ON SQUARE SUM DIFFERENCE COLORING OF GRAPHS

PREETHI K. PILLAI*, J. SURESH KUMAR

PG and Research Department of Mathematics, N.S.S. Hindu College, Changanacherry, Kerala, India 686102

Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. Let G be a graph with p vertices. A bijection $f: V(G) \rightarrow\{0.1,2, \ldots, p-1\}$ is called a Square Sum Difference (SSD) coloring of G if the induced function. $f^{*}: E(G) \rightarrow \mathbb{N}$ defined by $f^{*}(u v)=[f(u)]^{2}+[f(v)]^{2}-$ $f(u) f(v)$ is injective for all edges $u v \in E(G)$, A graph G is called an SSD colorable if G admits an SSD coloring. Further, an SSD coloring is called an odd square sum difference (OSSD) coloring, if $f^{*}(E)$ contains only odd integers. A graph G is called an OSSD colorable, if G admits an OSSD coloring.

Keywords: graph labeling; square sum difference coloring; SSD colorable graphs; odd square sum difference coloring; OSSD colorable graphs.

2010 AMS Subject Classification: 05C20.

1. Introduction

By a graph G, we mean a finite undirected simple graph. Graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions and a lot of different types of labeling were investigated [2]. The concept of a Square Sum labeling was introduced by Ajitha et. al [1] in 2009. S.G. Sonchhatra, G. V Ghodasaara [5] introduced a closely related concept namely, Sum Perfect Square labeling. Shaima [4] introduced Square Difference graphs and showed the existence of several square difference graphs. These ideas motivated us to

[^0]introduce a new type of graph coloring, called square sum difference coloring (SSD coloring) and related type of graphs, called SSD graphs.

In this paper, we initiate a study of the square sum difference graphs. We prove that several types of graphs such as Trees, Paths, Cycles, Stars, Bi-stars, Wheel graphs,Complete graphs for $n<4$, Helm graphs, Friendship graph, Gear graphs, Crown graphs, Double Crown graphs, Flower graphs, Ladder graphs, Coconut trees and Comb graphs are SSD graphs. We also prove that Paths, Bi-stars, Helm graphs, Ladder graphs and Comb graphs are odd SSD graphs as well. Terms not specified separately in this paper, we refer Harary [3].

2. Main Results

Definition 2.1. A bijection $f: V(G) \rightarrow\{0,1,2, \ldots p-1\}$ is called a Square Sum Difference (SSD) coloring if the induced function $f^{*}: E(G) \rightarrow \mathbb{N}$ given by $f^{*}(u v)=[f(u)]^{2}+[f(v)]^{2}-$ $f(u) f(v)$ is injective, \forall edges $u v \in E(G)$. A graph G is called an $S S D$ graph if G admits SSD coloring.

Definition 2.2. An SSD coloring is called an odd square sum difference (OSSD) coloring, if $f^{*}(E)$ contains only odd integers. A graph G is called OSSD graph, if G admits OSSD coloring.

For $u v \in E(G)$, we can observe the following from the definition of SSD coloring: if $f(u)=0$ then $f^{*}(u v)=v^{2}$, a perfect square. If $u v \in E(G)$ and $f(u)=1$ then $f^{*}(u v=i)=i(i-1)+1 ; i=$ $2,3, \ldots)$. If $f(u)=m$ and $f(v)=m+1$ then $f^{*}(u v)=m(m+1)+1$. If u and v are odd integers or one of them is an odd integer; then $f^{*}(u v)$ is always an odd integer. If u and v are both even integers, then $f^{*}(u v)$ is always even.

Theorem 2.3. Every tree is a SSD graph

Proof: Let T be a tree with v_{0} as the root where degree of v_{0} is Δ. Let $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ be the vertices of the tree T. Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be the vertices at a distance 1 from v_{0} and take it as level-I. Let $\left\{v_{k+1}, v_{k+2}, \ldots, v_{t}\right\}$ be vertices at a distance 2 from v_{0} and take it as level-II, $k+1 \leq t \leq n-1$ and so on. Define $f: V(T) \rightarrow\{0,1,2, \ldots n-1\}$ by $f\left(v_{i}\right)=i, 0 \leq i \leq n-1$.

