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Abstract. Let G be a graph with p vertices. A bijection f : V (G)→ {0.1,2, . . . , p− 1} is called a Square Sum

Difference (SSD) coloring of G if the induced function. f ∗ : E(G)→ N defined by f ∗(uv) = [ f (u)]2 +[ f (v)]2−

f (u) f (v) is injective for all edges uv ∈ E(G), A graph G is called an SSD colorable if G admits an SSD coloring.

Further, an SSD coloring is called an odd square sum difference (OSSD) coloring, if f ∗(E) contains only odd

integers. A graph G is called an OSSD colorable, if G admits an OSSD coloring.
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1. INTRODUCTION

By a graph G, we mean a finite undirected simple graph. Graph labeling is an assignment

of integers to the vertices or edges or both subject to certain conditions and a lot of different

types of labeling were investigated [2]. The concept of a Square Sum labeling was introduced

by Ajitha et. al [1] in 2009. S.G. Sonchhatra, G. V Ghodasaara [5] introduced a closely related

concept namely, Sum Perfect Square labeling. Shaima [4] introduced Square Difference graphs

and showed the existence of several square difference graphs. These ideas motivated us to
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introduce a new type of graph coloring, called square sum difference coloring (SSD coloring)

and related type of graphs, called SSD graphs.

In this paper, we initiate a study of the square sum difference graphs. We prove that several

types of graphs such as Trees, Paths, Cycles, Stars, Bi-stars, Wheel graphs,Complete graphs

for n < 4, Helm graphs, Friendship graph, Gear graphs, Crown graphs, Double Crown graphs,

Flower graphs, Ladder graphs, Coconut trees and Comb graphs are SSD graphs. We also prove

that Paths, Bi-stars, Helm graphs, Ladder graphs and Comb graphs are odd SSD graphs as well.

Terms not specified separately in this paper, we refer Harary [3].

2. MAIN RESULTS

Definition 2.1. A bijection f : V (G)→ {0,1,2, . . . p− 1} is called a Square Sum Difference

(SSD) coloring if the induced function f ∗ : E(G)→ N given by f ∗(uv) = [ f (u)]2 + [ f (v)]2−

f (u) f (v) is injective, ∀ edges uv ∈ E(G). A graph G is called an SSD graph if G admits SSD

coloring.

Definition 2.2. An SSD coloring is called an odd square sum difference (OSSD) coloring, if

f ∗(E) contains only odd integers. A graph G is called OSSD graph, if G admits OSSD coloring.

For uv∈ E(G), we can observe the following from the definition of SSD coloring: if f (u) = 0

then f ∗(uv) = v2, a perfect square. If uv∈ E(G) and f (u) = 1 then f ∗(uv = i) = i(i−1)+1; i =

2,3, . . .). If f (u) = m and f (v) = m+1 then f ∗(uv) = m(m+1)+1. If u and v are odd integers

or one of them is an odd integer; then f ∗(uv) is always an odd integer. If u and v are both even

integers, then f ∗(uv) is always even.

Theorem 2.3. Every tree is a SSD graph

Proof: Let T be a tree with v0 as the root where degree of v0 is ∆. Let {v1,v2, . . .vn} be

the vertices of the tree T. Let {v1,v2, . . . ,vk} be the vertices at a distance 1 from v0 and take

it as level-I. Let {vk+1,vk+2, . . . ,vt} be vertices at a distance 2 from v0 and take it as level-II,

k+1≤ t ≤ n−1 and so on. Define f : V (T )→{0,1,2, . . .n−1} by f (vi) = i, 0≤ i≤ n−1.

The range of f is {0,1,2, . . . ,n− 1}, which is same as the co-domain. Also, for any two

distinct vertices v1,v2 ∈V (G) and v1 6= v2 =⇒ f (v1) 6= f (v2). So f is bijection.
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Using this coloring the edge colors at level-I are 12,22,32, . . .k2 by the definition ( f (u))2 +

( f (v))2− f (u) f (v) where uv∈ E(G). The edge labels in level-II are distinct from that in level-I.

