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Abstract. South Africa is one of the African countries most affected by the Corona pandemic, with total numbers

of 1536801 confirmed cases, 1462110 cured cases and 52082 deaths since the onset of the virus until March 20,

2021. This paper aims to provide a mathematical model to predict the transmission dynamics of MERS-CoV

and the impact of non-pharmaceutical interventions on disease spread in South Africa using data from May 26,

2020, to March 20, 2021 that cover periods of two epidemic waves. The basic reproduction number (BNR) R0 and

the effective reproduction number Re f f are calculated. Based on the Covid 19 datasets, the model’s parameters

are estimated and sensitivity analyses for three parameters of the model that are related to the BNR are carried

out, where two of the parameters showed significant effects on the BNR. Numerical simulations of the model are

performed using the data of the first and second waves, where the transmissions of MERSCoV in the two waves are

compared. The numerical simulations indicates that following nonpharmacological precautions including full or

partial lock of the country has a major role in controlling the epidemic and limiting its spread. The model predicts

that the infection contact rate is directly proportional to the number of epidemic cases, resulting in the total number
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of infected cases at the epidemic climax becomes very large. Also, when the closure is implemented earlier and

for longer period, it effectively reduces the spread of the epidemic.

Keywords: COVID-19; mathematical model; sensitivity analysis; the effective reproduction number; Hazard rate

of infection.

2010 AMS Subject Classification: 93A30.

1. INTRODUCTION

Corona virus is a large class of viruses that can infect animals and humans alike. They

cause respiratory diseases, whether they are mild such as the common cold or severe such

as pneumonia [1]. Corona virus disease is the result of a new type of Corona viruses that

was previously called ncov-2019 (https://apps.who.int/iris/handle/10665/331221), which

is the seventh member of the Corona viruses family, along with the Severe Acute Respiratory

Syndrome (SARS), which spread between 2002-2003.

The National Institute of Infectious Diseases (NICD) in South Africa (NICD) confirmed that

the first South African case was identified on March 5, 2020 as an imported case from Italy,

a state of national disaster was declared on March 15, 2020. Travel to and from high-risk

countries was banned, and schools were closed immediately.

A complete lockdown of South Africa started on March 26, 2020 and lasted on May 2020.

Then, the easing of restrictions began with reducing the degree of national preparedness to

fourth level. Then, effecting from June 1, the restrictions were reduced to degree 3.

As the second wave of COVID-19 reached its climax in January 2021, the South African gov-

ernment decided on a partial lockdown. Restrictions were imposed on the sizes of gatherings,

and a daily curfew was imposed from 9 pm to 4 am. On July 12, 2021, a complete lockdown

was imposed for 14 days while maintaining the ban on gatherings due to the third wave of the

Corona virus, which emerged due to the highly contagious and rapidly spreading delta strain.

Mathematical models are proved to be useful in analyzing various scenarios of COVID-19

disease development, and to predict the best possible outcomes when public health policies are

incorporated. Many researcher used mathematical models to study the dynamics of the ongoing

Covid-19 in South Africa, for instance we refer to [2, 3, 4, 5, 6].

The COVID 19 timelines in South Africa are summarized in Table 1.

https://apps.who.int/iris/handle/10665/331221
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TABLE 1. COVID-19 Timeline in South Africa.

Date Restriction/event

5 Mar 2020 Minister of Health had confirmed the spread of the virus to South Africa

15 Mar 2020 The President of South Africa declared a national state of disaster

23 Mar 2020 A national lockdown was announced, starting on 26 March

27 Mar 2020 The first local death from the disease

1 May 2020 The begin phased easing of the lockdown restrictions level to 4

1 Jun 20200 The national restrictions were lowered to level 3

17 Aug 2020 The restrictions were lowered to level 2

21 Sep 2020 Restrictions were lowered to level 1

Dec 2020 South Africa experienced a second wave of Corona virus

29 Dec 2020 The lockdown was tightened to level 3.

1 Mar 2021 The lockdown was lowered to an adjusted level 1

8 May 2021 The emergence of local cases infected with the highly contagious Delta

strain.