The range of f is $\{0,1,2, \ldots, n-1\}$, which is same as the co-domain. Also, for any two distinct vertices $v_{1}, v_{2} \in V(G)$ and $v_{1} \neq v_{2} \Longrightarrow f\left(v_{1}\right) \neq f\left(v_{2}\right)$. So f is bijection.

Using this coloring the edge colors at level-I are $1^{2}, 2^{2}, 3^{2}, \ldots k^{2}$ by the definition $(f(u))^{2}+$ $(f(v))^{2}-f(u) f(v)$ where $u v \in E(G)$. The edge labels in level-II are distinct from that in level-I. At each consecutive level the vertex labels $f\left(v_{i}\right)<f\left(v_{j}\right) \forall i \& j$ where v_{i} is at level-k and v_{i} is at level-k+1. So corresponding edge labels are also in the increasing order. $f^{*}(u v): E(G) \rightarrow \mathbb{N}$ is injective and hence trees are SSD graphs.

Theorem 2.4. The path P_{n} are SSD graphs. Also P_{n} are OSSD graphs

Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n} of length $n-1$. Let $\left\{v_{i} v_{i+1}\right.$; $1 \leq i \leq n-1\}$ be the edge set. $p=n$ and $q=n-1$.

Define $f: V\left(P_{n}\right) \rightarrow\{0,1,2, \ldots, n-1\}$ by $f\left(v_{i}\right)=i-1 ; 1 \leq i \leq n$. The range of f is $\{0,1,2, \ldots, n-1\}$, which is same as the co-domain. Also, for any two distinct vertices $v_{1}, v_{2} \in V(G)$ and $v_{1} \neq v_{2} \Longrightarrow f\left(v_{1}\right) \neq f\left(v_{2}\right)$. So f is a bijection.
Using the definition of edge coloring $f^{*}(u v)=(f(u))^{2}+(f(v))^{2}-f(u) f(v) \forall \quad u, v \in V(G)$. We have $f^{*}\left(v_{i} v_{i+1}\right)=i(i-1)+1 ; 1 \leq i \leq n-1$. Elements in the edge set are in the increasing order and all the edge colors are distinct. Also, all the edge colors are odd integers. So it admits SSD and also odd square sum difference coloring.

Theorem 2.5. Cycle C_{n} are SSD graph, $n \geq 3, n \in \mathbb{N}$
Proof: Let $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ be the vertices of the cycle C_{n}. Let $\left\{v_{i} v_{i+1} ; \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\}$ be the edge set. $p=n$ and $q=n$. Define $f: V\left(C_{n}\right) \rightarrow\{0,1,2, \ldots n-1\}$ by $f\left(v_{i}\right)=i-1$ for $1 \leq i \leq n$. The range of f is $\{0,1,2, \ldots, n-1\}$, which is same as the co-domain. Also, for any two distinct vertices $v_{1}, v_{2} \in V(G)$ and $v_{1} \neq v_{2} \Longrightarrow f\left(v_{1}\right) \neq f\left(v_{2}\right)$. So f is a bijection. Using the definition of edge coloring function defined by, $f^{*}(u v)=(f(u))^{2}+(f(v))^{2}-f(u) f(v)$ where $u, v \in V(G)$, we have $f^{*}\left(v_{i} v_{i+1}=(i-1) i+1 ; 1 \leq i \leq n-1\right.$. $f^{*}\left(v_{n} v_{1}\right)=(n-1)^{2}$. Elements of edge sets are in the increasing order and all the edge colors are distinct. So the C_{n} is a SSD graph.

Theorem 2.6. The stars $K_{1 n}$ are SSD graphs.

Proof: Let v be the apex vertex and $v_{1}, v_{2}, \ldots, v_{n}$ be the penedent vertices of the star $K_{1 n}$. Let $\left\{v v_{i} ; 1 \leq i \leq n\right\}$ be the edge set, $p=n+1, q=n$. Define $f: V\left(K_{1 n}\right) \rightarrow\{0,1,2, \ldots n\}$ as
$f\left(v_{i}\right)=i, 1 \leq i \leq n$ and $f(v)=0$. The range of f is $\{1,2, \ldots, n\} \cup\{0\}$ which is same as the co-domain. Also, for any two distinct vertices $v_{1}, v_{2} \in V(G)$ and $v_{1} \neq v_{2} \Longrightarrow f\left(v_{1}\right) \neq f\left(v_{2}\right)$. So f is bijection. It can be deduced that the edge colors are $f^{*}\left(v v_{i}\right)=i^{2} ; 1 \leq i \leq n$. The elemests of the edge sets are in the increaing order and are all distinct, so star $K_{1 n}$ admits square sum difference coloring.

