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Abstract: A multispecies food chain harvesting model is formulated based on Lotka-Voltera model with three species 

which are affected not only by harvesting but also by the presence of prey, predator and the super predator. In order 

to understand the dynamics of the system, it is assumed that the all three species follows the logistic law of growth. 

Further, there is demand for prey predator species in the market and hence selective harvesting of two species is 

performed. We derive the condition for global stability of the system using a suitable Lyapunov function. The 

possibility of existence of bioeconomic equilibrium is discussed. The optimal harvest policy is studied and the solution 

is derived under imprecise inflation in fuzzy environment using Pontryagin’s maximal principle. Finally some 

numerical examples are discussed to illustrate the model.  

Keywords: prey-predator-super predator; logistic law of growth; fishery; selective optimal harvesting; fuzzy 

environment.  
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1. NOTATIONS  

i. 𝑥, 𝑦, 𝑧: size of the prey, predator and super-predator populations respectively at time 𝑡. 

ii. 𝑘1, 𝑘2, 𝑘3 : environmental carrying capacity for prey, predator and super-predator 

respectively. 

iii. 𝜆1, 𝜆2, 𝜆3:  are the intrinsic growth rate of prey, predator and super predator. 
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iv. 𝑞1, 𝑞2: are the catchability coefficients of prey and predator. 

v. 𝐸 : the common catching effort. 

vi. 𝛼12: predator response rates towards the prey. 

vii. 𝛼21: the rate of conversion of prey to predator. 

viii. 𝛼23: super-predator response rates towards the predator. 

ix. 𝛼32: the rate of conversion of predator to super-predator. 

x. 𝑐: constant fishing cost per unit effort. 

xi. 𝑝1: constant price per unit biomass of prey species. 

xii. 𝑝2: constant price per unit biomass of predator species. 

xiii. 𝛼12, 𝛼23 : predation coefficients. 

xiv. 𝛼21, 𝛼32 : conversion parameters. 

 

2. INTRODUCTION 

In recent days the important part of research on biological modelling is the bioeconomic modelling 

of exploitation of biological resources such as fisheries and forestry’s etc. In the literature, there 

are some single species [2,3] models in fisheries. But, in reality, marine fisheries consist of multi-

species of which one may be prey and others predators and super predators which make a complex 

ecological food chain. Moreover, both prey and predators are eaten by different sections of people 

in the society and also used as different medicinal ingredients, so all three species have the demand 

in the market. Thus, the biological as well as economical study of exploitation of multi-species is 

now an emerging field of research in society. Also as this field of research includes from fisherman 

to scientist of all subjects, so now-a-days ecological modelling is very vast area for researchers. 

Initially, Clark [5,6] introduced this type idea with the technique to approaching for the result.  

Normally the main objective of the study of multi-species marine fisheries problems is to 

investigate the conditions/constraints for bionomic equilibrium of the species and to determine the 

optimum harvesting policy of the species in order to maximize the present value of the revenues 

earned from them without disturbing the ecological balance amongst the species. 

Initially in this field of study Clark [5] first presented an optimal equilibrium policy for the 

harvesting of two independent species. Later using this concept, Chaudhuri [1, 2, 3] formulated 

and solved the optimal control problem for combined harvesting of two competing species in 

deterministic environment. Later Chaudhuri and Saha Ray [4], Mesterton-Gibbons [7], Kar & 
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Chaudhuri [12] and some others studied the two species prey-predator fishery models for optimal 

harvesting of both the species. There are only few fisheries models with three species-prey, 

predator and super predator with harvesting. Recently Kar and Chaudhury [9] considered a model 

with two competing prey and one predator. Some more investigations on biological food-chain 

models [8, 13, 14, 15, 16, 17, 18, 19, 20] have also been reported recently. However, till now none 

considered food chain model with logistic growth and harvesting for three species-one prey, one 

predator and one super predator with harvesting fuzzy environment. As mentioned above, in the 

world, there are some communities who eat even super-predators. Moreover, these may now-a-

days be used for some other purposes also i.e. for medicines, etc. They also did not consider the 

optimal harvesting policy in fuzzy environment taking imprecise inflation and discount rates for 

food-chain system.  

In this paper, an optimal harvesting of three species food chain-the first one is a prey, the second 

is a predator and third is a super predator which feeds on predator is formulated. The logistic 

growth of all three species is assumed and selective harvesting of prey and predator species is 

considered. The local stability, global stability and the bioeconomic equilibrium of the system are 

studied and the necessary conditions/constraints are derived. Taking the inflation and discount into 

account and considering these to be imprecise in nature cf. Maiti and Maiti [10], the problem is 

formulated as an optimal control problem for maximum return of revenue and solved for optimum 

harvesting of the species using Pontryagin’s maximal principle. Lastly, some numerical 

experiments and simulations are depicted to illustrate the model.  