31 May 2021 The country was moved to an adjusted alert level 2, due to a third wave

of infections

Mathematical models are proved to be useful in analysing various scenarios of COVID-19

disease development, and to predict the best possible outcomes when public health policies are

incorporated[7, 8]. Many researcher used mathematical models to study the dynamics of the

ongoing Covid-19 in South Africa. In particular, Nyabadza et. al [2], proposed a model to

illustrate the effect of social distancing on the transmission dynamics of corona virus in South

Africa. Garba et. al [3] presented a model that incorporated the role of environmental con-

tamination by Corona virus. The model also accounted for social-distancing effectiveness and

community lockdown. Mushayabasa et. al [4] proposed a mathematical model incorporated

all the relevant biological factors as well as the effects of individual behavioral reaction and

government action to the spread of the epidemic. Mukandavire et. al [5] used a mathematical
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model to study the Covid-19 transmission in South Africa and exploring vaccine efficacy sce-

narios and critical vaccination coverage to control the corona virus. Kassa et. al [6], proposed a

mathematical model that takes into the account the behavior of individuals that results from the

increase in the number of cases.

Despite the effort that has been taken, South Africa is the most affected country by Covid-19

in the African continent with a total cases of 3.66M and 98,804 deaths. There are challenges,

particularly in applying recommended strategies in above mentioned studies. This paper aims to

study the ongoing epidemic for different choices of parameters in the model, which reflect the

decisions government must make when implementing policies, such as social distancing, partial

or full lockdown, etc. We propose an SEIRCD model with a time-varying infection strength to

to assess the impact of non-pharmaceutical preventive measures on disease prevalence in South

Africa. The model estimates the effective reproduction number Re f f , which depends on a time-

varying infection strength, to examine the effect of the Government actions on disease spread.

The rest of this paper is organized as follows. In Section 2 we describe the proposed SEIRCD

model. Estimation of the model’s parameters and sensitivity analysis are discussed in Section

3. Then, numerical simulations are carried-out to illustrate the performance of the model. In

Section 5 are the discussions and conclusions.

2. MODEL FORMULATION

We consider an SEIRCD epidemic model, where the total human population at any time t is

denoted by N(t). The model subdivides human population into six compartments depending

on the disease status. These compartments are Susceptible individuals S(t) those who have not

been infected by the corona virus, Exposed E(t) those who are infected by the virus and still in

the incubation period. Therefore, they cannot transmit it to others yet, infected individuals I(t)

(confirmed infected), individuals in the Intensive Care Unit (ICU) C(t), recovered individuals

R(t), dead individuals D(t) those who died because of the corona virus.

In this model, we assumed that the natural death and birth rates are constants, and we assumed

that susceptible individuals move to the exposed individuals compartment E(t) after contact

with infected individuals from compartment I(t) at the rate of γ β (t) infection transmission,

and the individual in compartment E(t) becomes infectious after the incubation period of the
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disease, which ranges from 3 to 5 days [9],[10], and is transferred to the compartment I(t) at

a rate η . Infected individuals I(t) are transferred to the compartment R(t), at a rate δα , by

recovery from the disease, and are transferred to the compartment of ICU, at a rate δ (1−α),

After the cases becomes critical. Infected individuals in ICU are transferred to the compartment

R(t) or D(t), at a rate λ by recovery from the disease or at a rate µ by Death due to disease

Covid-19.

Here β (t), the infectious communication rate is a parameter for capturing the impact of public

health interventions and state policies implemented in South Africa through the Woods-Saxon

function [11]. This function is designed mathematically to describe and characterize transfor-

mations in terms of their scale or strength, smoothness or surprise, thickness (duration), and

tipping point where a0,Z, tTurning,bDuratin, are the fitting parameters used to describe the reduc-

tion in the rate of infectious contacts. Thus,

N(t) = S(t)+E(t)+ I(t)+C(t)+R(t)+D(t).