Theorem 2.7. The bistars $B_{n}{ }_{n}$ are SSD graphs. Also $B_{n} n$ are OSSD graphs.

Proof: Let u and v be the apex vertices of the bistar $B_{n n}$. Let $u_{1}, u_{2}, \ldots u_{n}, v_{1}, v_{2}, \ldots v_{n}$ be the pendent vertices. Let the edge set $\left\{u u_{i}, i \leq i \leq n\right\} \cup\left\{v v_{i}, 1 \leq i \leq n\right\} \cup\{u v\}$. Here $p=2 n+2$, $q=2 n+1$. Define $f: V\left(B_{n n}\right) \rightarrow\{0,1,2, \ldots 2 n+1\}$ by $f(u)=0, f(v)=1$
$f\left(u_{i}\right)=2 i+1 ; 1 \leq i \leq n, f\left(v_{i}\right)=2 i, 1 \leq i \leq n$.
The range of f is $\{0\} \cup\{1\} \cup\{3,5,7, \ldots, 2 n+1\} \cup\{2,4,6, \ldots, 2 n\}$, which is same as the codomain $\{0,1,2, \ldots, 2 n+1\}$. Also, for any two distinct vertices $v_{1}, v_{2} \in V(G)$ and $v_{1} \neq v_{2} \Longrightarrow$ $f\left(v_{1}\right) \neq f\left(v_{2}\right)$. So f is a bijection. Using the above defined vertex coloring, the edge colors are obtained by $f^{*}(u v)=1, f^{*}\left(u u_{i}\right)=(2 i+1)^{2} ; 1 \leq i \leq n, f^{*}\left(v v_{i}\right)=(2 i-1) 2 i+1 ; 1 \leq i \leq n$. All the edge colors are distinct by the definition of edge colors. So every bistar $B_{n n}$ are square sum difference graphs. Moreover all the edge colors are odd integers, it posses odd square sum difference graphs.

Theorem 2.8. The wheel graph W_{n} is $S S D$ graph for $n \geq 4$
Proof: Let V be the apex vertex of the wheel and $v_{1}, v_{2}, \ldots v_{n}$ be the rim vertices.
Let $\left\{v v_{i}, 1 \leq i \leq n\right\}$ be the verte set and $\left\{v v_{i}, 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1}, 1 \leq i \leq n\right\}$ be edge set.
$p=n+1, q=2 n$. Define $f: V\left(W_{n}\right) \rightarrow\{0,1,2, \ldots n\}$ as $f(v)=0, f\left(v_{i}\right)=i ; 1 \leq i \leq n-$ $2, f\left(v_{n-1}\right)=n, f\left(v_{n}\right)=n-1$ The range of f is $\{0\} \cup\{1,2, \ldots, n-2\} \cup\{n\} \cup\{n-1\}$, which is same as the co-domain $\{0,1, \ldots, n\}$. Also, for any two distinct vertices $v_{1}, v_{2} \in V(G)$ and $v_{1} \neq v_{2} \Longrightarrow f\left(v_{1}\right) \neq f\left(v_{2}\right)$. So f is a bijection. In view of above coloring pattern edge colors are $f^{*}\left(v v_{i}\right)=i^{2}, 1 \leq i \leq n, f^{*}\left(v_{i} v_{i+1}\right)=(i+1) i+1,1 \leq i \leq n-3, f^{*}\left(v_{n-2} v_{n}\right)=n^{2}+4$, $f^{*}\left(v_{n} v_{n-1}\right)=n(n-1)+1, f^{*}\left(v_{n} v_{1}\right)=n^{2}$. The elements of the edge set are in the increasing order and are all distinct. So W_{n} admits SSD.

Corollary 2.9. W_{3} is not a square sum difference graph.