 

3. MODEL FORMULATION  

Let us consider three marine fish species for example Scoliodon sorakwa (shark), letes calcaifera 

(bhetki), sardinella longicepts (sardine) which make a food chain system and prey-predator are 

subjected to harvesting continuously. In this system we assume that the super predator (shark) 

feeding on predator species only and there is no competition between the species. Here the predator 

which lives on prey and super predator which lives on predator both these species grow according 

to the logistic growth along with the prey species (i.e. the population density of each species is 

resource limited).  

With those above assumption the governing equations describing the system is as follows: 
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𝑑𝑥

𝑑𝑡
= 𝜆1𝑥 (1 −

𝑥

𝑘1
) − 𝛼12𝑥𝑦 − 𝐸𝑞1𝑥                 

𝑑𝑦

𝑑𝑡
= 𝜆2𝑦 (1 −

𝑦

𝑘2
) + 𝛼21𝑥𝑦 − 𝛼23𝑦𝑧 − 𝐸𝑞2𝑦

𝑑𝑧

𝑑𝑡
= 𝜆3𝑧 (1 −

𝑧

𝑘3
) + 𝛼32𝑦𝑧                                

                                                                                                       (1) 

where 0 ≤  𝑥 ≤  𝑘1, 0 ≤  𝑦 ≤  𝑘2, 0 ≤  𝑧 ≤  𝑘3  and 𝛼12, 𝛼21, 𝛼23, 𝛼32  are positive constants. 

The catch rate functions 𝐸𝑞1𝑥 and 𝐸𝑞2𝑦 are based on CPUE (CATCH-PER-UNIT EF- FORT).  

 

4. THE STEADY STATES 

Solving the  above system (1) he steady states are obtained and the possible states i.e. points may 

be assumed as:  𝑃0(0, 0, 0), 𝑃1(0, 𝑦1, 𝑧1), 𝑃2(𝑥2, 0, 𝑧2) , 𝑃3(𝑥3, 𝑦3, 0) , 𝑃4(0, 0, 𝑧4), 𝑃5(0, 𝑦5, 0) , 

𝑃6(𝑥6, 0, 0) and 𝑃7(𝑥
∗, 𝑦∗, 𝑧∗). 

The existence of 𝑃0 , 𝑃4 , 𝑃5 and 𝑃6 are obvious and unstable. Therefore to show the existence of 

other equilibria we check one by one. 

STEADY STATE 𝐏𝟏(𝟎, 𝐲𝟏, 𝐳𝟏): 

𝑥1 = 0                              

𝑦1 =

𝜆3
𝑘3

(𝜆2−𝐸𝑞2)−𝛼23𝜆3

𝛼23𝛼32+
𝜆2
𝑘2

𝜆3
𝑘3

𝑧1 =
𝛼23(𝜆2−𝐸𝑞2)+

𝜆2𝜆3
𝑘2

𝛼23𝛼32+
𝜆2
𝑘2

𝜆3
𝑘3

                                                                                                                                          (2) 

The equilibrium point 𝑃1 exist if (𝜆2 − 𝐸𝑞2) > 𝑘3𝛼23.                                                      

STEADY STATE 𝑷𝟐(𝒙𝟐, 𝟎, 𝒛𝟐):  

𝑥2 =
𝑘1

𝜆1
(𝜆1 − 𝐸𝑞1)

𝑦2 = 0                          
𝑧2 = 𝑘3                   

                                                                                                                                               (3) 

The equilibrium point 𝑃2 exist if (𝜆1 − 𝐸𝑞1) > 0. 

STEADY STATE 𝑷𝟑(𝒙𝟑, 𝒚𝟑, 𝟎):  

𝑥3 =
−𝛼12(𝜆2−𝐸𝑞2)+

𝜆2
𝑘2

(𝜆1−𝐸𝑞1)

𝛼12𝛼21+
𝜆1𝜆2
𝑘1𝑘2

                    

𝑦3 =

𝜆1
𝑘1

(𝜆2−𝐸𝑞2)+𝛼21(𝜆1−𝐸𝑞1)

𝛼12𝛼21+
𝜆1𝜆2
𝑘1𝑘2

                      

𝑧3 = 0                                                                

                                                                                                             (4) 
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In this case the equilibrium will exist if (𝜆1 − 𝐸𝑞1) > 0, (𝜆2 − 𝐸𝑞2) > 0 and  
(𝜆1−𝐸𝑞1)

(𝜆2−𝐸𝑞2)
>

𝛼12𝑘2

𝜆2
 . 

Therefore the all three equilibrium points 𝑃1, 𝑃2 and 𝑃3 exist together if (𝜆1 − 𝐸𝑞1) >
𝛼12𝛼23𝑘2𝑘3

𝜆2
 

and (𝜆2 − 𝐸𝑞2) > 𝑘3𝛼23  holds together.     