The model for Covid-19 transmission dynamics in a population is given by the following system

of deterministic non-linear differential equations 1.

dS
dt

= −γ β (t)S(t) I(t)
N

dE
dt

=
γ β (t)S(t) I(t)

N
−ηE(t)

dI
dt

= η E(t)−δ I(t)(1)

dC
dt

= δ (1−α)I(t)− (µ +λ )C(t)

dR
dt

= δ α I(t)+λ C(t)

dD
dt

= µ C(t)

where β (t) is given by

β (t) = a0

(
1+

Z
exp(t− tTurning/bDuratin)

)
subject to the initial conditions:

S(0) = S0 ≥ 0,E(0) = E0 ≥ 0, I(0) = I0 ≥ 0,C(0) =C0 ≥ 0,R(0) = R0 ≥ 0,D(0) = D0 ≥ 0.
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TABLE 2. Description Parameters in the model

parameters Descriptions

N The total population

γ Effective transmission rate

β infectious communication rate or Hazard rate of infection

η The incubation rate

δ The estimated duration or illness

α Recovery rate without being in ICU

λ Recovery rate of ICU patient

µ Death rate due to disease Covid-19 for individuals in the C(t)

The basic reproduction number R0 of model (1) is given as

(2) R0 =
γβ0

δ
,

whereas the effective reproduction number Re f f is given as

(3) Re f f =
γβ (t)S(t)

δN
,

3. PARAMETER ESTIMATION AND SENSITIVITY ANALYSIS

This sections aims at estimating the model’s parameters and do sensitivity analysis on some

of them. It is divided into three subsections, the first describes the data set, the second discusses

the estimation of the parameters and in the third is sensitivity analysis.

3.1. Data. Corona virus epidemic data were obtained from the National Institute of Infectious

Diseases in South Africa (NICD), the World Health Organization 2020 https://Covid.observer

/,https://apps.who.int/iris/handle/10665/331221, Department Of Health Statements in South

Africa, and Covid aster za and the data includes confirmed cases, deaths, and critical cases in

(ICU), daily and cumulative. These data can be found in the websites of the South African

Covid19 data repository https://github.com/dsfsi/Covid19za,and the COVID 19 ZA South

Africa Dashboard https://bitly.com/Covid19za-dash.

https://Covid.observer/
https://Covid.observer/
https://apps.who.int/iris/handle/10665/331221
https://github.com/dsfsi/Covid19za
https://bitly.com/Covid19za-dash
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According to South Africa’s statistics, the population in the middle of the 2020 was

(59,308,690) and these statistics are very important in estimating individuals vulnerable to in-

fection with the Coronavirus at the beginning of the epidemic.

This data changes rapidly and does not reflect to the some of the cases recorded either because

some centers did not publish the data at the same time it was collected, or because the time

period for data collection is different in the centers, or the data was not updated on a daily basis,

and the data was automatically entered into a repository Data after the result was approved, and

duplicate results for tests were excluded.

Data collection of confirmed cases, deaths and recoveries began at the beginning of March

2020, and data collection of intensive care cases began on May 27, 2020. South Africa ranked

first in terms of the number of coronavirus cases in Africa.

3.2. Parameter Estimation. Parameters in the model and their estimated values from the

daily cases and the cases in intensive care of Covid-19 in the first wave, and the daily cases of

Covid-19 only in the second wave. All parameters of the model were estimated and presented

in Table 3.

TABLE 3. Estimated values from the data COVID-19

parameters Estimated value Estimated value Reference

(first wave) (second wave)

γ 0.0824 0.061 Fitted

η 0.2 0.2 [1
3 −

1
5 ] [12]

δ 0.162 0.162 [ 1
18 −

1
5 ] [12], [10]

α 0.964 0.495 Fitted

λ 0.0219 0.437 Fitted

µ 0.011 0.02 Fitted

a0 1 1 Assumed

z 2.30 3.06 Fitted

ttu 46.6 55.28 Fitted

b 5.019 1 Fitted
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FIGURE 1. Model fit of the daily cases of COVID-19 cases
in the first wave.

