{g}(1)=v_{f}(1)$. Applying Observation 2.1, we obtain that $e_{g}(0), e_{g}(1) \in\left\{\left\lfloor\frac{m}{2}\right\rfloor,\left\lceil\frac{m}{2}\right\rceil\right\}$ and $v_{g}(0), v_{g}(1) \in\left\{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil\right\}$. Evidently, $\left|e_{g}(i)-e_{g}(j)\right| \leq$ 1 for all $i, j \in[0,2]$ and $\left|v_{g}(0)-v_{g}(1)\right| \leq 1$. Since $|m-n| \leq 1, m=n, m=n-1$ or $m=n+1$. For $v_{g}(0)=\left\lfloor\frac{n}{2}\right\rfloor$, we consider 3 cases as below.
(i) If $m=n$, then

$$
\left|v_{g}(0)-v_{g}(2)\right|=\left|\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{m}{2}\right\rfloor\right|=\left|\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor\right|=0
$$

(ii) If $m=n-1$, then

$$
\left|v_{g}(0)-v_{g}(2)\right|=\left\lfloor\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{m}{2}\right\rfloor\left|=\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n-1}{2}\right\rfloor\right| \leq 1\right.
$$

(iii) If $m=n+1$, then

$$
\left|v_{g}(0)-v_{g}(2)\right|=\left\lfloor\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{m}{2}\right\rfloor\left|=\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n+1}{2}\right\rfloor\right| \leq 1 .\right.
$$

For $v_{g}(0)=\left\lceil\frac{n}{2}\right\rceil$, we consider 3 cases as follows.
(i) If $m=n$, then

$$
\left|v_{g}(0)-v_{g}(2)\right|=\left|\left\lceil\frac{n}{2}\right\rceil-\left\lfloor\frac{m}{2}\right\rfloor\right|=\left|\left\lceil\frac{n}{2}\right\rceil-\left\lfloor\frac{n}{2}\right\rfloor\right| \leq 1 .
$$

(ii) If $m=n-1$, then

$$
\left|v_{g}(0)-v_{g}(2)\right|=\left|\left\lceil\frac{n}{2}\right\rceil-\left\lfloor\frac{m}{2}\right\rfloor\right|=\left|\left\lceil\frac{n}{2}\right\rceil-\left\lfloor\frac{n-1}{2}\right\rfloor\right| \leq 1 .
$$

(iii) If $m=n+1$, then

$$
\left|v_{g}(0)-v_{g}(2)\right|=\left|\left\lceil\frac{n}{2}\right\rceil-\left\lfloor\frac{m}{2}\right\rfloor\right|=\left|\left\lceil\frac{n}{2}\right\rceil-\left\lfloor\frac{n+1}{2}\right\rfloor\right|=0 .
$$

These show that $\left|v_{g}(0)-v_{g}(2)\right| \leq 1$. Similarly, for $v_{g}(1)=\left\lfloor\frac{n}{2}\right\rfloor$ and $v_{g}(1)=\left\lceil\frac{n}{2}\right\rceil$, we can prove that $\left|v_{g}(1)-v_{g}(2)\right| \leq 1$. This means that g is a 3-edge product cordial labelling of H. Therefore, H is a required graph.

Next, we immediately have the following results.
Corollary 2.3. The graph G obtained by joining $\left\lfloor\frac{n}{2}\right\rfloor$ pendant edges to a vertex of a cycle C_{n} for odd n is 3-edge product cordial.

Proof. Let u be a vertex of C_{n} incident with $\left\lfloor\frac{n}{2}\right\rfloor$ pendant edges. Since C_{n} of odd order is a 2edge product cordial graph by Theorem 1.1, there is a 2-edge product cordial labelling f of C_{n} such that $f^{*}(u)=0$. Moreover, C_{n} has n vertices and n edges. Therefore, G is a 3-edge product cordial graph by Theorem 2.2.

Corollary 2.4. The graph Gobtained by joining $\left\lfloor\frac{n-1}{2}\right\rfloor$ pendant edges to a vertex of a tree with order $n>2$ is 3 -edge product cordial.

Proof. Let u be a vertex of a tree with order $n>2$ incident with $\left\lfloor\frac{n-1}{2}\right\rfloor$ pendant edges. As the tree is a 2-edge product cordial graph by Theorem 1.2, there exists a 2-edge product cordial labelling f of the tree such that $f^{*}(u)=0$. Furthermore, the tree has n vertices and $n-1$ edges. Thus, by Theorem 2.2, G is a 3-edge product cordial graph.

Corollary 2.5. The graph G obtained by joining $\left\lfloor\frac{n}{2}\right\rfloor$ pendant edges to a vertex of a unicyclic graph of odd order n is 3-edge product cordial.

Proof. Let u be a vertex of a unicyclic graph of odd order n incident with $\left\lfloor\frac{n}{2}\right\rfloor$ pendant edges. Since the unicyclic graph is 2-edge product cordial by Corollary 1.3, there is a 2-edge product cordial labelling f of the unicyclic graph such that $f^{*}(u)=0$. Besides, the unicyclic graph has n vertices and n edges. Hence, by Theorem 2.2, G is a 3-edge product cordial graph.