Now we assume that the positive interior equilibrium point 𝑃7(𝑥
∗, 𝑦∗, 𝑧∗) exist and the point can 

be obtained by solving the system of equations (1) in the positive octant. So (𝑥∗, 𝑦∗, 𝑧∗) is the 

solution of the system of equations 

 

𝜆1

𝑘1
𝑥 + 𝛼12𝑦 = 𝜆1 − 𝐸𝑞1                      

𝛼21𝑥 −
𝜆2

𝑘2
𝑦 − 𝛼23𝑧 = −(𝜆2 − 𝐸𝑞2)

𝛼32𝑦 −
𝜆3

𝑘3
𝑧 = −𝜆3                               

                                                                                                                  (5) 

Corresponding solution is:  

𝑥∗ =
(𝛼23𝛼32+

𝜆2
𝑘2

𝜆3
𝑘3

)(𝐸𝑞1−𝜆1)+𝛼12
𝜆3
𝑘3

(𝜆2−𝐸𝑞2)−𝛼12𝛼23𝜆3

∆
      

𝑦∗ =

𝜆1
𝑘1

𝜆3
𝑘3

(𝐸𝑞2−𝜆2)+𝛼21
𝜆3
𝑘3

(𝐸𝑞1−𝜆1)+
𝜆1𝜆3
𝑘1

𝛼23

∆
                        

𝑧∗ =
−𝜆3(𝛼12𝛼21+

𝜆1
𝑘1

𝜆3
𝑘3

)+𝛼32
𝜆1
𝑘1

(𝐸𝑞2−𝜆2)+𝛼21𝛼32𝜆3(𝐸𝑞1−𝜆1)

∆

                                                                                        (6) 

With the coefficient determinant ∆= −
𝜆1

𝑘1
𝛼23𝛼32 −

𝜆3

𝑘3
𝛼12𝛼21 −

𝜆1

𝑘1

𝜆2

𝑘2

𝜆3

𝑘3
 (≠ 0)                                  (7) 

 

5. LOCAL STABILITY 

To discuss the local stability of the system first we need to construct the variational matrix 

𝑉(𝑥, 𝑦, 𝑧) corresponding to the system (1). 

The variational matrix 𝑉(𝑥, 𝑦, 𝑧) is given by: 

𝑉(𝑥, 𝑦, 𝑧) = [
𝑉11 𝑉12 𝑉13

𝑉21 𝑉22 𝑉23

𝑉31 𝑉32 𝑉33

]                                                                                                                               (8) 

Where, 

 𝑉11 = 𝜆1 −
2𝑥𝜆1

𝑘1
− 𝛼12𝑦 − 𝑞1𝐸, 𝑉22 = 𝜆2 −

2𝑦𝜆2

𝑘2
+ 𝛼21𝑥 − 𝛼23𝑧 − 𝑞2𝐸, 𝑉33 = 𝜆3 −

2𝑧𝜆3

𝑘3
+ 𝛼32𝑦, 

𝑉12 = −𝛼12𝑥, 

𝑉13 = 0, 𝑉23 = −𝛼23𝑦, 𝑉21 = 𝛼21𝑦, 𝑉31 = 0 and 𝑉32 = 𝛼32𝑧.                                                                    (9) 
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For the equilibrium point 𝑃7  the characteristic equation 𝑉(𝑥∗, 𝑦∗, 𝑧∗) is given by: 𝜇3 + 𝑎1𝜇
2 +

𝑎2𝜇 + 𝑎3 = 0 , where, 𝑎1 =
𝜆1

𝑘1
𝑥∗ +

𝜆2

𝑘2
𝑦∗ +

𝜆3

𝑘3
𝑧∗ , 𝑎2 =

𝜆1𝜆2

𝑘1𝑘2
𝑥∗𝑦∗ +

𝜆2𝜆3

𝑘2𝑘3
𝑦∗𝑧∗ +

𝜆1𝜆3

𝑘1𝑘3
𝑥∗𝑧∗ +

𝛼12𝛼21𝑥
∗𝑦∗ + 𝛼23𝛼32𝑦

∗𝑧∗ and 𝑎3 = (
𝜆1

𝑘1

𝜆2

𝑘2

𝜆3

𝑘3
+

𝜆1

𝑘1
𝛼23𝛼32 +

𝜆3

𝑘3
𝛼12𝛼21) 𝑥∗𝑦∗𝑧∗. 

As in the positive octant 𝑎1 > 0, so by Routh-Hurwitz condition 𝑃7 will be stable if and only if 

|
𝑎1 𝑎3

1 𝑎2
| > 0. 

 

6. BIONOMIC EQUILIBRIUM 

The term bionomic equilibrium of a biological system is the combination of biological equilibrium 

as well as economic equilibrium. As we already know that the biological equilibrium is obtained 

by solving 
𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
=

𝑑𝑧

𝑑𝑡
= 0. Also the economic equilibrium is said to be achieved when TR (the 

total revenue obtained by selling the harvested biomass) equals TC (the total cost for the effort 

devoted to harvesting). 