In W_{3} all the edges are adjacent (graph is K_{4}). Using $0,1,2,3$ as vertex colors, edges with end vertices 1,3 and 2,4 takes the same value 7 as its edge colors. So it violates the condition of injection.

Theorem 2.10. Complete graph K_{n} is square sum difference graph [SSD] for $n<4 ; n \in \mathbb{N}$

Proof: For $n=1,2, K_{1}$ and K_{2} are special case of tree. So using theorem 2.7, K_{1} and K_{2} are SSD graphs. For $n=3$ the graph K_{3} is same as cycle C_{3}, as per theorem 2.9, K_{3} is SSD graph. Consider $n=4$, when we use $0,1,2,3$ as vertex labels, edges with end vertices, 1,3 and 2,3 takes the color 7 as its edge colors. So it violates the the condition of edge injection. Hence K_{4} is not SSD graphs. Again $K_{4} \subset K_{5} \subset K_{6} \ldots \subset K_{n}$. Hence K_{n} is not SSD graphs $\forall n \geq 4, n \in \mathbb{N}$

Theorem 2.11. Helm graphs H_{n} are SSD graphs $\forall n \geq 4$. Also H_{n} are OSSD graphs

Proof: Let the central vertex v and $v_{1}, v_{2}, \ldots v_{n}$ be the successive vertices on the cycle and the pendent vertices be $w_{1}, w_{2}, \ldots w_{n}$ in the same order. Let $\left\{v, v_{i}, w_{i} ; 1 \leq i \leq n\right\}$ be the vertex set and the $\left\{v v_{i} ; 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{v_{i} w_{i} ; 1 \leq i \leq n\right\} \cup\left\{v_{n} v_{1}\right\}$ be the edge set. $p=2 n+1, q=3 n$. Define $f: V\left(H_{n}\right) \rightarrow\{0,1,2, \ldots, 2 n\}$ by $f(v)=0, f\left(v_{i}\right)=2 i-1 ; 1 \leq i \leq n$, $f\left(w_{i}\right)=2 i ; 1 \leq i \leq n$. The range of f is $\{0\} \cup\{1,3, \ldots, 2 n-1\} \cup\{2,4,6, \ldots, 2 n\}$, which is same as the co-domain $\{0,1, \ldots, 2 n\}$. Also, for any two distinct vertices $v_{1}, v_{2} \in V(G)$ and $v_{1} \neq v_{2} \Longrightarrow f\left(v_{1}\right) \neq f\left(v_{2}\right)$. So f is a bijection. Using the above vertex colors, edge colors are obtained as
$f^{*}\left(v v_{i}\right)=(2 i-1)^{2} ; 1 \leq i \leq n$
$f^{*}\left(v_{i} w_{i}\right)=2 i(21-1)+1 ; 1 \leq i \leq n f^{*}\left(v_{i} v_{i+1}\right)=(2 i-1)(2 i+1)+4 ; 1 \leq i \leq n-1$ $f^{*}\left(v_{n} v_{1}\right)=2 n(2 n-3)+3$
All the edge colors are distinct are all odd integers. So H_{n} are SSD and odd SSD graphs.

Theorem 2.12. The friendship graph F_{n} are $S S D$ graphs.

Proof: Let F_{n} be the friendshio graph with n triangles and one apex vertex v. Let $v_{i 1}$ and $v_{i 2}$, $1 \leq i \leq n$ be the vertices of the base edge of the triangle. Let $\left\{v, v_{i 1}, v_{i 2} ; 1 \leq i \leq n\right\}$ be the vertex set and $\left\{v v_{i 1}, v v_{i 2}, ; 1 \leq i \leq\right\} \cup\left\{v_{i 1} v_{i 2} ; 1 \leq i \leq n\right\}$ be edge set. $p=2 n+1, q=3 n$.
Define $f: V\left(F_{n}\right) \rightarrow\{0,1,2 \ldots 2 n\}$ by $f(v)=0$
$f\left(v_{i 1}\right)=2 i-1,1 \leq i \leq n$
$f\left(v_{i 2}\right)=2 i, 1 \leq i \leq n$. The range of f is $\{0\} \cup\{1,3, \ldots, 2 n-1\} \cup\{2,4,6, \ldots, 2 n\}$, which is same as the co-domain $\{0,1, \ldots, 2 n\}$. Also, for any two distinct vertices $v_{1}, v_{2} \in V(G)$ and $v_{1} \neq v_{2} \Longrightarrow f\left(v_{1}\right) \neq f\left(v_{2}\right)$. So f is a bijection. Using the above vertex colors, edge colors are $f^{*}\left(v v_{i 1}\right)=(2 i-1)^{2} ; 1 \leq i \leq n$
$f^{*}\left(v v_{i 2}\right)=(2 i)^{2} ; 1 \leq i \leq n$
$f^{*}\left(v_{i 1} v_{i 2}\right)=(2 i-1)(2 i)+1 ; 1 \leq i \leq n$
It can be inferred that all the edge colors are distinct. So F_{n} admits square sum difference coloring.