Corollary 2.6. The graph G obtained by joining n pendant edges to a vertex of a cycle C_{n} of the crown $C_{n} \odot K_{1}$ is 3-edge product cordial.

Proof. Let u be a vertex of a cycle C_{n} of the crown $C_{n} \odot K_{1}$ incident with n pendant edges. As $C_{n} \odot K_{1}$ is a 2-edge product cordial graph by Theorem 1.4, there exists a 2-edge product cordial
labelling f of $C_{n} \odot K_{1}$ such that $f^{*}(u)=0$. Moreover, $C_{n} \odot K_{1}$ has $2 n$ vertices and $2 n$ edges. Therefore, by Theorem 2.2, G is a 3-edge product cordial graph.

Corollary 2.7. The graph G obtained by joining $\left\lfloor\frac{3 n}{2}\right\rfloor$ pendant edges to a vertex of a cycle C_{n} of the armed crown $A C_{n}$ is 3-edge product cordial.

Proof. Let u be a vertex of a cycle C_{n} of the armed crown $A C_{n}$ incident with $\left\lfloor\frac{3 n}{2}\right\rfloor$ pendant edges. Since $A C_{n}$ is a 2-edge product cordial graph by Theorem 1.5, there is a 2-edge product cordial labelling f of $A C_{n}$ such that $f^{*}(u)=0$. Furthermore, $A C_{n}$ has $3 n$ vertices and $3 n$ edges. Thus, G admits a 3-edge product cordial labelling by Theorem 2.2.

3. Balanced 3-Edge Product Cordial Graphs

Here, we add more definition of a k-edge product cordial labelling. A k-edge product cordial labelling $f: E(G) \rightarrow[0, k-1]$ of a graph G is called balanced if

$$
e_{f}(i)=e_{f}(j) \text { and } v_{f}(i)=v_{f}(j) \text { for all } i, j \in[0, k-1] .
$$

A graph G is called balanced k-edge product cordial (balanced k-EPC) if it admits a balanced k-edge product cordial labelling.

After, we are able to prove the following characterization.

Theorem 3.1. [2] The graph G is balanced 2-edge product cordial if and only if it is 2-edge product cordial having both even order and even size.

Proof. Let f be a balanced 2-edge product cordial labelling of G. Then, $e_{f}(0)=e_{f}(1)$ and $v_{f}(0)=v_{f}(1)$. Obviously, it is a 2-edge product cordial labelling. Since $|E(G)|=$ $e_{f}(0)+e_{f}(1)=2 e_{f}(0)$ and $|V(G)|=v_{f}(0)+v_{f}(1)=2 v_{f}(0), G$ has both even size and even order.

On the other hand, let G be a graph of even order and even size and let f be a 2-edge product cordial labelling of G. Suppose that $\left|e_{f}(0)-e_{f}(1)\right|=1$, then $e_{f}(0)=e_{f}(1)+1$ or $e_{f}(0)=e_{f}(1)-1$. As $|E(G)|=e_{f}(0)+e_{f}(1)=e_{f}(1)+1+e_{f}(1)=2 e_{f}(1)+1$ or $|E(G)|=e_{f}(0)+e_{f}(1)=e_{f}(1)-1+e_{f}(1)=2 e_{f}(1)-1$, the size is odd, a contradiction. Similarly, suppose that $\left|v_{f}(0)-v_{f}(1)\right|=1$, then $v_{f}(0)=v_{f}(1)+1$ or $v_{f}(0)=v_{f}(1)-1$.

Since $|V(G)|=v_{f}(0)+v_{f}(1)=v_{f}(1)+1+v_{f}(1)=2 v_{f}(1)+1$ or $|V(G)|=v_{f}(0)+v_{f}(1)=$ $v_{f}(1)-1+v_{f}(1)=2 v_{f}(1)-1$, the order is odd, a contradiction. This shows that $e_{f}(0)=e_{f}(1)$ and $v_{f}(0)=v_{f}(1)$. Therefore, f is a balanced 2-edge product cordial labelling of G.

Next, using the known findings on 2-edge product cordial graphs in [4] and applying Theorem 3.1, we suddenly have the following assertions.

Corollary 3.2. [2] The crown $C_{n} \odot K_{1}$ is a balanced 2-edge product cordial graph.

Proof. Since the crown $C_{n} \odot K_{1}$ has $2 n$ vertices and $2 n$ edges, by Theorem 1.4 and Theorem 3.1, it is a desired graph.

Corollary 3.3. [2] The armed crown $A C_{n}$ of even n is a balanced 2-edge product cordial graph.

Proof. As the order and the size of the armed crown $A C_{n}$ are equal to $3 n$ and $3 n$ is an even number for even n, by Theorem 1.5 and Theorem $3.1, A C_{n}$ is a required graph.

Then, we can find some sufficient conditions for some graphs constructed by a 2-edge product cordial graph of both odd order and odd size to be balanced 2-edge product cordial.