 

The economic rent (net revenue) at any time given by 𝜋(𝑥, 𝑦, 𝑧, 𝐸) = (𝑝1𝑞1𝑥 + 𝑝2𝑞2𝑦 − 𝑐)𝐸  (10) 

And also for system (1) we have 

𝑥 = 0 𝑜𝑟 𝐸 =
𝜆1

𝑘1
−

𝜆1𝑥

𝑘1𝑞1
−

𝛼12𝑦

𝑞1
                                                                                                                              (11) 

𝑦 = 0 𝑜𝑟 𝐸 =
𝜆2

𝑞2
−

𝜆2𝑦

𝑘2𝑞2
+

𝛼21𝑥

𝑞2
−

𝛼23𝑧

𝑞2
                                                                                                                  (12) 

𝑧 = 0 𝑜𝑟 𝜆3 − 
𝜆3

𝑘3
𝑧 + 𝛼32𝑦 = 0                                                                                                                           (13) 

Equating (11) and (12) we have 

(
𝛼21

𝑞2
+

𝜆1

𝑘1𝑞1
) 𝑥 + (

𝛼12

𝑞1
−

𝜆2

𝑘2𝑞2
) 𝑦 −

𝛼23

𝑞2
𝑧 = (

𝜆1

𝑞1
−

𝜆2

𝑞2
)                                                                                        (14) 

So, the bionomic equilibrium is obtained by solving  (10), (13) and (14) that is 

𝑝1𝑞1𝑥 + 𝑝2𝑞2𝑦 − 𝑐 = 0.                                                 

𝜆3 − 
𝜆3

𝑘3
𝑧 + 𝛼32𝑦 = 0.                                                    

(
𝛼21

𝑞2
+

𝜆1

𝑘1𝑞1
) 𝑥 + (

𝛼12

𝑞1
−

𝜆2

𝑘2𝑞2
) 𝑦 −

𝛼23

𝑞2
𝑧 = (

𝜆1

𝑞1
−

𝜆2

𝑞2
)

                                                                                       (15) 
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7. GLOBAL STABILITY 

To check the global stability off the system, in this section we prove a theorem by choosing an 

appropriate Lyapunov function. 

Theorem: The interior equilibrium point 𝑃7(𝑥
∗, 𝑦∗, 𝑧∗) is globally asymptotically stable if 𝛼12 =

𝛼21 and 𝛼23 = 𝛼32. 

Proof: Let us consider Lyapunov function of the form 𝑉(𝑥, 𝑦, 𝑧) = (𝑥 − 𝑥∗) − 𝑥∗ log
𝑥

𝑥∗ +(𝑦 −

𝑦∗) − 𝑦∗ log
𝑦

𝑦∗
+(𝑧 − 𝑧∗) − 𝑧∗ log

𝑧

𝑧∗
                                                                                                                      (16) 

This Lyapunov function 𝑉 is obviously positive definite and continuous ∀ 𝑥, 𝑦, 𝑧 > 0. 

𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑉

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝑉

𝜕𝑧

𝑑𝑧

𝑑𝑡
                                                                                                                                     (17) 

After simplification we get 

𝑑𝑉

𝑑𝑡
= −[(𝑥 − 𝑥∗) (𝑦 − 𝑦∗) (𝑧 − 𝑧∗)]

[
 
 
 
 

𝜆1

𝑘1

𝛼12−𝛼21

2
0

𝛼12−𝛼21

2

𝜆2

𝑘2

𝛼23−𝛼32

2

0
𝛼23−𝛼32

2

𝜆3

𝑘3 ]
 
 
 
 

[

(𝑥 − 𝑥∗)
(𝑦 − 𝑦∗)

(𝑧 − 𝑧∗)
] = −𝑋𝑇𝐴𝑋 (18) 

Where 𝑋 = [

(𝑥 − 𝑥∗)
(𝑦 − 𝑦∗)

(𝑧 − 𝑧∗)
] and 𝐴 =

[
 
 
 
 

𝜆1

𝑘1

𝛼12−𝛼21

2
0

𝛼12−𝛼21

2

𝜆2

𝑘2

𝛼23−𝛼32

2

0
𝛼23−𝛼32

2

𝜆3

𝑘3 ]
 
 
 
 

                                                           (19) 

Therefore 
𝑑𝑉

𝑑𝑡
< 0 if A is positive definite. The matrix A is positive definite if 𝛼12 = 𝛼21  and 

𝛼23 = 𝛼32.                 (20) 

 

8. OPTIMAL HARVESTING POLICY 

Let 𝐽 is the present value of revenues of a continuous time-stream then 𝐽 can be expressed as 

𝐽 = ∫ 𝑒−�̃�𝑡{(𝑝1𝑞1𝑥 + 𝑝2𝑞2𝑦) − 𝑐}𝐸(𝑡)𝑑𝑡
∞

0
                                                                                                        (21) 

Where �̃� = �̃� − �̃� , the discount rate of inflation with �̃� and �̃�  be the respectively representing 

discount rates  and inflation for the time value of money and these are fuzzy in nature. The 

harvesting effort 𝐸(𝑡)  is a control variable satisfies 0 ≤ 𝐸(𝑡) ≤ 𝐸𝑚𝑎𝑥  , so we can write 