At each consecutive level the vertex labels f (vi)< f (v j) ∀ i& j where vi is at level-k and vi is

at level-k+1. So corresponding edge labels are also in the increasing order. f ∗(uv) : E(G)→ N

is injective and hence trees are SSD graphs.

Theorem 2.4. The path Pn are SSD graphs. Also Pn are OSSD graphs

Proof: Let v1,v2, . . . ,vn be the vertices of the path Pn of length n− 1. Let {vivi+1;

1≤ i≤ n−1} be the edge set. p = n and q = n−1.

Define f : V (Pn) → {0,1,2, . . . ,n− 1} by f (vi) = i− 1; 1 ≤ i ≤ n. The range of f is

{0,1,2, . . . ,n− 1}, which is same as the co-domain. Also, for any two distinct vertices

v1,v2 ∈V (G) and v1 6= v2 =⇒ f (v1) 6= f (v2). So f is a bijection.

Using the definition of edge coloring f ∗(uv) = ( f (u))2 +( f (v))2− f (u) f (v) ∀ u,v ∈ V (G).

We have f ∗(vivi+1) = i(i−1)+1; 1≤ i≤ n−1. Elements in the edge set are in the increasing

order and all the edge colors are distinct. Also, all the edge colors are odd integers. So it admits

SSD and also odd square sum difference coloring.

Theorem 2.5. Cycle Cn are SSD graph, n≥ 3, n ∈ N

Proof: Let {v1,v2, . . .vn} be the vertices of the cycle Cn. Let {vivi+1;≤ i ≤ n− 1}∪{vnv1}

be the edge set. p = n and q = n. Define f : V (Cn)→ {0,1,2, . . .n− 1} by f (vi) = i− 1 for

1≤ i≤ n. The range of f is {0,1,2, . . . ,n−1}, which is same as the co-domain. Also, for any

two distinct vertices v1,v2 ∈ V (G) and v1 6= v2 =⇒ f (v1) 6= f (v2). So f is a bijection. Using

the definition of edge coloring function defined by , f ∗(uv) = ( f (u))2 + ( f (v))2− f (u) f (v)

where u,v ∈V (G), we have f ∗(vivi+1 = (i−1)i+1 ; 1≤ i≤ n−1.

f ∗(vnv1) = (n− 1)2. Elements of edge sets are in the increasing order and all the edge colors

are distinct. So the Cn is a SSD graph.

Theorem 2.6. The stars K1n are SSD graphs.

Proof: Let v be the apex vertex and v1,v2, . . . ,vn be the penedent vertices of the star K1n.

Let {vvi;1 ≤ i ≤ n} be the edge set, p = n+ 1, q = n. Define f : V (K1n)→ {0,1,2, . . .n} as
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f (vi) = i, 1 ≤ i ≤ n and f (v) = 0. The range of f is {1,2, . . . ,n}∪{0} which is same as the

co-domain. Also, for any two distinct vertices v1,v2 ∈V (G) and v1 6= v2 =⇒ f (v1) 6= f (v2). So

f is bijection. It can be deduced that the edge colors are f ∗(vvi) = i2; 1 ≤ i≤ n. The elemests

of the edge sets are in the increaing order and are all distinct, so star K1n admits square sum

difference coloring.

Theorem 2.7. The bistars Bn n are SSD graphs. Also Bn n are OSSD graphs.

Proof: Let u and v be the apex vertices of the bistar Bnn. Let u1,u2, . . .un,v1,v2, . . .vn be the

pendent vertices. Let the edge set {uui, i ≤ i ≤ n}∪{vvi,1 ≤ i ≤ n}∪{uv}. Here p = 2n+ 2,

q = 2n+1. Define f : V (Bnn)→{0,1,2, . . .2n+1} by f (u) = 0, f (v) = 1

f (ui) = 2i+1;1≤ i≤ n, f (vi) = 2i,1≤ i≤ n.

The range of f is {0}∪{1}∪{3,5,7, . . . ,2n+ 1}∪{2,4,6, . . . ,2n}, which is same as the co-

domain {0,1,2, . . . ,2n+1}. Also, for any two distinct vertices v1,v2 ∈V (G) and v1 6= v2 =⇒

f (v1) 6= f (v2). So f is a bijection. Using the above defined vertex coloring, the edge colors

are obtained by f ∗(uv) = 1, f ∗(uui) = (2i+1)2;1 ≤ i ≤ n, f ∗(vvi) = (2i−1)2i+1; 1 ≤ i ≤ n.