Theorem 3.4. [2] Let f be a 2-edge product cordial labelling of a graph G having both odd order and odd size and let u be a vertex of G such that $f^{*}(u)=0$. If $e_{f}(0)<e_{f}(1)$ and $v_{f}(0)<$ $v_{f}(1)$, then the graph H obtained by joining a pendant edge to a vertex u of G is balanced 2-edge product cordial.

Proof. Let e_{1} be a pendant edge joining a vertex u of G and let w be a pendant vertex incident with e_{1}. Consider a mapping $g: E(H) \rightarrow\{0,1\}$ defined by

$$
g(e)=\left\{\begin{array}{lll}
f(e) & : & e \in E(G) \\
0 & : & e=e_{1}
\end{array}\right.
$$

Clearly, $g(e)=f(e)$ for all $e \in E(G), g\left(e_{1}\right)=0, g^{*}(v)=f^{*}(v)$ for all $v \in V(G)$ and $g^{*}(w)=0$. Thus, $e_{g}(0)=e_{f}(0)+1=e_{f}(1)=e_{g}(1)$ and $v_{g}(0)=v_{f}(0)+1=v_{f}(1)=v_{g}(1)$. This means that g is a balanced 2-edge product cordial labelling of H. Therefore, H is an expected graph.

Notice that we can create a balanced 2-edge product cordial graph from the armed crown $A C_{n}$ with odd n as the following finding.

Corollary 3.5. [2] The graph G obtained by joining a pendant edge to a vertex of a cycle C_{n} of the armed crown $A C_{n}$ with odd n is balanced 2-edge product cordial.

Proof. For odd n, it is clear that the armed crown $A C_{n}$ has $3 n$ vertices and $3 n$ edges such that $3 n$ is also an odd number. Let v_{i} be a vertex of C_{n} of $A C_{n}$, let u_{i} be a vertex of $A C_{n}$ adjacent to v_{i} and let w_{i} be a pendant vertex of $A C_{n}$ adjacent to u_{i} for all $i \in[1, n]$. Consider a mapping $f: E\left(A C_{n}\right) \rightarrow\{0,1\}$ defined by

$$
f(e)=\left\{\begin{array}{lll}
0 & : & e \in E\left(C_{n}\right) \\
0 & : & e=v_{i} u_{i}, i \in\left[1,\left\lfloor\frac{n}{2}\right\rfloor\right] \\
1 & : & e=v_{i} u_{i}, i \in\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n\right] \\
1 & : & e=u_{i} w_{i}, i \in[1, n]
\end{array}\right.
$$

Evidently, $e_{f}(0)=n+\left\lfloor\frac{n}{2}\right\rfloor<n+\left\lfloor\frac{n}{2}\right\rfloor+1=e_{f}(1)$. Moreover, $f^{*}\left(v_{i}\right)=0$ for all $i \in[1, n]$, $f^{*}\left(u_{i}\right)=0$ for all $i \in\left[1,\left\lfloor\frac{n}{2}\right\rfloor\right], f^{*}\left(u_{i}\right)=1$ for all $i \in\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n\right]$ and $f^{*}\left(w_{i}\right)=1$ for all $i \in[1, n]$. Thus, $v_{f}(0)=n+\left\lfloor\frac{n}{2}\right\rfloor<n+\left\lfloor\frac{n}{2}\right\rfloor+1=v_{f}(1)$. Since $\left|e_{f}(0)-e_{f}(1)\right|=1$ and $\left|v_{f}(0)-v_{f}(1)\right|=1$, f is a 2-edge product cordial labelling of $A C_{n}$. By applying Theorem 3.4, G is a balanced 2-edge product cordial graph.

Theorem 3.6. [2] Let f be a 2-edge product cordial labelling of a graph G having both odd order and odd size. If $e_{f}(0)>e_{f}(1)$ and $v_{f}(0)>v_{f}(1)$, then the graph H obtained by joining a pendant edge to a vertex of G is balanced 2-edge product cordial.

Proof. Let e_{1} be a pendant edge joining a vertex of G and let u be a pendant vertex incident with e_{1}. Consider a mapping $g: E(H) \rightarrow\{0,1\}$ defined by

$$
g(e)=\left\{\begin{array}{lll}
f(e) & : & e \in E(G) \\
1 & : & e=e_{1}
\end{array}\right.
$$

Obviously, $g(e)=f(e)$ for all $e \in E(G), g\left(e_{1}\right)=1, g^{*}(v)=f^{*}(v)$ for all $v \in V(G)$ and $g^{*}(u)=1$. Hence, $e_{g}(0)=e_{f}(0)=e_{f}(1)+1=e_{g}(1)$ and $v_{g}(0)=v_{f}(0)=v_{f}(1)+1=v_{g}(1)$. That is, g is a balanced 2-edge product cordial labelling of H. Thus, H is a desired graph.

We can see that the Helm H_{n} is a 2-edge product cordial graph by Theorem 1.6, but it is not balanced 2-edge product cordial for both even n and odd n. However, a balanced 2-edge product cordial graph is able to construct from the helm H_{n} with even n as the following assertion.