[0, 𝐸𝑚𝑎𝑥] = 𝑉𝑡 is the control set. The fuzzy number �̃� can be expressed as interval number and 

following Maiti and Maiti [10] and Grazegorzewsky [11],  𝐽 of (21) can be expressed as  
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𝑀𝑎𝑥 [𝐽𝐿, 𝐽𝑅  ] = ∫ 𝑒−[𝑅𝐿,𝑅𝑅]𝑡{(𝑝1𝑞1𝑥 + 𝑝2𝑞2𝑦) − 𝑐}𝐸(𝑡)𝑑𝑡
∞

0
                                                                      (22) 

Where, 

𝐽𝐿 = ∫ 𝑒−𝑅𝑅𝑡{(𝑝1𝑞1𝑥 + 𝑝2𝑞2𝑦) − 𝑐}𝐸(𝑡)𝑑𝑡
∞

0
                                                                                                     (23) 

𝐽𝑅 = ∫ 𝑒−𝑅𝐿𝑡{(𝑝1𝑞1𝑥 + 𝑝2𝑞2𝑦) − 𝑐}𝐸(𝑡)𝑑𝑡
∞

0
                                                                                                     (24) 

𝑅𝐿 = 𝑟𝐿 − 𝑘𝑅  and  𝑅𝑅 = 𝑟𝑅 − 𝑘𝐿, �̃� =  [𝑟𝐿 , 𝑟𝑅],  �̃� =  [𝑘𝐿 , 𝑘𝑅]                                                        (25) 

Subject to the constraints (1). Now using weights 𝑤1 and 𝑤2 with  𝑤1+𝑤2 = 1; 𝑤1, 𝑤2 ≥ 0, we 

have from (22)  

𝑀𝑎𝑥𝐽 = 𝑀𝑎𝑥 [𝐽𝐿, 𝐽𝑅  ] = 𝑤1𝐽𝐿 + 𝑤2 𝐽𝑅                                                                                                                 (26) 

Therefor the corresponding Hamiltonian can be written as 

𝐻 = (𝑤1𝑒
−𝑅𝑅𝑡 + 𝑤2𝑒

−𝑅𝐿𝑡)(𝑝1𝑞1𝑥 + 𝑝2𝑞2𝑦 − 𝑐)𝐸 + 𝜇1 (−
𝜆1

𝑘1
𝑥2 − 𝛼12𝑥𝑦 + 𝑥(𝜆1 − 𝑞1𝐸))  

+𝜇2 (−
𝜆2

𝑘2
𝑦2 + 𝛼21𝑥𝑦 − 𝛼23𝑦𝑧 + 𝑦(𝜆2 − 𝑞2𝐸)) + 𝜇3 (−

𝜆3

𝑘3
𝑧2 + 𝛼32𝑦𝑧 + 𝜆3𝑧)                      (27) 

Where,  𝜇1, 𝜇2 𝑎𝑛𝑑 𝜇3 are adjoint variables. 

The adjoint equations are: 
𝑑𝜇1

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥
  ,

𝑑𝜇2

𝑑𝑡
= −

𝜕𝐻

𝜕𝑦
   𝑎𝑛𝑑 

𝑑𝜇3

𝑑𝑡
= −

𝜕𝐻

𝜕𝑧
                                       (28) 

So,  

𝑑𝜇1

𝑑𝑡
=

𝜆1

𝑘1
𝜇1𝑥 − 𝛼21𝑦𝜇2 − 𝑝1𝑞1𝐸(𝑤1𝑒

−𝑅𝑅𝑡 + 𝑤2𝑒
−𝑅𝐿𝑡)                   

𝑑𝜇2

𝑑𝑡
= 𝛼12𝑥𝜇1 +

𝜆2

𝑘2
𝑦𝜇2 − 𝛼32𝑧𝜇3 − 𝑝2𝑞2𝐸(𝑤1𝑒

−𝑅𝑅𝑡 + 𝑤2𝑒
−𝑅𝐿𝑡)

𝑑𝜇3

𝑑𝑡
= 𝛼23𝑦𝜇2 +

𝜆3

𝑘3
𝑧𝜇3                                                                            

                                                          (29) 

Now solving the system of linear differential equations we have 

𝜇1 = 𝐴1𝑒
𝑚1𝑡 + 𝐴2𝑒

𝑚2𝑡 + 𝐴3𝑒
𝑚3𝑡 +

𝑀1𝐿

𝑁𝐿
𝑒−𝑅𝐿𝑡 +

𝑀1𝑅

𝑁𝑅
𝑒−𝑅𝑅𝑡                                                                    (30) 

Where 𝑚1, 𝑚2 &  𝑚3 are the roots of the equation 

𝜈0𝑚
3 + 𝜈1𝑚

2 + 𝜈2𝑚 + 𝜈3 = 0                                                                                                                                 (31) 

Where  

𝜈0 = 1                                                                                                       

𝜈1 = −(
𝜆1

𝑘1
𝑥 +

𝜆2

𝑘2
𝑦 +

𝜆3

𝑘3
𝑧)                                                                 

𝜈2 = (
𝜆1

𝑘1

𝜆2

𝑘2
𝑥𝑦 +

𝜆2

𝑘2

𝜆3

𝑘3
𝑦𝑧 +

𝜆1

𝑘1

𝜆3

𝑘3
𝑥𝑧 + 𝛼23𝛼32𝑦𝑧 + 𝛼12𝛼21𝑥𝑦)  

𝜈3 = (
𝜆1

𝑘1

𝜆2

𝑘2

𝜆3

𝑘3
+

𝜆1

𝑘1
𝛼23𝛼32 +

𝜆3

𝑘3
𝛼12𝛼21) 𝑥𝑦𝑧.                                 