 0

 150

 300

 450

 600

 750

 900

 1050

 1200

 1350

 1500

 1650

May 26 Jun 04 Jun 14 Jun 24 Jul 04 Jul 14 Jul 24 Aug 03 Aug 13 Aug 23 Sep 02

D
ai

ly
 C

as
es

 in
 IC

U

Date

Observed Data
Fitted Data

FIGURE 2. Model fit of the daily cases of COVID-19 in the
Intensive Care Unit in the first wave.
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FIGURE 3. Model fit of the COVID-19 daily cases in second
wave between 10 Nov 2020 to 20 Mar 2021.
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In figures 1, 2 and 3 the daily cases of COVID-19 infections are represented by points and

the model that fits these data is represented by a solid line. The figures illustrate how the model

fits the daily and ICU cases of Covid 19 in the first and second waves, respectively, in South

Africa. We will use the estimated parameter values to calculate the value of R0 and β (t), and

make forecasts for current measurements and other scenarios.

The start of the corona virus outbreak, the effective transmission rate was γ = 0.082, the

infectious communication rate was β0 = 3.303, and the basic reproduction number was R0 =

1.682. After the first wave of the Corona pandemic ended, scientists were able to learn more

about the disease and how it spreads, educating people about the seriousness of the virus and

drawing their attention to the fact that it has become a global pandemic.

Preventive measures such as closure, wearing masks, sterilization and social distancing were

followed, all of these measures did not prevent the emergence of a second wave of the Corona

virus in South Africa. But those precautions reduced the effective transmission rate of the

Corona virus γ to 0.061, the basic reproduction number R0 to 1.528. The infectious contact

rate β0 increased to 4.06 with the end of the lockdown period as a result of people returning to

their normal lives and mingling with others.

The rate at which Corona patients recover without entering the intensive care unit α was

estimated to be 0.94, which means that most patients who contracted Corona disease were

treated without their cases becoming critical in the first wave. This ration decreased in the

second wave to α = 0.495, due to the second mutated version of the Corona virus, which made

it more contagious, threatening and faster spreading, and led to the emergence of new, more

deadly symptoms that caused increased pressure on the health system, and an increase in the

death rate α .

In the first wave, the recovery rate of patients at the ICU λ was estimated to be λ = 0.0219.

This rate highly increased during the second wave to λ = 0.437. The reason for this significant

improvement in the rate of recovery in intensive care units is that the treatment protocol was

not known at the beginning of the Corona pandemic, as health units were focused on treating

the symptoms of the disease. But the improvement in the treatment protocol during the second

wave led to an improvement in the recovery rate of patients in the intensive care units.
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Figures 4 and 5, show the estimation of the infectious communication rates during the first

and second waves, respectively. It was found that β0 = 3.303 in the first wave as appears in

Figure 4, meaning that each person interacts with three individuals and transmits the disease to

them. This rate is changed in the second wave, and was found to be β0 = 4.06. At the end of

the two waves this rate became β ∗ = 1, due to the preventive procedures that were imposed in

South Africa.
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FIGURE 5. Infectious commu-

nication rate (Hazard rate of in-

fection) during the second wave

3.3. Sensitivity Analysis. It can be seen from Equation (2), the basic reproduction number R0

depends on three parameters, namely γ,β0 and α . It does not depend on rest of the parameters

(i.e. η ,µ,α,λ ).

To determine the relative importance of the model parameters for the initial transmission

of Covid-19 and disease spread, it would be self-evident to study the sensitivity of the basic

reproduction number R0 to changes in the parameters affecting it, and even more so to calculate

the sensitivity index for each of these parameters.