All the edge colors are distinct by the definition of edge colors. So every bistar Bnn are square

sum difference graphs. Moreover all the edge colors are odd integers, it posses odd square sum

difference graphs.

Theorem 2.8. The wheel graph Wn is SSD graph for n≥ 4

Proof: Let V be the apex vertex of the wheel and v1,v2, . . .vn be the rim vertices.

Let {vvi,1≤ i≤ n} be the verte set and {vvi,1≤ i≤ n}∪{vivi+1,1≤ i≤ n} be edge set.

p = n + 1,q = 2n. Define f : V (Wn) → {0,1,2, . . .n} as f (v) = 0, f (vi) = i;1 ≤ i ≤ n−

2, f (vn−1) = n, f (vn) = n− 1 The range of f is {0}∪{1,2, . . . ,n− 2}∪{n}∪{n− 1}, which

is same as the co-domain {0,1, . . . ,n}. Also, for any two distinct vertices v1,v2 ∈ V (G) and

v1 6= v2 =⇒ f (v1) 6= f (v2). So f is a bijection. In view of above coloring pattern edge col-

ors are f ∗(vvi) = i2,1 ≤ i ≤ n , f ∗(vivi+1) = (i+ 1)i+ 1,1 ≤ i ≤ n− 3, f ∗(vn−2vn) = n2 + 4,

f ∗(vnvn−1) = n(n− 1)+ 1, f ∗(vnv1) = n2. The elements of the edge set are in the increasing

order and are all distinct. So Wn admits SSD.

Corollary 2.9. W3 is not a square sum difference graph.
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In W3 all the edges are adjacent (graph is K4). Using 0,1,2,3 as vertex colors, edges with end

vertices 1,3 and 2,4 takes the same value 7 as its edge colors. So it violates the condition of

injection.

Theorem 2.10. Complete graph Kn is square sum difference graph [SSD] for n < 4; n ∈ N

Proof: For n = 1,2, K1andK2 are special case of tree. So using theorem 2.7, K1andK2 are

SSD graphs. For n = 3 the graph K3 is same as cycle C3, as per theorem 2.9, K3 is SSD graph.

Consider n = 4, when we use 0,1,2,3 as vertex labels, edges with end vertices, 1,3 and 2,3

takes the color 7 as its edge colors. So it violates the the condition of edge injection. Hence K4

is not SSD graphs. Again K4 ⊂ K5 ⊂ K6 . . .⊂ Kn. Hence Kn is not SSD graphs ∀ n≥ 4, n ∈ N

Theorem 2.11. Helm graphs Hn are SSD graphs ∀n≥ 4. Also Hn are OSSD graphs

Proof: Let the central vertex v and v1,v2, . . .vn be the successive vertices on the cycle and the

pendent vertices be w1,w2, . . .wn in the same order. Let {v,vi,wi;1 ≤ i ≤ n} be the vertex set

and the {vvi;1≤ i≤ n} ∪ {vivi+1;1≤ i≤ n−1}∪{viwi;1≤ i≤ n}∪{vnv1} be the edge set.

p = 2n+1,q = 3n. Define f : V (Hn)→{0,1,2, . . . ,2n} by f (v) = 0, f (vi) = 2i−1;1≤ i≤ n,

f (wi) = 2i;1 ≤ i ≤ n. The range of f is {0}∪ {1,3, . . . ,2n− 1}∪ {2,4,6, . . . ,2n}, which is

same as the co-domain {0,1, . . . ,2n}. Also, for any two distinct vertices v1,v2 ∈ V (G) and

v1 6= v2 =⇒ f (v1) 6= f (v2). So f is a bijection. Using the above vertex colors, edge colors are

obtained as

f ∗(vvi) = (2i−1)2;1≤ i≤ n

f ∗(viwi) = 2i(21−1)+1;1≤ i≤ n f ∗(vivi+1) = (2i−1)(2i+1)+4;1≤ i≤ n−1

f ∗(vnv1) = 2n(2n−3)+3

All the edge colors are distinct are all odd integers. So Hn are SSD and odd SSD graphs.