                                                          (32) 
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Now 𝜇1 will be bounded if 𝑚𝑖 < 0, ( 𝑖 = 1, 2, 3) or 𝐴𝑖 = 0 𝑓𝑜𝑟 𝑖 = 1, 2, 3. 

The Hurwitz matrix corresponding to the cubic equation (31) can be written as [
𝜈1 1 0
𝜈3 𝜈2 𝜈1

0 0 𝜈3

] and 

∆1= 𝜈1,  ∆2= 𝜈1𝜈2 − 𝜈3,  ∆3= 𝜈3(𝜈1𝜈2 − 𝜈3). 

So the roots of the above equation are real negative or complex conjugate with negative real parts 

if and only if all of ∆1, ∆2 and ∆3 are positive. But since in positive octant ∆1< 0, then it is difficult 

to check for 𝑚𝑖 < 0, ( 𝑖 = 1, 2, 3) and hence we consider the case 𝐴𝑖 = 0 𝑓𝑜𝑟 𝑖 = 1, 2, 3. 

Therefore  

𝜇1 =
𝑀1𝐿

𝑁𝐿
𝑒−𝑅𝐿𝑡 +

𝑀1𝑅

𝑁𝑅
𝑒−𝑅𝑅𝑡                                                                                                                                       (33) 

And with similar reason we also have 

𝜇2 =
𝑀2𝐿

𝑁𝐿
𝑒−𝑅𝐿𝑡 +

𝑀2𝑅

𝑁𝑅
𝑒−𝑅𝑅𝑡                                                                                                                                  (34) 

And 

𝜇3 =
𝑀3𝐿

𝑁𝐿
𝑒−𝑅𝐿𝑡 +

𝑀3𝑅

𝑁𝑅
𝑒−𝑅𝑅𝑡                                                                                                                                     (35) 

With, 

𝑀1𝐿 = −𝐸𝑤1 [𝑝1𝑞1 {𝑅𝑅
2 + 𝑅𝑅 (

𝜆2

𝑘2
𝑦 +

𝜆3

𝑘3
𝑧) +

𝜆2

𝑘2

𝜆3

𝑘3
𝑦𝑧 + 𝛼23𝛼32𝑦𝑧} + 𝑝2𝑞2 {𝛼21𝑦𝑅𝑅 + 𝛼21𝑦𝑧

𝜆3

𝑘3
}]   (36) 

𝑀1𝑅 = −𝐸𝑤2 [𝑝1𝑞1 {𝑅𝐿
2 + 𝑅𝑅 (

𝜆2

𝑘2
𝑦 +

𝜆3

𝑘3
𝑧) +

𝜆2

𝑘2

𝜆3

𝑘3
𝑦𝑧 + 𝛼23𝛼32𝑦𝑧} + 𝑝2𝑞2 {𝛼21𝑦𝑅𝐿 + 𝛼21𝑦𝑧

𝜆3

𝑘3
}]   (37) 

𝑀2𝐿 = −𝐸𝑤1 [𝑝2𝑞2 {𝑅𝑅
2 + 𝑅𝑅 (

𝜆1

𝑘1
𝑥 +

𝜆3

𝑘3
𝑧) +

𝜆1

𝑘1

𝜆3

𝑘3
𝑥𝑧} + 𝑝1𝑞1 {𝛼12𝑥𝑅𝑅 − 𝛼12𝑥𝑧

𝜆3

𝑘3
}]            (38) 

𝑀2𝑅 = −𝐸𝑤2 [𝑝2𝑞2 {𝑅𝐿
2 + 𝑅𝐿 (

𝜆1

𝑘1
𝑥 +

𝜆3

𝑘3
𝑧) +

𝜆1

𝑘1

𝜆3

𝑘3
𝑥𝑧} + 𝑝1𝑞1 {𝛼12𝑥𝑅𝐿 − 𝛼12𝑥𝑧

𝜆3

𝑘3
}]             (39) 

𝑀2𝐿 =  𝐸𝑤1𝑝1𝑞1𝛼12𝛼23                                                                                                                                           (40) 

𝑀3𝑅 = 𝐸𝑤2𝑝1𝑞1𝛼12𝛼23                                                                                                                                            (41) 

Also, 

𝑁𝑅 = −(𝜈0𝑅𝑅
3 − 𝜈1𝑅𝑅

2 + 𝜈2𝑅𝑅 − 𝜈3) ≠ 0                                                                                        (42) 