Theorem 2.13. Gear graphs G_{n} are SSD graphs.

Proof: Let v be the apex vertex and $v_{1}, v_{2}, \ldots v_{2 n}$ be vertices of the rim of the gear graph G. $\left\{v, v_{i} ; 1 \leq i \leq 2 n\right\}$ be vertex set and $\left\{v v_{2 i-1} ; 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1} ; 1 \leq i \leq 2 n-1\right\} \cup\left\{v_{2 n} v_{1}\right\}$ be the edge set. $p=2 n+1, q=3 n$.

Define $f: V\left(G_{n}\right) \rightarrow\{0,1,2 \ldots 2 n\}$ as follows $f(v)=0$
$f\left(v_{i}\right)=i, 1 \leq i \leq 2 n-2$
$f\left(v_{2 n}\right)=2 n-1$
$f\left(v_{2 n-1}\right)=2 n$. The range of f is $\{0\} \cup\{1,2, \ldots, 2 n-2\} \cup\{2 n-1\} \cup\{2 n\}$, which is same as the co-domain $\{0,1, \ldots, 2 n\}$. Also, for any two distinct vertices $v_{1}, v_{2} \in V(G)$ and $v_{1} \neq v_{2} \Longrightarrow$ $f\left(v_{1}\right) \neq f\left(v_{2}\right)$. So f is a bijection
It can be inferred from the vertex colors, the edge colors are $f^{*}\left(\nu v_{2 i-1}\right)=(2 i-1)^{2} ; 1 \leq i \leq n-1$ $f^{*}\left(v v_{2 n-1}\right)=(2 n)^{2}$
$f^{*}\left(v_{i} v_{i+1}\right)=i(i+1)+1 ; 1 \leq i \leq 2 n-3$
$f^{*}\left(v_{2 n-2} v_{2 n-1}=4 n(n-1)+4\right.$
$f^{*}\left(v_{2 n-1} v_{2 n}=2 n(2 n-1)+1\right.$
$f^{*}\left(v_{2 n} v_{1}=2 n(2 n-3)+3\right.$
All the edge colors are distinct. So G_{n} admits SSD coloring.

Theorem 2.14. Crown graphs C_{n}^{+}are SSD graphs.

Proof: Let $v_{1}, v_{2}, \ldots v_{n}$ be vertices of C_{n} and $w_{1}, w_{2}, \ldots w_{n}$ be the pendent vertices added in the verrtices of cycle C_{n}. ie; v_{i} to w_{i} are pendent edges $i=1,2, \ldots n$. Let $\left\{v_{i}, w_{i} ; 1 \leq i \leq n\right\}$ be vertex set and $\left\{v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{v_{i} w_{i} ; 1 \leq i \leq n\right\} \cup\left\{v_{n} v_{1}\right\}$ be the edge set. $p=2 n, q=2 n$. Define $f: V(G) \rightarrow\{0,1,2 \ldots 2 n-1\}$ as follows $f\left(v_{i+1}\right)=2 i ; 0 \leq i \leq n-1$
$f\left(w_{i}\right)=2 i-1,1 \leq i \leq n$. The range of f is $\{0,2,4, \ldots, 2 n-2\} \cup\{1,3,5, \ldots, 2 n-1\}$, which is same as the co-domain $\{0,1,2 \ldots, 2 n-1\}$. Also, for any two distinct vertices $v_{1}, v_{2} \in V(G)$ and $v_{1} \neq v_{2} \Longrightarrow f\left(v_{1}\right) \neq f\left(v_{2}\right)$. So f is a bijection. Using the above vertex coloring, edge colors are $f^{*}\left(v_{i} v_{i+1}\right)=2 i(2 i-2)+4 ; 1 \leq i \leq n-1$
$f^{*}\left(v_{i} w_{i}\right)=(2 n-2)(2 i-1)+1 ; 1 \leq i \leq n$
$f^{*}\left(v_{n} v_{1}\right)=(2 n-2)^{2}$
In view of the above edge colors, all the edge colors are distinct. So C_{n} admits SSD coloring.