Corollary 3.7. [2] The graph G obtained by joining a pendant edge to a vertex of the helm H_{n} with even n is balanced 2-edge product cordial.

Proof. For even n, it is obvious that the helm H_{n} has odd order $2 n-1$ and odd size $3 n-3$. Let x be an apex vertex of W_{n} of H_{n}, let v_{i} be a rim vertex of W_{n} of H_{n} and let u_{i} be a pendant vertex of H_{n} adjacent to v_{i} for all $i \in[1, n-1]$. Consider a mapping $f: E\left(H_{n}\right) \rightarrow\{0,1\}$ defined by

$$
f(e)=\left\{\begin{array}{lll}
0 & : & e \in E\left(C_{n-1}\right) \\
0 & : & e=x v_{i}, i \in\left[1, \frac{n}{2}\right] \\
1 & : & e=x v_{i}, i \in\left[\frac{n}{2}+1, n-1\right] \\
1 & : & e=v_{i} u_{i}, i \in[1, n-1]
\end{array}\right.
$$

Evidently, $e_{f}(0)=\frac{3 n}{2}-1>\frac{3 n}{2}-2=e_{f}(1)$. Moreover, $f^{*}(x)=0, f^{*}\left(v_{i}\right)=0$ for all $i \in[1, n-1]$ and $f^{*}\left(u_{i}\right)=1$ for all $i \in[1, n-1]$. Hence, $v_{f}(0)=n>n-1=v_{f}(1)$. As $\left|e_{f}(0)-e_{f}(1)\right|=1$ and $\left|v_{f}(0)-v_{f}(1)\right|=1, f$ is a 2-edge product cordial labelling of H_{n}. By applying Theorem 3.6, G is a balanced 2-edge product cordial graph.

Now, the following result for a balanced k-edge product cordial graph is obvious.

Observation 3.8. For an integer $k \geq 2$, let G be a graph with $k n$ vertices and $k m$ edges. Then a mapping $f: E(G) \rightarrow[0, k-1]$ is a balanced k-edge product cordial labelling of G if and only if $e_{f}(i)=m$ and $v_{f}(i)=n$ for all $i \in[0, k-1]$.

Corollary 3.9. The armed crown $A C_{n}$ is a balanced 3-edge product cordial graph.

Proof. Let v_{i} be a vertex of C_{n} of $A C_{n}$, let u_{i} be a vertex of $A C_{n}$ adjacent to v_{i} and let w_{i} be a pendant vertex of $A C_{n}$ adjacent to u_{i} for all $i \in[1, n]$. Consider a mapping $f: E\left(A C_{n}\right) \rightarrow[0,2]$ defined by

$$
f(e)=\left\{\begin{array}{lll}
0 & : & e \in E\left(C_{n}\right) \\
2 & : & e=v_{i} u_{i}, i \in[1, n] \\
1 & : & e=u_{i} w_{i}, i \in[1, n]
\end{array}\right.
$$

Evidently, $e_{f}(0)=e_{f}(1)=e_{f}(2)=n$. Moreover, $f^{*}\left(v_{i}\right)=0, f^{*}\left(u_{i}\right)=2$ and $f^{*}\left(w_{i}\right)=1$ for all $i \in[1, n]$. Hence, $v_{f}(0)=v_{f}(1)=v_{f}(2)=n$. By applying Observation 3.8, $A C_{n}$ is a balanced 3-edge product cordial graph.

Next, we are able to find a sufficient condition for a balanced 3-edge product cordial graph constructed from a balanced 2-edge product cordial graph, which its order is the same as its size, as below.

Theorem 3.10. Let f be a balanced 2-edge product cordial labelling of a graph G with $2 n$ vertices and $2 n$ edges and let u be a vertex of G such that $f^{*}(u)=0$. Then the graph H obtained by joining n pendant edges to a vertex u of G is balanced 3-edge product cordial.

Proof. Let e_{i} be a pendant edge incident with a vertex u and let v_{i} be a pendant vertex incident with e_{i} for all $i \in[1, n]$. We consider a mapping $g: E(H) \rightarrow[0,2]$ defined by

$$
g(e)=\left\{\begin{array}{lll}
f(e) & : & e \in E(G) \\
2 & : & e=e_{i}, i \in[1, n]
\end{array}\right.
$$

Clearly, $g\left(e_{i}\right)=2$ and $g^{*}\left(v_{i}\right)=2$ for all $i \in[1, n]$. Thus, $e_{g}(2)=n$ and $v_{g}(2)=n$. Also, $e_{g}(0)=e_{f}(0)=e_{f}(1)=e_{g}(1)$ and $v_{g}(0)=v_{f}(0)=v_{f}(1)=v_{g}(1)$. By Observation 3.8, we obtain that $e_{g}(0)=e_{g}(1)=n$ and $v_{g}(0)=v_{g}(1)=n$. This means that g is a balanced 3-edge product cordial labelling of H. Therefore, H is a required graph.

Corollary 3.11. The graph G obtained by joining n pendant edges to a vertex of a cycle C_{n} of the crown $C_{n} \odot K_{1}$ is balanced 3-edge product cordial.