Definition 1. The sensitivity index of R0 with respect to a parameter P is given by

CR0
P =

∂R0

∂P
× P

R0

These values are given in Table 4.
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TABLE 4. Sensitivity of basic reproductive number evaluated for the parameters

value given in Equation (2)

parameters Sensitivity Index Sensitivity Index

(First wave) (Second wave)

γ +0.998 +1.000

β0 +0.998 +1.000

δ -0.998 -1.000

It is worthy to note that the sensitivity index depends on the three parameters γ,β0 and δ , and

is independent of the parameters η ,µ,α,λ . For example, the sensitivity index γ = +1 means

that any change in γ will have a similar and in the same proportion effect on R0, be it an increase

or a decrease. In a similar fashion, the sensitivity index δ = −1, means that any change in δ

will have reverse effect and in the same proportion on R0.

4. NUMERICAL SIMULATIONS

In this section we perform numerical simulation and epidemiological analysis using South

African corona virus data and consider several scenarios by increasing and/or decreasing the

value of the model parameters.

From Table 3, the effective transmission rate was estimated as γ = 0.0824 and γ = 0.061

in the first and second waves of the pandemic, respectively. Figures 6 and 7 show how how

changing the parameter γ would change the dynamics of the infected population, in the first and

second waves of the pandemic.

Figure 6 shows that for γ = 0.0824 the peak of the infected population would be at around

12680 in the first wave of the pandemic. In the case of decreasing γ to 0.08, the peak of the

infected cases is predicted to be 10,680. In the case of increasing γ to 0.085, the peak of the

infected cases is predicted to be 15030.

From the 1st of May 2020, a lockdown with restrictions of level 4 were applied in South

Africa, due to the global first wave of Corona pandemic. These restrictions were lowered grad-

ually in June, August and September to levels 3, 2 and 1 respectively. These policies led to a
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drop in the effective transmission rate γ when the second wave started, to γ = 0.06. Figure 7

simulates the dynamics of the infected population during the second wave of the pandemic. It

shows that for γ = 0.061 then the peak size of the infected population in the second wave is at

around 18900 patients. If γ is lowered to 0.058, the peak of the infected cases would drop to

14540 cases and if raised to 0.065, then the peak would raise up to around 29100 cases.

From Table 3, the recovery rates of the ICU patients were estimated as λ = 0.0219 and

λ = 0.495 during the first and second waves of Corona pandemic. Figures 8 and 9 simulate

the effect of changing the recovery rate λ of ICU patients on the dynamics of the ICU patients

during the first and second waves.

Figure 8 shows the dynamics of the ICU patients during the first wave. At the estimated value

λ = 0.0219, the peak occurred on the first of August with around 1430 patients at the ICU. The

simulations show that if λ is decreased to the value λ = 0.01 the peak will raise to around

1810 patients at the ICU, and if increased λ = 0.03 then the peak will go down to around 1250

patients. Similarly, in Figure 9, the simulation show that the peak of the ICU patients dynamics

occurred on the 9th of January 2021. The actual number of the ICU patients corresponding to

the estimated value λ = 0.437 had a peak of around 3300 patients. If λ is lowered to 0.3 then



NON-PHARMACEUTICAL INTERVENTIONS IN THE TRANSMISSION OF COVID-19 13

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

May 26 Jun 04 Jun 14 Jun 24 Jul 04 Jul 14 Jul 24 Aug 03 Aug 13 Aug 23 Sep 02 Sep 11 Sep 21

D
a

il
y
 C

a
s
e

s
 i
n

 I
C

U

Date

λ = 0.0100

λ = 0.0219

λ = 0.0300

FIGURE 8. The evolution of

infected population in ICU with

different value of the Recovery

rate of ICU patient λ

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

Nov 10 Nov 20 Nov 30 Dec 10 Dec 20 Dec 30 Jan 9 Jan 19 Jan 29 Feb 08 Feb 18 Feb 28 Mar 10 Mar 20

D
a
ily

 C
a
s
e
s
 i
n
 I
C

U

Date

λ = 0.300

λ = 0.437

λ = 0.500

FIGURE 9. The evolution of

infected population in ICU with

different value of the Recovery

rate of ICU patient λ

the peak would raise to around 4625 patients and if increased to λ = 0.5, then the peak would

drop to around 2900 cases.