Theorem 2.15. Double crown C_{n}^{++}are $S S D$ graphs.

Proof: Let $v_{1}, v_{2}, \ldots v_{n}$ be vertices of cycle C_{n}. Let $v_{i 1}, v_{i 2}, i=1,2, \ldots n$ be the pendent vertices attaching to v_{i} Let $\left\{v_{i}, v_{i 1}, v_{i 2} 1 \leq i \leq n\right\}$ be vertex set and $\left\{v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\} \cup$ $\left\{v_{i} v_{i 1}, 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i 2}, 1 \leq i \leq n\right\}$ be the edge set. $p=3 n, q=3 n$.

Define $f: V\left(C_{n}^{++}\right) \rightarrow\{0,1,2 \ldots 3 n-1\}$ as follows $f\left(v_{i}\right)=3(i-1) ; 1 \leq i \leq n$
$f\left(v_{i 1}\right)=3 i-2,1 \leq i \leq n$
$f\left(v_{i 2}\right)=3 i-1,1 \leq i \leq n . \quad$ The range of f is $\{0,3,6 \ldots, 3 n-3\} \cup\{1,4,7, \ldots, 3 n-2\} \cup$ $\{2,5,8, \ldots, 3 n+1\}$, which is same as the co-domain $\{0,1,2,3, \ldots, 3 n-1\}$. Also, for any two distinct vertices $v_{1}, v_{2} \in V(G)$ and $v_{1} \neq v_{2} \Longrightarrow f\left(v_{1}\right) \neq f\left(v_{2}\right)$. So f is a bijection Using the above vertex coloring, edge colors are obtained as

$$
\begin{aligned}
& f^{*}\left(v_{i} v_{i+1}\right)=9[i(i-1)+1] ; 0 \leq i \leq n-1 \\
& f^{*}\left(v_{i} v_{i 1}\right)=3(i-1)(3 i-2)+1 \leq i \leq n \\
& f^{*}\left(v_{i} v_{i 2}\right)=3(i-1)(3 i-1)+4,1 \leq i \leq n \\
& f^{*}\left(v_{n} v_{1}\right)=3(n-1)^{2}
\end{aligned}
$$

In view of the above edge colors, all the edge colors are distinct. So C_{n}^{++}admits SSD coloring.

Theorem 2.16. Flower graphs $F l_{n}$ are $S S D$ graphs.

Proof: Let the central vertex be v. Let $v_{1}, v_{2}, \ldots v_{n}$ be the successive vertices of cycle. Let $w_{1}, w_{i 2}, \ldots w_{n}$ be the pendent vertices in the same order. Let $\left\{v, v_{i}, w_{i}, ; 1 \leq i \leq n\right\}$ be vertex set and $\left\{v v_{i} ; 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{1+1} ; 1 \leq i \leq n-1\right\} \cup\left\{v_{i} w_{i}, 1 \leq i \leq n\right\} \cup\left\{v_{n} v_{1}\right\} \cup\left\{v w_{i}, 1 \leq i \leq n\right\}$ be the edge set. $p=2 n+1, q=4 n$.