Proof. Let u be a vertex of a cycle C_{n} of the crown $C_{n} \odot K_{1}$ incident with n pendant edges. As $C_{n} \odot K_{1}$ is a balanced 2-edge product cordial graph by Corollary 3.2, there exists a balanced 2-edge product cordial labelling f of $C_{n} \odot K_{1}$ such that $f^{*}(u)=0$. Moreover, $C_{n} \odot K_{1}$ has $2 n$ vertices and $2 n$ edges. Therefore, by Theorem 3.10, G is a balanced 3-edge product cordial graph.

Corollary 3.12. The graph G obtained by joining $\frac{3 n}{2}$ pendant edges to a vertex of a cycle C_{n} of the armed crown $A C_{n}$ with even n is balanced 3-edge product cordial.

Proof. For even n, let u be a vertex of a cycle C_{n} of the crown $A C_{n}$ incident with $\frac{3 n}{2}$ pendant edges. Since $A C_{n}$ is a balanced 2-edge product cordial graph by Corollary 3.3, there is a balanced 2-edge product cordial labelling f of $A C_{n}$ such that $f^{*}(u)=0$. Furthermore, $C_{n} \odot K_{1}$ has $3 n$ vertices and $3 n$ edges. Therefore, by Theorem 3.10, G is a balanced 3-edge product cordial graph.

After, we are able to obtain some sufficient conditions for some graphs constructed by a 2edge product cordial graph, which its odd order is similar to its odd size, to be balanced 3-edge product cordial.

Theorem 3.13. Let f be a 2-edge product cordial labelling of a graph G with $2 n-1$ vertices and $2 n-1$ edges and let u be a vertex of G such that $f^{*}(u)=0$. If $e_{f}(0)<e_{f}(1)$ and $v_{f}(0)<v_{f}(1)$, then the graph H obtained by joining $n+1$ pendant edges to a vertex u of G is balanced 3-edge product cordial.

Proof. Let e_{i} be pendant edges joining a vertex u of G and let w_{i} be a pendant vertex incident with e_{i} for all $i \in[1, n+1]$. Consider a mapping $g: E(H) \rightarrow[0,2]$ defined by

$$
g(e)=\left\{\begin{array}{lll}
f(e) & : & e \in E(G) \\
0 & : & e=e_{1} \\
2 & : & e=e_{i}, i \in[2, n+1]
\end{array}\right.
$$

Clearly, $g(e)=f(e)$ for all $e \in E(G), g\left(e_{1}\right)=0, g\left(e_{i}\right)=2$ for all $i \in[2, n+1], g^{*}(v)=f^{*}(v)$ for all $v \in V(G), g^{*}\left(w_{1}\right)=0$ and $g^{*}\left(w_{i}\right)=2$ for all $i \in[2, n+1]$. Thus, $e_{g}(0)=e_{f}(0)+1=e_{f}(1)=$
$e_{g}(1)=e_{g}(2)=n$ and $v_{g}(0)=v_{f}(0)+1=v_{f}(1)=v_{g}(1)=v_{g}(2)=n$. This means that g is a balanced 3-edge product cordial labelling of H. Therefore, H is an expected graph.

Corollary 3.14. The graph G obtained by joining $\frac{3 n+1}{2}+1$ pendant edges to a vertex of a cycle C_{n} of the armed crown $A C_{n}$ with odd n is balanced 3-edge product cordial.

Proof. For odd n, it is clear that the armed crown $A C_{n}$ has $3 n$ vertices and $3 n$ edges such that $3 n$ is also an odd number. Let v_{i} be a vertex of C_{n} of $A C_{n}$, let u_{i} be a vertex of $A C_{n}$ adjacent to v_{i} and let w_{i} be a pendant vertex of $A C_{n}$ adjacent to u_{i} for all $i \in[1, n]$. Consider a mapping $f: E\left(A C_{n}\right) \rightarrow\{0,1\}$ defined by

$$
f(e)=\left\{\begin{array}{lll}
0 & : & e \in E\left(C_{n}\right) \\
0 & : & e=v_{i} u_{i}, i \in\left[1,\left\lfloor\frac{n}{2}\right\rfloor\right] \\
1 & : & e=v_{i} u_{i}, i \in\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n\right] \\
1 & : & e=u_{i} w_{i}, i \in[1, n]
\end{array}\right.
$$

Evidently, $e_{f}(0)=n+\left\lfloor\frac{n}{2}\right\rfloor<n+\left\lfloor\frac{n}{2}\right\rfloor+1=e_{f}(1)$. Moreover, $f^{*}\left(v_{i}\right)=0$ for all $i \in[1, n]$, $f^{*}\left(u_{i}\right)=0$ for all $i \in\left[1,\left\lfloor\frac{n}{2}\right\rfloor\right], f^{*}\left(u_{i}\right)=1$ for all $i \in\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n\right]$ and $f^{*}\left(w_{i}\right)=1$ for all $i \in[1, n]$. Thus, $v_{f}(0)=n+\left\lfloor\frac{n}{2}\right\rfloor<n+\left\lfloor\frac{n}{2}\right\rfloor+1=v_{f}(1)$. Since $\left|e_{f}(0)-e_{f}(1)\right|=1$ and $\left|v_{f}(0)-v_{f}(1)\right|=1$, f is a 2-edge product cordial labelling of $A C_{n}$. By applying Theorem 3.13, G is a balanced 3edge product cordial graph.