𝑁𝐿 = −(𝜈0𝑅𝐿
3 − 𝜈1𝑅𝐿

2 + 𝜈2𝑅𝐿 − 𝜈3) ≠ 0                                                                                            (43) 

For 𝑡 → ∞ , we find that the shadow prices of three species 𝜇𝑖(𝑡)𝑒
𝑅𝐿𝑡 ∀ 𝑖 = 1,2,3.   Remain 

bounded, so they satisfy transversality condition at ∞ . Therefore for 𝐸 ∈ [0, 𝐸𝑚𝑎𝑥]  the 

Hamiltonian must be maximized. Assuming that the optimal equilibrium will not occur either at 

𝐸 = 0 or 𝐸 = 𝐸𝑚𝑎𝑥, therefore we consider singular control. 

Now, 



10 

DIPANKAR SADHUKHAN 

 
𝜕𝐻

𝜕𝐸
= 𝑤1𝑒

−𝑅𝑅𝑡(𝑝1𝑞1𝑥 + 𝑝2𝑞2𝑦 − 𝑐) + 𝑤2𝑒
−𝑅𝐿𝑡(𝑝1𝑞1𝑥 + 𝑝2𝑞2𝑦 − 𝑐) − 𝜇1𝑞1𝑥 − 𝜇2𝑞2𝑦       (44) 

i.e.,  

(𝑤1𝑒
−𝑅𝑅𝑡 + 𝑤2𝑒

−𝑅𝐿𝑡)
𝑑𝜋

𝑑𝐸
= 𝜇1𝑞1𝑥 + 𝜇2𝑞2𝑦                                                                                         (45) 

As, from (10) we have, 

𝑑𝜋

𝑑𝐸
= (𝑝1𝑞1𝑥 + 𝑝2𝑞2𝑦 − 𝑐)                                                                                                                  (46) 

Therefore, 

(𝑤1𝑒
−𝑅𝑅𝑡 + 𝑤2𝑒

−𝑅𝐿𝑡)(𝑝1𝑞1𝑥 + 𝑝2𝑞2𝑦 − 𝑐) = 𝜇1𝑞1𝑥 + 𝜇2𝑞2𝑦                                                            (47) 

Therefore, substituting the values of 𝜇1, 𝜇2, 𝜇3 we get, 

𝑀𝐿𝑒
−𝑅𝑅𝑡 + 𝑀𝑅𝑒−𝑅𝐿𝑡 = 𝑐(𝑤1𝑒

−𝑅𝑅𝑡 + 𝑤2𝑒
−𝑅𝐿𝑡)                                                                                         (48) 

Where we have,  

𝑀𝐿 = (𝑝1𝑤1 −
𝑀1𝐿

𝑁𝐿
) 𝑞1𝑥 + (𝑝2𝑤1 −

𝑀2𝐿

𝑁𝐿
) 𝑞2𝑦   

𝑀𝑅 = (𝑝1𝑤2 −
𝑀1𝑅

𝑁𝑅
) 𝑞1𝑥 + (𝑝2𝑤2 −

𝑀2𝑅

𝑁𝑅
) 𝑞2𝑦   

Now (48) can be written as, 

𝑒−𝑅𝐿𝑡(𝑀𝐿𝑒
−[𝑅𝑅−𝑅𝐿]𝑡 + 𝑀𝑅) = 𝑐𝑒−𝑅𝐿𝑡(𝑤1𝑒

−[𝑅𝑅−𝑅𝐿]𝑡 + 𝑤2)                                                                       (49) 

⇒ (𝑀𝐿𝑒
−[𝑅𝑅−𝑅𝐿]𝑡 + 𝑀𝑅) = 𝑐(𝑤1𝑒

−[𝑅𝑅−𝑅𝐿]𝑡 + 𝑤2)                                                                                     (50) 

Now when [𝑅𝑅 , 𝑅𝐿] → ∞ ⇒ 𝑅𝐿 → ∞,𝑅𝑅 → ∞ and (𝑅𝑅 − 𝑅𝐿) → ∞, which means when 𝑅 ̃ → ∞, 

then the equation (50) reduces to 

𝑀𝑅 = 𝑐𝑤2                                                                                                                                                                  (51) 

At the positive equilibrium the value of 𝐸 is given by 

𝐸 =
𝜆1

𝑞1
−

𝜆1

𝑘1

𝑥

𝑞1
−

𝛼12𝑦

𝑞1
=

𝜆2

𝑞2
−

𝜆2

𝑘2

𝑦

𝑞2
−

𝛼23𝑧

𝑞3
                                                                                                               (52) 

As, 
𝑀𝑖𝑅

𝑁𝑅
= 𝜊(𝑅𝐿

−1), 𝑖 = 1, 2, 3.  Therefore, 
𝑀𝑖𝑅

𝑁𝑅
→ 0 as 𝑅𝐿 → ∞. Therefore (48) becomes 

𝑝1𝑤2𝑞1𝑥 + 𝑝2𝑤2𝑞2𝑦 = 𝑐𝑤2 ⇒ 𝑝1𝑞1𝑥 + 𝑝2𝑞2𝑦 = 𝑐.                           (53) 