Theorem 2.12. The friendship graph Fn are SSD graphs.

Proof: Let Fn be the friendshio graph with n triangles and one apex vertex v. Let vi1 and vi2 ,

1≤ i≤ n be the vertices of the base edge of the triangle. Let {v,vi1,vi2;1≤ i≤ n} be the vertex

set and {vvi1,vvi2, ;1≤ i≤}∪{vi1vi2;1≤ i≤ n} be edge set. p = 2n+1,q = 3n.

Define f : V (Fn)→{0,1,2 . . .2n} by f (v) = 0
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f (vi1) = 2i−1,1≤ i≤ n

f (vi2) = 2i,1 ≤ i ≤ n.The range of f is {0} ∪ {1,3, . . . ,2n− 1} ∪ {2,4,6, . . . ,2n}, which is

same as the co-domain {0,1, . . . ,2n}. Also, for any two distinct vertices v1,v2 ∈ V (G) and

v1 6= v2 =⇒ f (v1) 6= f (v2). So f is a bijection. Using the above vertex colors, edge colors are

f ∗(vvi1) = (2i−1)2;1≤ i≤ n

f ∗(vvi2) = (2i)2;1≤ i≤ n

f ∗(vi1vi2) = (2i−1)(2i)+1;1≤ i≤ n

It can be inferred that all the edge colors are distinct. So Fn admits square sum difference

coloring.

Theorem 2.13. Gear graphs Gn are SSD graphs.

Proof: Let v be the apex vertex and v1,v2, . . .v2n be vertices of the rim of the gear graph G.

{v,vi;1 ≤ i ≤ 2n} be vertex set and {vv2i−1;1 ≤ i ≤ n}∪{vivi+1;1 ≤ i ≤ 2n−1}∪{v2nv1} be

the edge set. p = 2n+1,q = 3n.

Define f : V (Gn)→{0,1,2 . . .2n} as follows f (v) = 0

f (vi) = i,1≤ i≤ 2n−2

f (v2n) = 2n−1

f (v2n−1) = 2n. The range of f is {0}∪{1,2, . . . ,2n−2}∪{2n−1}∪{2n}, which is same as

the co-domain {0,1, . . . ,2n}. Also, for any two distinct vertices v1,v2 ∈V (G) and v1 6= v2 =⇒

f (v1) 6= f (v2). So f is a bijection

It can be inferred from the vertex colors, the edge colors are f ∗(vv2i−1) = (2i−1)2;1≤ i≤ n−1

f ∗(vv2n−1) = (2n)2

f ∗(vivi+1) = i(i+1)+1;1≤ i≤ 2n−3

f ∗(v2n−2v2n−1 = 4n(n−1)+4

f ∗(v2n−1v2n = 2n(2n−1)+1

f ∗(v2nv1 = 2n(2n−3)+3

All the edge colors are distinct. So Gn admits SSD coloring.

Theorem 2.14. Crown graphs C+
n are SSD graphs.
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Proof: Let v1,v2, . . .vn be vertices of Cn and w1,w2, . . .wn be the pendent vertices added in

the verrtices of cycle Cn. ie; vi to wi are pendent edges i = 1,2, . . .n. Let {vi,wi;1 ≤ i ≤ n} be

vertex set and {vivi+1;1≤ i≤ n−1}∪{viwi;1≤ i≤ n}∪{vnv1} be the edge set. p= 2n,q= 2n.

Define f : V (G)→{0,1,2 . . .2n−1} as follows f (vi+1) = 2i;0≤ i≤ n−1

f (wi) = 2i−1,1≤ i≤ n. The range of f is {0,2,4, . . . ,2n−2}∪{1,3,5, . . . ,2n−1}, which is

same as the co-domain {0,1,2 . . . ,2n−1}. Also, for any two distinct vertices v1,v2 ∈V (G) and

v1 6= v2 =⇒ f (v1) 6= f (v2). So f is a bijection. Using the above vertex coloring, edge colors

are f ∗(vivi+1) = 2i(2i−2)+4; 1≤ i≤ n−1

f ∗(viwi) = (2n−2)(2i−1)+1; 1≤ i≤ n

f ∗(vnv1) = (2n−2)2

In view of the above edge colors, all the edge colors are distinct. So Cn admits SSD coloring.