Theorem 3.15. Let f be a 2-edge product cordial labelling of a graph G with $2 n-1$ vertices and $2 n-1$ edges and let u be a vertex of G such that $f^{*}(u)=0$. If $e_{f}(0)>e_{f}(1)$ and $v_{f}(0)>v_{f}(1)$, then the graph H obtained by joining $n+1$ pendant edges to a vertex u of G is balanced 3-edge product cordial.

Proof. Let e_{i} be pendant edges joining a vertex u of G and let w_{i} be a pendant vertex incident with e_{i} for all $i \in[1, n+1]$. Consider a mapping $g: E(H) \rightarrow[0,2]$ defined by

$$
g(e)=\left\{\begin{array}{lll}
f(e) & : & e \in E(G) \\
1 & : & e=e_{1} \\
2 & : & e=e_{i}, i \in[2, n+1]
\end{array}\right.
$$

Clearly, $g(e)=f(e)$ for all $e \in E(G), g\left(e_{1}\right)=1, g\left(e_{i}\right)=2$ for all $i \in[2, n+1], g^{*}(v)=f^{*}(v)$ for all $v \in V(G), g^{*}\left(w_{1}\right)=1$ and $g^{*}\left(w_{i}\right)=2$ for all $i \in[2, n+1]$. Hence, $e_{g}(0)=e_{f}(0)=e_{f}(1)+1=$ $e_{g}(1)=e_{g}(2)=n$ and $v_{g}(0)=v_{f}(0)=v_{f}(1)+1=v_{g}(1)=v_{g}(2)=n$. This means that g is a balanced 3-edge product cordial labelling of H. Therefore, H is a desired graph.

Corollary 3.16. Let G be a graph obtained by joining 2 pendant edges to each vertex of a cycle C_{n} with odd n. Then the graph H obtained by joining $\frac{3 n+1}{2}+1$ pendant edges to a vertex of C_{n} of G is balanced 3-edge product cordial.

Proof. For odd n, it is obvious that G has $3 n$ vertices and $3 n$ edges such that $3 n$ is also an odd number. Let v_{i} be a vertex of C_{n} of G for all $i \in[1, n]$ and let u_{i}, w_{i} be two vertices of G adjacent to v_{i} for all $i \in[1, n]$. Consider a mapping $f: E(G) \rightarrow\{0,1\}$ defined by

$$
f(e)=\left\{\begin{array}{lll}
0 & : & e \in E\left(C_{n}\right) \\
0 & : & e=v_{i} u_{i}, i \in\left[1,\left\lceil\frac{n}{2}\right\rceil\right] \\
1 & : & e=v_{i} u_{i}, i \in\left[\left\lceil\frac{n}{2}\right\rceil+1, n\right] \\
1 & : & e=v_{i} w_{i}, i \in[1, n]
\end{array}\right.
$$

Clearly, $e_{f}(0)=n+\left\lceil\frac{n}{2}\right\rceil>n+\left\lceil\frac{n}{2}\right\rceil-1=e_{f}(1)$. Besides, $f^{*}\left(v_{i}\right)=0$ for all $i \in[1, n], f^{*}\left(u_{i}\right)=0$ for all $i \in\left[1,\left\lceil\frac{n}{2}\right\rceil\right], f^{*}\left(u_{i}\right)=1$ for all $i \in\left[\left\lceil\frac{n}{2}\right\rceil+1, n\right]$ and $f^{*}\left(w_{i}\right)=1$ for all $i \in[1, n]$. Thus, $v_{f}(0)=n+\left\lceil\frac{n}{2}\right\rceil>n+\left\lceil\frac{n}{2}\right\rceil-1=v_{f}(1)$. As $\left|e_{f}(0)-e_{f}(1)\right|=1$ and $\left|v_{f}(0)-v_{f}(1)\right|=1, f$ is a 2-edge product cordial labelling of G. By applying Theorem 3.15, H is a balanced 3-edge product cordial graph.

Then, we can see that the following characterization for a balanced 3-edge product cordial graph is evident.

Theorem 3.17. The graph G is balanced 3-edge product cordial if and only if it is 3-edge product cordial such that 3 is a divisor of both $|V(G)|$ and $|E(G)|$.

Proof. Let f be a balanced 3-edge product cordial labelling of G. Then, $e_{f}(0)=e_{f}(1)=e_{f}(2)$ and $v_{f}(0)=v_{f}(1)=v_{f}(2)$. Obviously, it is a 3-edge product cordial labelling. Since $|E(G)|=$ $e_{f}(0)+e_{f}(1)+e_{f}(2)=3 e_{f}(0)$ and $|V(G)|=v_{f}(0)+v_{f}(1)+v_{f}(2)=3 v_{f}(0), 3$ is a divisor of both $|V(G)|$ and $|E(G)|$.