Which implies that 𝜋(𝑥∞, 𝑦∞, 𝑧∞, 𝑐) = 0.                                                                                                      (54) 

Which indicates that for three species of a food chain also an infinite inflation leads to complete 

dissipation of economic revenue. This result was also initially investigated by Clark [5] in a 

combined harvesting of two species and recently by Chaudhuri [1] and also by Kar & Chaudhuri 

[9]. 
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Now, 

𝑀𝑅 − 𝑐𝑤2 = (𝑝1𝑤1 −
𝑀1𝑅

𝑁𝑅
) 𝑞1𝑥 + (𝑝2𝑤1 −

𝑀2𝑅

𝑁𝑅
) 𝑞2𝑦 − 𝑐𝑤2 = 0   

⇒ 𝑝1𝑤2𝑞1𝑥 + 𝑝2𝑤2𝑞2𝑦 − 𝑐𝑤2 = (
𝑀1𝑅

𝑁𝑅
) 𝑞1𝑥 + (

𝑀2𝑅

𝑁𝑅
) 𝑞2𝑦  

⇒ (𝑝1𝑞1𝑥 + 𝑝2𝑞2𝑦 − 𝑐)𝐸 =
1

𝑤2
 [(

𝑀1𝑅

𝑁𝑅
) 𝑞1𝑥 + (

𝑀2𝑅

𝑁𝑅
) 𝑞2𝑦] 𝐸  

⇒ 𝜋 =
1

𝑤2
 [(

𝑀1𝑅

𝑁𝑅
) 𝑞1𝑥 + (

𝑀2𝑅

𝑁𝑅
) 𝑞2𝑦] 𝐸                                                                                                            (55) 

Similarly, also we get, 

𝜋 =
1

𝑤1
 [(

𝑀1𝐿

𝑁𝐿
) 𝑞1𝑥 + (

𝑀2𝐿

𝑁𝐿
) 𝑞2𝑦] 𝐸                                                                                                                       (56) 

Therefore from (55) and (56) we have 

𝜋 =  
1

𝑁𝑅
[𝑀1𝑅𝑞1𝑥 + 𝑀2𝑅𝑞2𝑦]𝐸 +

1

𝑁𝐿
[𝑀1𝐿𝑞1𝑥 + 𝑀2𝐿𝑞2𝑦]𝐸                                                                        (57) 

As, we have  
𝑀𝑖𝑅

𝑁𝑅
= 𝜊(𝑅𝐿

−1), 𝑖 = 1, 2, 3.  So, from (57) 𝜋 is of 𝜊(𝑅𝐿
−1) and hence 𝜋 is a decreasing 

function of 𝑅𝐿(≥ 0). Therefore, we can conclude that 𝑅𝐿 = 0 (that is the economic environment 

when inflation rate 𝑟𝐿 it and discount rate 𝑘𝑅 are equal) and which gives the maximization of 𝜋. 

 

9. NUMERICAL EXAMPLE AND SIMULATIONS 

Let us consider 𝜆1  =  6.09, 𝜆2  = 5.07, 𝜆3  = 0.6; 𝑘1  = 500, 𝑘2  = 200, 𝑘3  = 100,𝛼12 = 0.05, 

𝛼21 = 0.005, 𝛼23 = 0.03,  𝛼32 = 0.003,  𝑝1  =  50 , 𝑝2  =  40 , 𝑞1  =  0.05 , 𝑞2  =  0.001 , 𝑐 =

45,  𝐸 = 25, 𝑤1 = 0.5 and 𝑤2 = 0.5. 

Now with this set of parametric values we have 

(i)𝑃0(0,0,0) is unstable. 

(ii) 𝑃1(0,78.95,263.16) is unstable. 

(iii) 𝑃2(397.37,0,100) is unstable. 

(iv) 𝑃3(259.02, 23.93,0)is unstable. 

(v) 𝑃4(125.6, 66.92,133.1)is stable. 

The stability diagram and phase portrait corresponding to the interior equilibrium are depicted in 

figure-1 and figure-2 respectively. 
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Figure-1: Stability diagram of the system (1) with initial values 𝑥(0) = 𝑦(0) = 𝑧(0) = 25. 

 

 

 

Figure-2: Phase-Space Trajectory. 

 

10. CONCLUSION 

In this paper we formulated a food chain model of three species, prey, predator and super predator 

with logistic law of growth and selective harvesting of prey and predator species is considered. 

The existence and stability of this system under possible steady states are investigated. The 

possibility of existence of bioeconomic equilibrium and global stability has been discussed and 

optimal harvesting policy is investigated with imprecise inflation and discount using Pontryagin’s 
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Maximal principle. Finally, the model is illustrated with the help of a numerical example and 

MATLAB simulations.  
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