Theorem 2.15. Double crown C++
n are SSD graphs.

Proof: Let v1,v2, . . .vn be vertices of cycle Cn. Let vi1,vi2, i = 1,2, . . .n be the pendent ver-

tices attaching to vi Let {vi,vi1,vi21≤ i≤ n} be vertex set and {vivi+1;1≤ i≤ n−1}∪{vnv1}∪

{vivi1,1≤ i≤ n}∪{vivi2,1≤ i≤ n} be the edge set. p = 3n,q = 3n.

Define f : V (C++
n )→{0,1,2 . . .3n−1} as follows f (vi) = 3(i−1);1≤ i≤ n

f (vi1) = 3i−2,1≤ i≤ n

f (vi2) = 3i− 1,1 ≤ i ≤ n. The range of f is {0,3,6 . . . ,3n− 3} ∪ {1,4,7, . . . ,3n− 2} ∪

{2,5,8, . . . ,3n+1}, which is same as the co-domain {0,1,2,3, . . . ,3n−1}. Also, for any two

distinct vertices v1,v2 ∈ V (G) and v1 6= v2 =⇒ f (v1) 6= f (v2). So f is a bijection Using the

above vertex coloring, edge colors are obtained as

f ∗(vivi+1) = 9[i(i−1)+1];0≤ i≤ n−1

f ∗(vivi1) = 3(i−1)(3i−2)+1≤ i≤ n

f ∗(vivi2) = 3(i−1)(3i−1)+4,1≤ i≤ n

f ∗(vnv1) = 3(n−1)2

In view of the above edge colors, all the edge colors are distinct. So C++
n admits SSD coloring.

Theorem 2.16. Flower graphs Fln are SSD graphs.
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Proof: Let the central vertex be v. Let v1,v2, . . .vn be the successive vertices of cycle. Let

w1,wi2, . . .wn be the pendent vertices in the same order. Let {v,vi,wi, ;1≤ i≤ n} be vertex set

and {vvi;1≤ i≤ n}∪{viv1+1;1≤ i≤ n−1}∪ {viwi,1≤ i≤ n}∪{vnv1}∪{vwi,1≤ i≤ n} be

the edge set. p = 2n+1,q = 4n.

Define f : V (Fln)→{0,1,2 . . .2n} as follows

f (v) = 0)

f (vi) = 2i−1;1≤ i≤ n

f (wi) = 2i;1 ≤ i ≤ n. The range of f is {0}∪{1,3,5, . . . ,2n− 1}∪{2,4,6, . . . ,2n}, which is

same as the co-domain {0,1,2, . . . ,2n}. Also, for any two distinct vertices v1,v2 ∈ V (G) and

v1 6= v2 =⇒ f (v1) 6= f (v2). So f is a bijection. Using the above vertex coloring, edge colors

are

f ∗(vvi) = 2i−12;1≤ i≤ n

f ∗(vwi) = (2i)2;1≤ i≤ n

f ∗(viw1) = (2i−1)2i+1;1≤ i≤ n

f ∗(vivi+1) = (4i)2 +3;1≤ i≤ n−1

f ∗(vnv1) = 2n(2n−3)+3

In view of the above edge colors, all the edge colors are distinct. So Fln admits SSD coloring.

Theorem 2.17. Ladder graphs Ln are SSD graphs. Also ladder graphs admits OSSD graphs.

Proof: Let v1,v2, . . .vn are the vertices of one side of the ladder graph Ln and w1,w2, . . .wn

are the vertices of the ladder graph. Let {vi,wi, ;1 ≤ i ≤ n} be vertex set and {vivi+1;1 ≤ i ≤

n−1}∪{wiw1+1;1≤ i≤ n−1}∪ {viwi,1≤ i≤ n} be the edge set. p = 2n,q = 3n−2.