On the other hand, let f be a 3-edge product cordial labelling of G such that 3 is a divisor of $|V(G)|$ and $|E(G)|$. Suppose that $\left|e_{f}(0)-e_{f}(1)\right|=1$, then $e_{f}(0)=e_{f}(1)+1$ or $e_{f}(0)=$ $e_{f}(1)-1$. Since $|E(G)|=e_{f}(0)+e_{f}(1)+e_{f}(2)=e_{f}(0)+e_{f}(0)-1+e_{f}(0)=3 e_{f}(0)-1$, $|E(G)|=e_{f}(0)+e_{f}(1)+e_{f}(2)=e_{f}(1)+1+e_{f}(1)+e_{f}(1)=3 e_{f}(1)+1,|E(G)|=e_{f}(0)+$ $e_{f}(1)+e_{f}(2)=e_{f}(0)+e_{f}(0)+1+e_{f}(0)=3 e_{f}(0)+1$ or $|E(G)|=e_{f}(0)+e_{f}(1)+e_{f}(2)=$ $e_{f}(1)-1+e_{f}(1)+e_{f}(1)=3 e_{f}(1)-1,3$ is not a divisor of the size, a contradiction. By the same way, we can check that $\left|e_{f}(i)-e_{f}(j)\right| \neq 1$ for all $i, j \in[0,2]$. Similarly, Suppose that $\mid v_{f}(0)-$ $v_{f}(1) \mid=1$, then $v_{f}(0)=v_{f}(1)+1$ or $v_{f}(0)=v_{f}(1)-1$. Since $|V(G)|=v_{f}(0)+v_{f}(1)+v_{f}(2)=$ $v_{f}(0)+v_{f}(0)-1+v_{f}(0)=3 v_{f}(0)-1,|V(G)|=v_{f}(0)+v_{f}(1)+v_{f}(2)=v_{f}(1)+1+v_{f}(1)+$ $v_{f}(1)=3 v_{f}(1)+1,|V(G)|=v_{f}(0)+v_{f}(1)+v_{f}(2)=v_{f}(0)+v_{f}(0)+1+v_{f}(0)=3 v_{f}(0)+1$ or $|V(G)|=v_{f}(0)+v_{f}(1)+v_{f}(2)=v_{f}(1)-1+v_{f}(1)+v_{f}(1)=3 v_{f}(1)-1,3$ is not a divisor of the order, a contradiction. Likewise, we are able to prove that $\left|v_{f}(i)-v_{f}(j)\right| \neq 1$ for all $i, j \in[0,2]$. This shows that $e_{f}(0)=e_{f}(1)=e_{f}(2)$ and $v_{f}(0)=v_{f}(1)=v_{f}(2)$. Therefore, f is a balanced 3-edge product cordial labelling of G.

For the last result, a construction of graphs admitting a balanced 3-edge product cordial labelling is presented.

Theorem 3.18. For a connected graph G of order $n \geq 3$ and size m, there is a balanced 3-edge product cordial graph constructed from G.

Proof. Let v_{i} be a vertex of G for all $i \in[1, n]$. Since G is a connected graph, $m \geq n-1$. Thus, we consider 3 cases as follows.
(i) If $m=n-1$, then G is a tree. Thus, there exist at least two pendant vertices v_{j}, v_{k} of G for some $j, k \in[1, n]$. Let H be a graph obtained by joining two pendant edges e_{i}, e_{i}^{\prime} to each vertex v_{i}
of G for all $i \in[1, n]$ and adding an edge e_{1} incident with vertices v_{j}, v_{k}. Let u_{i}, u_{i}^{\prime} be two pendant vertices incident with e_{i}, e_{i}^{\prime} for all $i \in[1, n]$, respectively. Consider a mapping $f: E(H) \rightarrow[0,2]$ defined by

$$
f(e)=\left\{\begin{array}{lll}
0 & : & e \in E(G) \\
0 & : & e=e_{1}=v_{j} v_{k} \\
1 & : & e=e_{i}, i \in[1, n] \\
2 & : & e=e_{i}^{\prime}, i \in[1, n]
\end{array}\right.
$$

Clearly, $f^{*}\left(v_{i}\right)=0, f^{*}\left(u_{i}\right)=1$ and $f^{*}\left(u_{i}^{\prime}\right)=2$ for all $i \in[1, n]$. Since $e_{f}(0)=m+1=e_{f}(1)=$ $e_{f}(2)$ and $v_{f}(0)=n=v_{f}(1)=v_{f}(2), H$ is a balanced 3-edge product cordial graph.
(ii) If $m=n$, then let H be a graph obtained by joining two pendant edges e_{i}, e_{i}^{\prime} to each vertex v_{i} of G for all $i \in[1, n]$. Let u_{i}, u_{i}^{\prime} be two pendant vertices incident with e_{i}, e_{i}^{\prime} for all $i \in[1, n]$, respectively. Consider a mapping $f: E(H) \rightarrow[0,2]$ defined by

$$
f(e)=\left\{\begin{array}{lll}
0 & : & e \in E(G) \\
1 & : & e=e_{i}, i \in[1, n] \\
2 & : & e=e_{i}^{\prime}, i \in[1, n]
\end{array}\right.
$$