Define $f: V\left(F l_{n}\right) \rightarrow\{0,1,2 \ldots 2 n\}$ as follows

$$
f(v)=0)
$$

$f\left(v_{i}\right)=2 i-1 ; 1 \leq i \leq n$
$f\left(w_{i}\right)=2 i ; 1 \leq i \leq n$. The range of f is $\{0\} \cup\{1,3,5, \ldots, 2 n-1\} \cup\{2,4,6, \ldots, 2 n\}$, which is same as the co-domain $\{0,1,2, \ldots, 2 n\}$. Also, for any two distinct vertices $v_{1}, v_{2} \in V(G)$ and $v_{1} \neq v_{2} \Longrightarrow f\left(v_{1}\right) \neq f\left(v_{2}\right)$. So f is a bijection. Using the above vertex coloring, edge colors are
$f^{*}\left(v v_{i}\right)=2 i-1^{2} ; 1 \leq i \leq n$
$f^{*}\left(\nu w_{i}\right)=(2 i)^{2} ; 1 \leq i \leq n$
$f^{*}\left(v_{i} w_{1}\right)=(2 i-1) 2 i+1 ; 1 \leq i \leq n$
$f^{*}\left(v_{i} v_{i+1}\right)=(4 i)^{2}+3 ; 1 \leq i \leq n-1$
$f^{*}\left(v_{n} v_{1}\right)=2 n(2 n-3)+3$
In view of the above edge colors, all the edge colors are distinct. So $F l_{n}$ admits SSD coloring.
Theorem 2.17. Ladder graphs L_{n} are SSD graphs. Also ladder graphs admits OSSD graphs.
Proof: Let $v_{1}, v_{2}, \ldots v_{n}$ are the vertices of one side of the ladder graph L_{n} and $w_{1}, w_{2}, \ldots w_{n}$ are the vertices of the ladder graph. Let $\left\{v_{i}, w_{i}, ; 1 \leq i \leq n\right\}$ be vertex set and $\left\{v_{i} v_{i+1} ; 1 \leq i \leq\right.$ $n-1\} \cup\left\{w_{i} w_{1+1} ; 1 \leq i \leq n-1\right\} \cup\left\{v_{i} w_{i}, 1 \leq i \leq n\right\}$ be the edge set. $p=2 n, q=3 n-2$.
Define $f: V\left(L_{n}\right) \rightarrow\{0,1,2 \ldots 2 n-1\}$ as follows

$$
\begin{aligned}
& f\left(v_{2 i-1}\right)=4 i-4 ; 1 \leq i \leq\left\lfloor\left(\frac{n+1}{2}\right)\right\rfloor \\
& f\left(v_{2 i}\right)=4 i-1 ; 1 \leq i \leq\left\lceil\left(\frac{n-1}{2}\right)\right\rceil \\
& f\left(w_{2 i-1}\right)=4 i-3 ; 1 \leq i \leq\left\lfloor\left(\frac{n+1}{2}\right)\right\rfloor \\
& f\left(w_{2 i}\right)=4 i-2 ; 1 \leq i \leq\left\lceil\left(\frac{n-1}{2}\right)\right\rceil
\end{aligned}
$$

The range of f is $\{0,4,8, \ldots, 2 n-4\} \cup\{3,7,11, \ldots, 2 n-1\} \cup\{1,5,9, \ldots, 2 n-3\} \cup$ $\{2,6, \ldots, 2 n-2\}$, which is same as the co-domain $\{0,1,2, \ldots, 2 n-1\}$. Also, for any two distinct vertices $v_{1}, v_{2} \in V(G)$ and $v_{1} \neq v_{2} \Longrightarrow f\left(v_{1}\right) \neq f\left(v_{2}\right)$. So f is a bijection Using the above
vertex coloring, edge colors are obtained as follows $f^{*}\left(v_{i} w_{i}\right)=(2 i-1)(2 i-2)+1 ; 1 \leq i \leq n$
$f^{*}\left(v_{2 i-1} v_{2 i}\right)=4 i(4 i-5)+13 ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$
$f^{*}\left(v_{2 i} v_{2 i+1}\right)=4 i(4 i-1)+1 ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$
$f^{*}\left(w_{2 i-1} w_{2 i}\right)=4 i(4 i-5)+7 ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$
$f^{*}\left(v_{2 i} v_{2 i+1}\right)=4 i(4 i-1)+7 ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$
In view of the above edge coloring pattern, all the edge colors are distinct. So L_{n} admits SSD coloring. All the edge colors are odd integers. So it admits odd SSD coloring.

Theorem 2.18. The coconut trees are SSD graphs.