From Table 3, the recovery rates of infected population that are not in the ICU were estimated

to be α = 0.964 and α = 0.495, during the first and second waves of the Corona pandemic,

respectively. Figures 10 and 11 simulate the effect of changing the recovery rate of patients that

are not in the ICU on the dynamics of infected population during the first and second waves of

the infection.

Figure 10 shows that the peak size of infected population during the first wave was on the

1st of August 2020, with a total number of patients around 1430, for the estimated value of

α = 0.964. If α is decreased to 0.94, then the peak size of the infected population would be

raised to around 2400 patients. If it is increased to 0.98, the peak size would be lowered to

around 810 patients. Figure 11 shows that the peak on the number of infected population during

the second wave was around 3300 on the 9th of January 2021, which was achieved for the

estimated value α = 0.495. If the value of α is decreased to the value 0.3, the peak in the size

of infected population will be raised to around 4600 patients. If it is increased to 0.6 the peak

size of the infected population would drop to around 2600 patients.
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Figures 12 and 13 show how changing the effective communication rate parameter β (t) can

affect the dynamics of the infected populations during the first and second waves of pandemic.

Since the form of β (t) involves a parameter Z, then, increasing or decreasing the value of Z

leads to an increase or a decrease of the effective communication rate β (t). From Table 3,

the initial values of β are estimated as β0 = 3.3 and β0 = 4.06 in the first and second waves,

respectively.

Figure 12 shows that for β0 = 3.3, the peak size of the infected population in the first wave

is around 12680. If β0 is decreased to 2.3, the peak of the infected population would drop to

around 2370. If β0 is increased to 4.2, the peak size of the infected population would raise

to around 57950 patients. Figure 13 shows that for β0 = 4.06, the peak size of the infected

population in the second wave is around 18900. If β0 is decreased to 3.02 that would lower the

peak size of the infected population to around 3900, whereas if β0 is increased to 5.06, the peak

size of the infected population would jump to around 76670 patients.
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ent value of Z and value β (t)

and β0 corresponding to Z

5. CONCLUSIONS

In this paper, we proposed an SEIRCD model with time-varying force of infection, devel-

oped to illustrate the dynamics of corona virus transmission. The model examines the non-

pharmaceutical preventive policies on the spread of Corona pandemic in South Africa.

As seen in figures 1, 2 and 3, the model fits well with the daily infected cases and intensive

care cases of Covid-19 in the first wave, and only with the daily infected cases in the second

wave, which leads to an optimal estimate of the epidemiological parameters of the model in both

waves in South Africa, as seen in Table 3. To find out which parameters have more impact on the

dynamics of the infected populations in and out the ICUs during the first and second waves of

the pandemic, sensitivity analyses were carried out on some of the models’ parameters. Namely,

the effective transmission rate parameter γ , the recovery rate λ of the ICU patients, the recovery

rate α of infected cases not in the ICU and the infectious communication rate β . The sensitivity

indices of such parameters were computed and displayed in Table 4.

Figures 6 and 7, 8 and 9, 10 and 11 and; 12 and 13 show the sensitivity of the infected

population dynamics to changes on the parameters γ , λ , α and β0, respectively. By comparing

the effects of these parameters on the infected population dynamics through the figures, we find
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that the dynamics of the model is more sensitive to the change in parameter β0, followed by γ .

It is also noted that the parameter α has more impact on the dynamics of infected population

at the ICU than the parameter λ . We see that the two most effective parameters, β and γ are

related to the basic reproduction number R0.

We conclude from these results that decreasing the effective transmission rate leads to a

decrease in the number of infected individuals and delays the peak time of the epidemic. If

preventive policies such as the implementation of complete lockdown once increases in the

daily cases are noticed, this will lead to the delay of the peak time and therefore reduces the

total number of infections at the peak. The study shows that reducing the infection transition

rate between members of the population has a very positive effect in limiting the spread of

Covid-19 in South Africa.