Evidently, $f^{*}\left(v_{i}\right)=0, f^{*}\left(u_{i}\right)=1$ and $f^{*}\left(u_{i}^{\prime}\right)=2$ for all $i \in[1, n]$. As $e_{f}(0)=m=e_{f}(1)=e_{f}(2)$ and $v_{f}(0)=n=v_{f}(1)=v_{f}(2), H$ admits a balanced 3-edge product cordial labelling. (iii) If $m>n$, then let G_{1} be a graph obtained by joining two pendant edges e_{i}, e_{i}^{\prime} to each vertex v_{i} of G for all $i \in[1, n]$. Let u_{i}, u_{i}^{\prime} be two pendant vertices incident with e_{i}, e_{i}^{\prime} of G_{1} for all $i \in[1, n]$, respectively. Now, a mapping $f: E\left(G_{1}\right) \rightarrow[0,2]$ is defined by

$$
f(e)=\left\{\begin{array}{lll}
0 & : & e \in E(G) \\
1 & : & e=e_{i}, i \in[1, n] \\
2 & : & e=e_{i}^{\prime}, i \in[1, n]
\end{array}\right.
$$

Clearly, $f^{*}\left(v_{i}\right)=0, f^{*}\left(u_{i}\right)=1$ and $f^{*}\left(u_{i}^{\prime}\right)=2$ for all $i \in[1, n]$. Hence, $e_{f}(0)=m, e_{f}(1)=$ $e_{f}(2)=n$ and $v_{f}(0)=n=v_{f}(1)=v_{f}(2)$.

After, we construct H_{1} by attaching two edges $e_{h 1}, e_{h 1}^{\prime}$ incident with different two vertices of G_{1} having labels 1 and 2 . Consider a mapping $g_{1}: E\left(H_{1}\right) \rightarrow[0,2]$ defined by

$$
g_{1}(e)=\left\{\begin{array}{lll}
f(e) & : & e \in E\left(G_{1}\right), \\
1 & : & e=e_{h 1}, \\
2 & : & e=e_{h 1}^{\prime} .
\end{array}\right.
$$

It is easy to see that $e_{g_{1}}(0)=m, e_{g_{1}}(1)=e_{g_{1}}(2)=n+1$ and $v_{g_{1}}(0)=n=v_{g_{1}}(1)=v_{g_{1}}(2)$.
We create H_{2} by adding two edges $e_{h 2}, e_{h 2}^{\prime}$ incident with different two vertices of H_{1} having labels 1 and 2 . Consider a mapping $g_{2}: E\left(H_{2}\right) \rightarrow[0,2]$ defined by

$$
g_{2}(e)=\left\{\begin{array}{lll}
g_{1}(e) & : & e \in E\left(H_{1}\right) \\
1 & : & e=e_{h 2} \\
2 & : & e=e_{h 2}^{\prime}
\end{array}\right.
$$

We can see that $e_{g_{2}}(0)=m, e_{g_{2}}(1)=e_{g_{2}}(2)=n+2$ and $v_{g_{2}}(0)=n=v_{g_{2}}(1)=v_{g_{2}}(2)$.
By the same way, we can construct the graphs $H_{3}, H_{4}, \ldots, H_{m-n}$. Consider a mapping g_{m-n} : $E\left(H_{m-n}\right) \rightarrow[0,2]$ defined by

$$
g_{m-n}(e)=\left\{\begin{array}{lll}
g_{m-n-1}(e) & : & e \in E\left(H_{m-n-1}\right) \\
1 & : & e=e_{h(m-n)} \\
2 & : & e=e_{h(m-n)}^{\prime}
\end{array}\right.
$$

Obviously, $e_{g_{m-n}}(0)=m=e_{g_{m-n}}(1)=e_{g_{m-n}}(2)$ and $v_{g_{m-n}}(0)=n=v_{g_{m-n}}(1)=v_{g_{m-n}}(2)$. Thus, H_{m-n} is a balanced 3-edge product cordial graph.

ACKNOWLEDGEMENTS

The author would like to thank the academic referee for the careful reading and helpful comments for improving this paper.

CONFLICT OF Interests

The author(s) declare that there is no conflict of interests.

References

[1] A. Azaizeh, R. Hasni, A. Ahmad, G.C. Lau, 3-Total edge product cordial labeling of graphs, Far East J. Math. Sci. 96(2) (2015), 193-209.
[2] P. Inpoonjai, On balanced edge product cordial graphs, J. Math. Comput. Sci. 11(6) (2021), 7360-7371.
[3] J. Ivančo, On edge product cordial graphs, Opuscula Math. 39(5) (2019), 691-703.
[4] S.K. Vaidya and C.M. Barasara, Edge product cordial labeling of graphs, J. Math. Comput. Sci. 2(5) (2012), 1436-1450.

[^0]: *Corresponding author
 E-mail address: phaisatcha_in@outlook.com
 Received February 24, 2022