Proof: Let $v_{1}, v_{2}, \ldots v_{k}$ be the vertices of path having length $k-1$ and $v_{k+1}, v_{k+2}, \ldots v_{n}$ be the pendent vertices being adajcent with v_{1}. Let G be the resulting graph. Let $\left\{v_{1}, v_{i} ; 2 \leq i \leq n\right\}$ be vertex set and $\left\{v_{i} v_{i+1} ; 1 \leq i \leq k-1\right\} \cup\left\{v_{1} v_{k+i} ; 1 \leq i \leq n-k\right\}$ be the edge set. $p=n, q=n-1$. Define $f: V(G) \rightarrow\{0,1,2 \ldots n-1\}$ as follows $\left.f\left(v_{1}\right)=0\right)$
$f\left(v_{j}\right)=j-1 ; 1 \leq j \leq k-1$
$f\left(v_{k+i}\right)=(k+i-1) ; 1 \leq i \leq n-k$
The range of f is $\{0,1,2, \ldots, k-1\} \cup\{k, k+1, \ldots, n-1\}$, which is same as the co-domain $\{0,1,2, \ldots, n-1\}$. Also, for any two distinct vertices $v_{1}, v_{2} \in V(G)$ and $v_{1} \neq v_{2} \Longrightarrow f\left(v_{1}\right) \neq$ $f\left(v_{2}\right)$. So f is a bijection In view of the vertex colors, edge colors are obtained as
$f^{*}\left(v_{i} v_{i+1}\right)=i(i-1)+1 ; 1 \leq i \leq k-1$
$f^{*}\left(v_{1} v_{i+1}\right)=(i)^{2} ; k \leq i \leq n-1$
According to this edge coloring, all the edge colors are distinct. So coconut trees are square sum difference graphs.

Theorem 2.19. The comb graph $P_{n} \odot K_{1}$ admits square sum difference coloring. Comb graph admits odd sum difference coloring.

Proof: Let $v_{1}, v_{2}, \ldots v_{n}$ be the path P_{n} of length $n-1, u_{1}, u_{2}, \ldots u_{n}$ be the pendent vertices in the same order. Let G be the resulting graph. Let $\left\{v_{i}, u_{i} ; 1 \leq i \leq n\right\}$ be vertex set and $\left\{v_{i} v_{i+1} ; 1 \leq\right.$ $i \leq n-1\} \cup\left\{v_{i} u_{i} ; 1 \leq i \leq n\right\}$ be the edge set. $p=2 n, q=2 n-1$.

Define $f: V(G) \rightarrow\{0,1,2 \ldots 2 n-1\}$ as follows $f\left(v_{i}\right)=i-1 ; 1 \leq i \leq n$
$f\left(u_{i}\right)=n+i-1 ; 1 \leq i \leq n$

The range of f is $\{0,1,2, \ldots, n-1\} \cup\{n, n+1, \ldots, 2 n-1\}$, which is same as the co-domain $\{0,1,2, \ldots, 2 n-1\}$. Also, for any two distinct vertices $v_{1}, v_{2} \in V(G)$ and $v_{1} \neq v_{2} \Longrightarrow f\left(v_{1}\right) \neq$ $f\left(v_{2}\right)$. So f is a bijection Using this vertex coloring, edge colors are obtained as
$f^{*}\left(v_{i} v_{i+1}\right)=i(i-1)+1 ; 1 \leq i \leq n-1$
$f^{*}\left(v_{i} u_{i}\right)=(i-1)^{2}+n(n-1)+n i ; 1 \leq i \leq n$
It admits all the conditions of square sum difference graphs. All the edge colors are odd; so it admits OSSD coloring.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

References

[1] V. Ajitha, S. Arumugam, K.A. Germina, On square sum graphs, AKCE Int. J. Graphs Comb. 6 (2009), 1.
[2] J.A. Gallian, Dynamic Survey of Graph labeling, Electron. J. Comb. 5 (2005), \#DS6.
[3] H. Frank, Graph theory, Addison Wesley, Reading MA, 1969.
[4] J. Shiama, Square difference labeling of some graphs, Int. J. Computer Appl. 44 (2012), 6523-6599.
[5] S.G. Sonchhatra, G.V. Ghodasaara, Some perfect square labeling of graphs, Int. J. Sci. Innov. Math. Res. 4 (2016), 64-70.

[^0]: *Corresponding author
 E-mail address: preethiasokar@gmail.com
 Received April 30, 2022