APPENDIX A. MODEL DIAGRAM

S E I R

C D

γ β (t)SI
N η δ α

δ (1−α)
λ

µ

FIGURE 14. Schematic diagram of the proposed model given by system (1)

APPENDIX B. ANALYSIS OF THE MODEL

In the section, we seek to qualitatively study the dynamical properties of the infectious disease

model(1), which quantifies disease Spread or extinction in a population.

B.1. Positivity and boundedness.
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Theorem 1. (positivity) suppose that related solution of the initial data

{S(0),E(0), I(0),C(0),R(0),D(0)) ∈ R6
+}is(S(t),E(t), I(t),C(t),R(t),D(t))

.Then for the system of equation (1) the positively invariant set is R6
+

Proof 1. Consider the equations of system (1), substitute

S = 0,E = 0, I = 0,C = 0,R = 0,D = 0

in the first, second, third, fourth,fiftieth, and sixth equations, respectively. Then we have

(4)

dS
dt

∣∣∣∣
S→0

= 0

dE
dt

∣∣∣∣
E→0

=
γ β (t)SI

N
> 0

dI
dt

∣∣∣∣
I→0

= η E > 0

dC
dt

∣∣∣∣
I→0

= δ (1−α) I > 0

dR
dt

∣∣∣∣
R→0

= δα I +λ C > 0

dD
dt

∣∣∣∣
D→0

= µ C > 0

Positive invariant region that meets the model (1) is given by

Ω = {(S(t),E(t), I(t),C(t),R(t),D(t)) ∈ R6
+ : N(t)≤ N(0),∀t ≥ 0}

The coordinates of an Disease-free equilibrium point (S,E, I,C,R,D) the system of equa-

tion(1) obtained by the following equations:

(5)
dS
dt

=
dE
dt

=
dI
dt

=
dC
dt

=
dR
dt

=
dD
dt

= 0

therefore, the system of equation (1) indicates that The disease free equilibrium denoted by

Ed f e,i.e.,

(6) Ed f e = (S0,E0, I0,C0,R0,D0) = (N,0,0,0,0,0)
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B.2. The basic reproduction number. The basic reproduction number is a baseline measure

in epidemiology is denoted by R0 is the expected value of secondary infections rate per time

unit. Based on the system of equation (1), We have three infected classes I(t), E(t), C(t).

dE
dt

=
γ β (t)S(t)I(t)

N
−ηE(t) (7a)

dI
dt

= ηE(t)−δ I(t) (7b)

dC
dt

= −δ (1−α)I(t)+(µ +λ )C(t) (7c)

We assume that the Hazard rate of infection is a constant β (t) taking the maximum

valueβ (0) = β0 at t = 0 and the minimum value β (t∗) = β ∗ at t = t∗. let x = (E, I,C) and

rewrite the system of equation (7)for the susceptible and infected classes in the general from

dx
dt

= f (x)− v(x)(8)

where

(9) f (x) =


γ β (t)SI

N

0

0

 ,v(x) =


ηE

−ηE(t)+δ I(t)

δ (1−α)I(t)− (µ +λ )C(t)


Now the Jacobian of f (x) and v(x) of the disease free equilibrium point is

(10) F =


0 γ β0 0

0 0 0

0 0 0



(11) V =


η 0 0

−η δ 0

0 −(1−α)δ µ +λ


Therefore

(12) V−1 =


1
η

0 0
1
δ

1
δ

0
(1−α)
(µ+λ )

(1−α)
(µ+λ )

1
µ+λ
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The reproduction number of the system equation (1) is follows

R0 = ρ(FV−1)(13)

Therefore

(14) FV−1 =


γ β0
δ

γ β0
δ

0

0 0 0

0 0 0


The eigenvalues of FV−1 are

(
γ β0

δ
,0,0)(15)

Thus

R0 = ρ(FV−1) =
γ β0

δ
(16)

and the effective reproduction number is given by

Re f f =
γ β (t)S(t)

δ N
(17)

Theorem 2. For the system of equation (1), then exist a unique postive endemic equilibrium

point E∗en if R0 > 1.