Define f : V (Ln)→{0,1,2 . . .2n−1} as follows

f (v2i−1) = 4i−4;1≤ i≤ b(n+1
2 )c

f (v2i) = 4i−1;1≤ i≤ d(n−1
2 )e

f (w2i−1) = 4i−3;1≤ i≤ b(n+1
2 )c

f (w2i) = 4i−2;1≤ i≤ d(n−1
2 )e

The range of f is {0,4,8, . . . ,2n − 4} ∪ {3,7,11, . . . ,2n − 1} ∪ {1,5,9, . . . ,2n − 3} ∪

{2,6, . . . ,2n−2}, which is same as the co-domain {0,1,2, . . . ,2n−1}. Also, for any two dis-

tinct vertices v1,v2 ∈V (G) and v1 6= v2 =⇒ f (v1) 6= f (v2). So f is a bijection Using the above
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vertex coloring, edge colors are obtained as follows f ∗(viwi) = (2i−1)(2i−2)+1;1≤ i≤ n

f ∗(v2i−1v2i) = 4i(4i−5)+13;1≤ i≤ bn
2c

f ∗(v2iv2i+1) = 4i(4i−1)+1;1≤ i≤ bn
2c

f ∗(w2i−1w2i) = 4i(4i−5)+7;1≤ i≤ bn
2c

f ∗(v2iv2i+1) = 4i(4i−1)+7;1≤ i≤ bn
2c

In view of the above edge coloring pattern, all the edge colors are distinct. So Ln admits SSD

coloring. All the edge colors are odd integers. So it admits odd SSD coloring.

Theorem 2.18. The coconut trees are SSD graphs.

Proof: Let v1,v2, . . .vk be the vertices of path having length k−1 and vk+1,vk+2, . . .vn be the

pendent vertices being adajcent with v1. Let G be the resulting graph. Let {v1,vi;2≤ i≤ n} be

vertex set and {vivi+1;1≤ i≤ k−1}∪{v1vk+i;1≤ i≤ n−k} be the edge set. p = n,q = n−1.

Define f : V (G)→{0,1,2 . . .n−1} as follows f (v1) = 0)

f (v j) = j−1;1≤ j ≤ k−1

f (vk+i) = (k+ i−1);1≤ i≤ n− k

The range of f is {0,1,2, . . . ,k− 1} ∪ {k,k + 1, . . . ,n− 1}, which is same as the co-domain

{0,1,2, . . . ,n−1}. Also, for any two distinct vertices v1,v2 ∈V (G) and v1 6= v2 =⇒ f (v1) 6=

f (v2). So f is a bijection In view of the vertex colors, edge colors are obtained as

f ∗(vivi+1) = i(i−1)+1;1≤ i≤ k−1

f ∗(v1vi+1) = (i)2;k ≤ i≤ n−1

According to this edge coloring, all the edge colors are distinct. So coconut trees are square

sum difference graphs.

Theorem 2.19. The comb graph Pn
⊙

K1 admits square sum difference coloring. Comb graph

admits odd sum difference coloring.

Proof: Let v1,v2, . . .vn be the path Pn of length n−1, u1,u2, . . .un be the pendent vertices in

the same order. Let G be the resulting graph. Let {vi,ui;1≤ i≤ n} be vertex set and {vivi+1;1≤

i≤ n−1}∪{viui;1≤ i≤ n} be the edge set. p = 2n,q = 2n−1.

Define f : V (G)→{0,1,2 . . .2n−1} as follows f (vi) = i−1;1≤ i≤ n

f (ui) = n+ i−1;1≤ i≤ n
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The range of f is {0,1,2, . . . ,n− 1}∪ {n,n+ 1, . . . ,2n− 1}, which is same as the co-domain

{0,1,2, . . . ,2n−1}. Also, for any two distinct vertices v1,v2 ∈V (G) and v1 6= v2 =⇒ f (v1) 6=

f (v2). So f is a bijection Using this vertex coloring, edge colors are obtained as

f ∗(vivi+1) = i(i−1)+1;1≤ i≤ n−1

f ∗(viui) = (i−1)2 +n(n−1)+ni;1≤ i≤ n

It admits all the conditions of square sum difference graphs. All the edge colors are odd; so it

admits OSSD coloring.
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