Proof 2. An endemic equilibrium E∗ = (S∗,E∗, I∗,C∗,R∗,D∗), with S∗,E∗, I∗,C∗,R∗,D∗ > 0,

satisfies

S∗ =
δN
γ β ∗

(18)

E∗ = N
[

1− δ

γ β ∗

][
δ (µ +λ )

A

]
(19)

I∗ = N
[

1− δ

γ β ∗

][
η (µ +λ )

A

]
(20)

C∗ = N
[

1− δ

γ β ∗

][
η δ (1−α)

A

]
(21)

R∗ = N
[

1− δ

γ β ∗

][
δ η (α(µ +λ )−λ (1−α))

A

]
(22)

D∗ = N
[

1− δ

γ β ∗

][
δ η µ(1−α)

A

]
(23)
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where

A = η (µ +λ )+δ (µ +λ )(η α +1)+δ η(1−α)(1−λ +µ)+(µ +λ )(η +δ (1+η α))

B.3. Stability analysis of the model.

Theorem 3. the system of equation (1) is locally stable related to the free equilibrium point

Ed f e if R0 < 1 and unstable if R0 > 1.

Proof 3. The Jacobian matrix [13] with respect to the system of equation (1) is given by :

J =



− γ β (t) I
N 0 − γ β (t)S

N 0 0 0

γ β (t) I
N −η

γ β (t)S
N 0 0 0

0 η −δ 0 0 0

0 0 δ (1−α) −µ−λ 0 0

0 0 α δ λ 0 0

0 0 0 µ 0 0



(24)

At Ed f e, the jacbian matrix becomes

J(Ed f e) =



0 0 −γ β0 0 0 0

0 −η γ β0 0 0 0

0 η −δ 0 0 0

0 0 δ (1−α) −µ−λ 0 0

0 0 α δ λ 0 0

0 0 0 µ 0 0



(25)
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Thus, we get the eigenvalues are

λ1 = 0,λ2 = 0,λ3 = 0,λ4 =−µ−λ

λ5 =−
(δ +η)

2
+K

λ6 =−
(δ +η)

2
−K

where

K =
1
2

√
4γ β0η +δ 2−2δη +η2

If (δ+η)
2 > K implying that λ5 < 0,then R0 < 1, so the system of equation (1) is locally-

asymptotically stable for R0 < 1, and implying that (δ+η)
2 < K then λ5 > 0, we obtain that

R0 > 1 , Hence the system of equation (1) is unstable for R0 > 1.

Theorem 4. The endemic equilibrium E∗en of the system equation (1) is locally-asymptotically

stable if R0 > 1.

Proof 4. The characteristic equation of the E∗en is given by

m6 +(A1 +A2)m5 +(A3 +δηλ µA2)m4 +(A3 +A4)m3 +A2A4m2 = 0(26)

Therefore

m4 +(A1 +A2)m3 +(A3 +δηλ µA2)m2 +(A3 +A4)m+A2A4 = 0(27)

where

A1 = µ +λ +δ +η

A2 = β
∗
[

1− β0

β ∗R0

][
η (µ +λ )

A

]
A3 = δ λ +δ µ +η λ +ηµ

A4 = δ η

Since A1 > 0,A2 > 0,A3 > 0,A4 > 0 for R0 >
β0
β ∗ > 1 and

(A1+A2)(A3 +δηλ µA2)> (A3 +A4)

((A1 +A2)(A3 +δηλ µA2)− (A3 +A4))(A3 +A4)> (A1 +A2)A2A4
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Using Routh-Hurwitz Criterion, E∗en is stable if and only if R0 >
β0
β ∗ > 1.
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